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Recognition of Textured Objects using Optimal Inverse Resonant Filtration 
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Abstract. Recognition of textured objects is a typical problem in computer vision and pattern 

recognition. Usually are meeting two variations of this problem. The first is the recognition of a 
signed texture. The second is objects of interest recognition in image with textured background. We 
offer an approach for solving of the both problems with using of the inverse resonant filtration. A 
textured object or background dynamic space can be approximated by a set of principal 
eigenvectors in the form of resonantharmonic functions called as eigen harmonics (EH). The 
Inverse ResonantFilter (IRF) which is resonant in respect to EH series eliminates textured 
background and forms indicator signal of certain species. The IRF is founded on the approximation 
and extrapolation of the texture template signal by series of EH. Two methods of 2-dimensional 
(2D) EH parameter estimation are considered. The methods give estimates robust tobreaks and 
noise peakspresentedin textured image signal. The first method is based on the linear symmetry 
model and can be presented as a double linear prediction model. Additionally the condition of the 
unitary symmetry is used to provide stationarity and periodicity of the model. The second method is 
based on 2D correlation matrix splitting with projection into the subspace of principal harmonic 
components. Implementation of the IRF is considered in spatial and spectral domains. Discrete 
Fourier transform with eigen kernel (DFTEK) was used for design and realization of the high order 
IRF. The DFTEK has fractionally fast transform algorithm. Aligning image fragment phases 
improved inverse resonant filtration in the spectral domain. It was shown that the optimal approach 
to image filtration consists of an initial fast filtration in the spectral domain, followed by post-
filtration of the image zones containing anomalous background variations using IRF in the spatial 
domain. It was shown that the IRF is invariant to shift transform. It can be invariant to affine and 
scale transform if instead initial texture and image are using their invariant pattern in the form of 
image surface geometry characteristics. 

 
Index Terms:eigen-harmonic decomposition, inverse resonant filtration, pattern recognition 
 
Introduction 
Recognition of textured objects is one of the main challenges for visual based measurements 

and control systems. A texture can be an eliminating background or a target object. The problem is 
to define features which distinguish an image objects from their background. These may be 
statistical, structural and dynamic properties. The latest methods of texture analysis are examined in 
[1-4].  

We will consider the methods of texture analysis from the point of view of their potential real 
time implementation by using arithmetic unit arrays such as Graphic Processor Units (GPU) and 
FPGA (Field-Programmable Gate Array). 

The choice of method depends on the texture type – regular, quasi-regular, stochastic or 
dynamic. Most methods are based on statistical analysis, spectral transformations, and dynamic 
models of texture image signals. Our main interest is related with model based method of image 
analysis. 

The statistical based methods are based on parametric and nonparametric models of the image 
textures such as Bayes analysis, Hidden Markov Models, Regression, Linear Autoregression (AR), 
Nonlinear Autoregression (NAR), and Autoregression with Moving Average (ARMA) [1-8]. The 
statistical nonparametric methods primary are nonlinear and not always give the textured image 
pattern estimates that are invariant in respect to spatial transforms of the image.   
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Correlation methods can be implemented by arithmetic structures. The most widely used 
correlation method is the Method of Co-occurrence Matrices [2, 3, 9]. Further development of the 
correlation method includes definition of a nonlinear metric that relates with geometry of textures 
[10, 11].  

The newest methods of object recognition are based on image signal transforms in the spatial-
frequency domain, where spectral parameters of the image have simple statistics in a narrow range 
[1, 12]. These methods combine statistical models and the Fourier transform.They use a set of 
functions of a certain type. The most popular are wavelet functions and their generalizations for 2D 
transforms [13],classic Gabor functions [14, 15].  

The wavelet and Gabor spectrums represent local geometric features of textures with a 
minimal number of significant coefficients, however,they do not represent the texture periodicity 
because wavelets and Gabor functions have shift-variant spectrum. This problem was partially 
overcome by the introduction of the Complex Wavelet Transform (CWT) [16]. CWT transfers the 
spatial domain to frequency-phase domain and suppresses the spectrum aliasing that appears as a 
consequence of texture variations. CWT was also used to obtain the rotate-invariant transform [17]. 
Shift and rotate invariance have been investigated in some articles on object recognition.  

A desire to present textures with a minimal number of parameters has driven the development 
of new transforms, many of which are a combination of existing transforms.  

