Indopmaniiini Texnosorii Ta IHTepHeT y HABYAIBLHOMY NPOLECi TA HAYKOBUX JOCTiIKEHHAX

DEVELOPMENT OF TOOLS FOR TRACING OF PARALLEL
PROGRAMS

Svanadze Giorgi, Tsereteli Paata

St.Andrewthe First-Call Georgian University of the Patriarchate of Georgia, Tbilisi, Georgia

Abstract

Often the performance of programs on parallel computing systems is poor than programmer
expects and performance analysis and debugging is extremely complicated process. We are developing
software tools that will help programmer determine bottlenecks and improve performance. Our
approach is discussed in this paper

AHoTanus

Yacmo np0u3600umeﬂbﬂocmb npozcpamMmvl Ha NaApallellbHblX 6blHUCAIUMETIbHbIX cucmemax
noayuaemcs menviue oofcu()ae/woﬁ, a aHaaus np0u3600umeﬂbHocmu A6IAemcst OYeHb CAOHCHbIM.. Mol
paspabamuvléaem NpeSpamMMHble CPeOCmeaq, KOmopvle HOMOZYM APSPAMMUCTHY HAUMuU Y3Kue mecmd 6
ceoell npozcpamme u noevlCumsv np0u3600umeﬂbyocmb. B 0aHH012 cmamove paccmmpueaemcst
@DYHKYUOHAILHOCIb HAWE20 NPOOYKMA

Introduction

Unfortunately, parallel programs are more difficult to write, optimize and understand than
serial programs because of concurrency of processes or/and threads they used. Programmer
must coordinate communication between processes, synchronize threads and processes, and
control access to shared object by threads. Sometimes programmer may carry these actions not
as effectively as it is possible, that causes poor performance of program. To determine the
bottlenecks of his software product the programmer needs tools for monitoring of application.
The objective of such tools is to help programmers to get highest possible performance from
their programs on their target architecture. Performance debugging consists of several phases
including the phase when performance data is collected and the phase of presentation of
collected data to programmer.

In order to support performance debugging a large number of performance indices must
be delivered by measurement tools so that programmer can detect and reduce the overheads of
their programs. Among these indices completion time and processor utilization rate are very
important. Completion time is time spent by execution of various parts of program and it must
be reduced as much as possible. Processor utilization rate indicates what percentage of
processor time is spent executing “useful” work, programmer need to know what time is spent
executing synchronization, task creation and scheduling, communications between processes,
etc. Moreover, performance debugging tool must be simple in use.[1,2]

One of the ways to collect such information is tracing. It is most general event driven
technique. It is very well suited to measure times spent by program into various parts of
program, for example, to measure communication times, or times needed for execution of
subprograms, loops, etc. It can be also used for observation of behavior of parallel
threads/processes. In our approach user can set control points in the program in any place. There
are two types of control points — the first is case when user wants to record only time of passing
of the control points and the second is case when user wants to get execution time of program
sections. Control points have form of C/C++ comments and are considered as usual comment by
C/C++ compiler

The offered tool consists of two parts. The first part we call preprocessor and it processes
control points and program sections set by user. In result we receive C/C++ program that
includes all necessary statements for collecting times and recording them into the file. After the

222

Indopmaniiini TexHosorii Ta INTepHeT y HABYAJILHOMY NPOLECi TA HAYKOBUX JOCTIIKEHHAX

program is compiled and run on target computer user obtain result file with time information.
The second part of tool is visualizer. It intended for visualization of collected times.

Preprocessing

Before the formatting, the user selects the type of program to be formatted, or which of
OpenMP and MPI technology has been used in the program. Preprocessor does not allow file
selection, until the user selects the relevant technology. After marking one of the technologies,
the user uploads the text file, where the programming code is recorded with the special
comment. Upon the start of the formatting the program will begin to search special comments in
the code and to record the time counting and file recording commands in their place. After
formatting we will get the same program, in which in the place of special comments there will
be recorded time counting, file recording and related commands. The result will be recorded in
the second non-editable text area, where the text may be copied by pressing a button. In
addition, the user will be able to select the time recording file name in the special field.

F\SAMAGISTRO\Program\OMP_Program_Text.txt Browsc & OMP MPI ElapsedTime_OMP
C Clew Copy To Clipboard

Program To Be Formared

<< << endl;

< - pointSearcTime))):

me - poinSraTTime)):

e - pointStarcTime)));

res[g]p] += VI K

Visualization

Before the visualization the user selects the technology used in investigated program. As
in case of the preprocessing, the program does not allow to upload the file until user selects one
of the two technologies. After selecting the technology, the program visual aspect changes
depending on the technology, OpenMP or MPI, selected by the user. The file content upon the
uploading is recorded in the non-editable text area. In case of OpenMP technology the
availability of function times in the file is examined. In case of availability their number is
counted and the radio buttons of this number are reflected in the program. Before the
visualization the program reads the times recorded in the predefined format from the time files
and other related information. Thereafter three charts in case of OpenMP technology or two
charts in case of MPI technology appear. The charts may be selected through the check boxes
available in the program.

223

Indopmaniiini Texnosorii Ta IHTepHeT y HABYAIBLHOMY NPOLECi TA HAYKOBUX JOCTiIKEHHAX

© MPI F:\SAMAGISTRO\Program!ElapsedTime_OMP.txt

o
Visualize I T
; !
\:| 5 ; ‘
”“:& oo
llel ctions
v

111

loronn
1/0/5.06019
l2/0/5.0602

13/0/6.06379

73881 78681 83661 egbel 93881 98681 10,3881 10£881 103681 118681 123881 126681 133681 138681 143661 14681 153631 158681 163681 16681

Time

Error handling

After formatting and visualization the program runs several checks. In case of failure to
pass the checks the program stops to work and deliver the relevant message to the user. Also
the program stops to work, if the special comments or directives required for time counting are
wrongly written or are not written at all by the user.

In order to catch the errors in addition to the general errors and relevant texts the program
code provides the special error texts. This makes it easier for the user to work with the program
and in case of uploading of a wrong program or time files allows to correct the error.

Conclusion

In this work we presented the use of developed tool for improving of performance. It may
be used by any programmer who would like to watch program execution process. The
investigated program is not necessary to be parallel (written using MPI or Open MP
technologies). In case of serial program the user will be able to determine execution time of
various sections of program. In case of parallel program programmer can collect trace
information and visualize it.

Future work includes transferring tool on web-platform, development of tools for
understanding program structure, supporting on-line visualization.

References:

1.J.C. de Kergomeaux, E,Maillet and J.-M.Vincent Monitoring Parallel Programs for
Performance Tuning in Cluster Environments. In “;Parallel Program Development for Cluster
Computing: Methodology, Tools and Integrated Environments”, Nova Science Publishers, New
York, 2001.

2.JM. Wozniak, A.Chan, T.G. Armstrong, M.Wilde, E.Lusk, L.T.Foster A model for
tracing and debugging large-scale task-parallel programs with MPE // Proc. Workshop on
Leveraging Abstractions and Semantics in High-performance Computing at PPoPP, 2013.

224