For example, the Radon transform in collaboration with common and wavelet based Fourier 
transforms provides the possibility to present images in a frequency-angle domain that has a much 
lower dimension as it is affine-invariant [18, 19].  

Exact texture shape description is not necessary in many applications. When texture is 
dynamic the spatial and temporal changes are more important than local surface pattern 
characteristics. 

Combining the eigenvector decomposition (EVD) of texture kernel with filters that resonant 
to certain image eigen modes gives most informative texture description [20]. This approach was 
widely developed in many papers[21-28]. The EVD is computationally complicated; therefore 
Independent Component Analysis (ICA) [21, 22], Empirical Mode Decomposition (EMD) [23-25] 
and Singular Values Decomposition (SVD) [26-28] are substituted for it. These decompositions 
reduce the size and dimension of texture parameters according to Principal Component Analysis 
(PCA).  

PCA makes a projection of a textured image into a subspace configured by the most 
significant parameters. Usually the decompositions are used for full image transformation that 
complicates their application in real time systems.  

Another implementation of PCA and EMD is based on the use of filters bank. Filters bank is 
synthesizing with the help of Fourier transform, wavelets and Gabor functions. The problems with 
texture analysis using filters bank arise from the sequence of tasks: decomposition; classification of 
the spectrum components; recognition.  

Filtering procedures can be implemented using matrix transforms or convolution. This is done 
via components pattern analysis with thresholding, clustering, segmenting and modeling techniques 
[1-4].  

In the case of dynamic textures decompositions are used dynamic models based on discrete 
differential equations [27-29]. The model synthesis is computationally complicated. But the model 
implementation is not complicated and can be executed in real time using a common signal 
processor or arithmetic array [28].  

The correlation matrix and other integral matrices such as Wigner integral are used as objects 
of the decomposition because they represent the dynamic properties of a large image in compact 
form. The asymptotic correlation matrix of a stationary process has Toeplitz structure and its eigen 
vectors are harmonic in nature [30]. A textured image can be considered as a 2D stationary process 
with the block-Toeplitz correlation matrix. So, the harmonic decomposition is a natural 
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approximation of EVD or EMD. The parameters of harmonics should agree with periods of a 
texture pixels and gray scale spatial variations. Such harmonics are considered as eigen or resonant 
with respect to texture structure.  

The eigen-harmonic decomposition (EHD) is based on planar and spherical functions that 
have been used for compact presentation of textured images as well as human facial images in some 
articles [31, 32]. 

The demands of textured pattern recognition invariance are not restricted by shift and rotation 
invariance. These demands to textured object recognition are wider and can be formulated as 
follows. 

The method should be invariant to scaling perturbations of target object in order to identify 
different resolutions of the same image objects. 

The isometry invariance. This includes changes of brightness, rotations, mirror operations, 
color rotations and inversions. 

Similarity. The recognition filters (methods) of similar images should be similar. To develop a 
notion of similarity one needs. Similarity of images may be measured by simple Euclidean 
distances.  

The recognition filter should has a shorter representation than the associated object image. 
These are the natural requirements if we are dealing with recognition filters (methods) of 

objects that are presented in metric spaces. The newest approach to invariant object recognition is 
the interpretation images as Riemannian manifolds [33]. In the context of image classification this 
is motivated by the fact that most content preserving operations are isometrics, i.e. this map and its 
inverse preserve the arclength of all curves [34]. This includes changes of brightness, rotations, 
mirror operations, color rotations and inversions. 

 
 The brief survey of textured image analysis methods allows the following conclusions:  

- Dynamic model based methods of texture analysis and synthesis are the most effective. These 
methods can be used for analysis of static, dynamic, and quasi-regular textures. Models may be 
created with using a fragment of the image. The remainder of the image of an arbitrary size can be 
restored by the model operator using a generation process. 

- Object recognition on a textured background may be accomplished by comparative analysis 
of the original and generated by the model images.  

- An implementation of the structured object recognition using inverse in respect to object 
model schema yields to make recognition of the simple process that generate the texture by its 
model. Usually the generating process is white noise [27], so the recognition method may operate as 
a whitening filter similar to AR, NAR, and ARMA models. Variations of the retrieval generating 
signal can be described by the simple statistical parameters of mean value and dispersion. These 
parameters can serve as indicators of the target object. 

- Autoregressive type models are not suitable for object recognition solutions because they 
reflect the frequency spectrum of the signal, but only indirectly reflect the amplitude spectrum by 
dumping factors of sinusoids. It is difficult to find a single valued solution for the estimation of 
whitening filter parameters because they relate to second order moments of texture signals. We will 
consider this problem solution based on linear inverse filtration which suppresses textured object 
structure and transforms it into simple for recognizing signal. At the same time it leaves foreign 
objects signal fluctuations without change of their energy. This type of inverse problem can be 
solved with using of the first order moments of textured image signals.  

- The dynamic models are usually synthesized using the Fourier transform or decompositions 
mentioned above. The survey of previous research shows that the use of transforms and 
decompositions depends on the image type: full format, or only a typical fragment (known as 
texture kernel or as texton) [35]. When a full format image is using the wavelet and Radon 
transforms combined with Fourier transform give appropriate results. When a textonis using the 
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wavelet transforms and SVD ignore the structural information because they are shift-variant. It has 
been shown that SVD and its multidimensional generalizationare effective for dynamic model 
synthesis [27, 28].  

- The wavelet transforms have approximate and restricted shift invariance and cannot represent 
periodicity because they are intended for analysis of transient signals. EVD and EMD can represent 
texture periodicity as well as local kernel structure, however, the functional basis for these 
decompositions does not have analytical definition and is variant in respect to image shift. This fact 
complicates their use for interpolation of the image fragment when the exact texture period is 
unknown or periodically pulsating (such as a marine surface). 

- In contrast to the mentioned decompositions, the EHD has simple analytical definition and 
join capabilities to approximation and interpolation of 2D fields [36]. Therefore the EHD is an 
appropriate function basis for the design of a linear inverse filter.The linear inverse filter suppress 
the approximation of texture structure in the form of eigen harmonic series. The harmonics in this 
series have resonant frequencies in respect to the image signal. An elimination of these harmonics 
makes the texture signal simpler and easier forrecognizing. This filter can be defined as the Inverse 
Resonant Filter (IRF).  
 Texture modeling and recognition with properties of invariance to space and scale 
perturbation can be made by including transforms of initial image into its invariant projections as 
surface curvature and Beltrami flow [33, 34]. From the view of the EHD this approach is useful 
because the projections can transform mismatch for harmonic approximation step like image signal 
into sequence of fluctuations which associate with feature of step level change.  

 
 

I. Object recognition problem statement as the problem of optimal filtration 
 
We formulate theproblem of objects filteringas follows. 
 Let in the space   is given an image X  which includes an object  O:  as subset 

O  of  . The aim isto define a linearornon-lineartransform 

 
    ExXxF  ):;( O ,        (1.1) 

 
where E  is a signal of object presence indicator. At the same time, the next condition should be 
satisfied together with (1.1):  
 

    ExXxF  ):;( O .        (1.2) 

 
Recognition of some objects can be made using two conditions like (1.1) and (1.2):  
 

   ExXxF ii  ):;( O ; ExXxF
ii  ):;( O .    (1.3) 

 

   iii ExXxF  ):;( O ; ikki ExXxF  ):;( O .    (1.4) 

 

The condition (1.3) creates the filters of some different objects i  without their classification. This 

condition is useful when the objects compile textured background and should be eliminated by 
filter. The condition (1.4) creates the filter for retrieval of the textured objects i  with their 

classification.  
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 There are some approaches to problem (1.1) – (1.4) solution. They can be separated on two 
classes of methods – reversible and not reversible. Statistical and some spectral methods give the 
indicator Eparameters set not appropriate for initial object reconstruction compiles the second class. 
The deficiency of this methods class is absence of the feedback for control object changes by 
compare target object with its model. The feedback is inherent to reversible methods class. In this 
case it is meaning that there is inverse to filter )(F  operator )(  such that  

 

      XXEE :):;( .       (1.5) 

 

The expression (1.5) is the problem of the object modeling by using its characteristic   and 
indicator signal E . Evidently, this problem is inverse in respect to (1.1). 
 Object recognition characteristic relates with errors of the object model (1.5) 
 

    )();( XNEOX          (1.6) 

 
and filter (1.1) 
 
    )());( ENXOFE          (1.7) 

 
We can define the functional 
 

      


dFNRegdXOFEdEOXI
OOOF

);;();();(minarg
22

,
,   (1.8) 

 
where )(N  is error noise, )(Reg  is a regularization functional of additional restrictions on error 

shape (minimal variation or minimal surface). Euler-Lagrange variation of the functional (1.8) 
relatively parameters of the object filter and object model gives an optimal schema of objects 
recognition.  
 Let consider the schema (1.1) – (1.8) when recognition filter and model filter are linear and 
are implemented as convolutions:  
 

    ):*
~

O XEXH ;        (1.9) 

 

    ):* O XXEH .        (1.10) 

 
Variation of two first components in (1.8) with account of (1.9) and (1.10) yields the following 
expression. 
 
        0****  XXGEEEHX ,      (1.11) 

 
where variation of the regularization functional is omitted. The  -function or Heaviside step 
function, uncorrelated white noise can be used as the object indicator. Then up to a constantfactor

HyxEyxEH ~),(*),(* . The convolutions ),(*),( yxXyxE  are presented with different signs 

and therefore they can be eliminated. As a resultwe obtain the followingequation for optimal object 
filter and modeloperators characteristics. 
 

    0*
~

 XXRHH ,         (1.12) 



6  

 

where XXR  – correlation matrix of the object signal. If it is satisfied the equation HH *
~

, where 

  is the trivial operator, then convolution (1.12) with H and H
~

 show that  
 
    XXRHH *           (1.13) 

and  

    0*
~

*
~

 XXRHHI .         (1.14) 

 
The expression (1.13) means that H is object forming filter surge characteristic. It is well known as 
Wiener– Khintchine filter [37, 38]. This filter creates correlative relations of the object model by 
convolution with generating process in a manner of white noise or Heaviside step function. The 
expression (1.14) means that optimal recognition filter eliminates signal components which form 
correlative relations. By other words, filter is resonant with respect to object texture shape. Since it 
eliminates components we define it as inverse resonant filter. The expression (1.14) also show 
evident fact that the white noise which correlation has the form of  does not contain any object. 
The problem is to define principal components of an object texture which can be eliminated by 
simple linear convolution operation. The main demand to IRF properties is invariance to object 
space location and initial phase of its texture shape. This demand shortly can be formulated as shift 
invariance. It points on choice of a method for retrieval of principal components of the object 
model. The shift invariance is inherent to harmonical functions on condition that they are resonant 
with respect to object shape.  

 
 

II. Harmonic Model of Textured Image 
 
An ideal textured image of size QMPN   can be represented as a tensor product of two 

matrices, 
BTD  ,           (2.1) 

 
where matrix T of size MN   includes unit elements with insignificant fluctuations and matrix B 

of size QP  is the texture kernel. Matrix (1) rank equal to rank of the kernel matrix. Therefore it 

can be represented by the EVD and the SVD using P  left vectors and Q  right vectors. The same 

representation is possible using the Discrete Fourier Transform (DFT) in the basis of exponential 
functions [39]. The matrix T can be decomposed as:  

 

   H
MN FdiagFT 0]...0[1 ,        (2.2) 

 

where  
1...0,

1



Nki

k
iN z

N
F ;  Nikzk

i /2exp  is the DFT operator whose size is pointed bylow 

indexes. The kernel matrix has the following spectral decomposition: 
 

   H
QFBP FAFB  ,         (2.3) 

 

where FBA  is the spectral matrixof the kernel B  in the basis F . The substitution of expression (2) 

and (3) into (1) yields the following decomposition of the textured matrix 
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 )F)(FA)(diagF(FD H
M

H
QFBQN 0]...0[1   

(2.4) 
H

MQFBNP FAdiagF 0]...0[ . 

 
In the expression (4) was used associativity of the tensor product and that PNNP FFF  , 

QMMQ FFF  . It shows that the DFT is informative as EVD and SVD on condition the basis is 

exactly aligned with texture structure. Additionally, the DFT representation (4) is invariant with 
respect to image initial point shift. The textured matrix (1) initial point causes the cyclical shift of 
the kernel matrices. The shifted matrix relates with the original matrix B by simple expression 

 

   H
Q

t
P

t,τ BCCB  ,         (2.5) 

 

where t,τB  – shifted matrix along t  rows and   columns, PC  – cyclical shift operator (CSO) of size 

PP  [39]. The following expression is the well-known CSO spectral decomposition: 
 

   H
P

t
P

t
P

t
P FzzdiagFC ]...[ 1 ;       

(2.6) 

   H
QQQQ FzzdiagFC ]...[ 1

  . 

 
The texture matrix (1) with shifted kernel matrices (5) can be represented with account of 
expressions (3) – (6) as  

 

 t,τt,τ BTD  

              (2.7) 
H

MQ
*

Q
*

FB
t
P

t
NP FzzdiagAzzdiagF 0]...0]...[]...[diag[ 11

 , 

 
where * is a complex conjugate. The spectral factorization of the textured image matrix (4) and (7), 
shows that the power spectrum of the kernel matrix is invariant to transforms by the CSO (6) 
because the spectrum matrix of the shifted kernel (5) differs from the original by phase multiplies.  

The main problemof spectral factorization in canonical manner, as shown in (4) and (7), is the 
alignment of the DFT with texture structure. There are known methods of texture period estimation 
based on algebraic geometry and complex EMD [40, 41]. Another method is based on adaptation of 
the EHD to texture structure, idealized or real. This adaptation can be made by determining the shift 
transform that is natural for a given texture [27]. The eigen vectors system of the shift transform can 
then serve as a generalized harmonical basis for texture presentation. Following this approach we 
substitute linear shift instead of cyclic shift (5). This operation transfers rows (or columns) of the 
image matrix linearly on one step. Each new row or column is a linear combination of adjacent 
rows(columns). The new rows and columns are the approximate model of real image rows and 
columns that appear as a result of the image shift. The Linear Shift Operator (LSO) has the form of 
a Frobenius matrix  

 



8  





















 11

100

010

aaa

K

PP

P







      (2.8) 

 
and its characteristic polynomial  

 

01
1

 


i
i

P

i

za          (2.9) 

 

has the roots Piz ...1 that have exponential form in analytical presentation:  ii fz 2exp , where if  

– eigen or resonant frequencies. The LSO (7) can be defined for two image coordinates. The 
spectral factorization of the LSO (8) is similar to (6) and can be written for both coordinates as 

 

;]..[ 1
#
xP

t
xP

t
xxP

t
xP Zz.zdiagZK         

            (2.10) 

,Zz.zdiagZK #
yQyQyyQyQ ]..[ 1

   

 

where   1...0

...1






Pt

Pi

t
xixP zZ ,   1...0

...1






Qt

Qi

t
yiyQ zZ , # is the pseudoinverse. The shifted linear kernel matrix 

can be presented by the EHD in the following manner,  
 

  T
Q

t
P

t,τ BKKB   

 

   T
yQyQy

#T
yQ

T
yQZBxP

#
xP

t
xP

t
xxP Zz.zdiagZZAZZz.zdiagZ ]..[]..[ 11

   (2.11) 

 

,]..[]..[ 11
T
yQyQyZB

t
xP

t
xxP Zz.zdiagAz.zdiagZ   

 

where T is the transposition, and ZBA  is the spectral matrix of the matrix B in the basis Z. 

 
T

yQxPZB ZBZA ## ~~
 .         (2.12) 

 
Expression (11) shows the spectrum invariance to linear shift operations that is equivalent to 
expression (7). The kernel periodicity in a textured image is defined by the condition 

 

   BBmP,nQ  ,         (2.13) 

 
where m  and n  are arbitrary integer values. This condition allows presentation of the full image D  

by overdetermined matrices   1...0

...1
~ 


NPt

Pi
t
xixP zZ ,   1...0

...1

~ 




MQt

Qi
t
yiyQ zZ  using the spectral matrix 

(2.12), 
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   T
yQZBxP ZAZD

~~
 .         (2.14) 

 
Expression (14) is analogous to (4) but it is approximate because the pseudoinverse of the 
overdetermined matrices yields approximate results.  

Linear shift is natural for many models of textured images, both static and dynamic. Therefore 
the EHD provides appropriate representation of the image model. The parameters of the OLS (8) 
should be estimated in accordance with the dynamic properties of texture. As it follows from 
condition (13), the shift operations do not change the texture signal energy. Therefore, the shift 
operator is unitary. The operator (8) is unitary if its characteristic polynomial (9) roots lie on the 
unit circle in the complex domain. It is important the problem to define the LSO order P and Q for 
both coordinates. 

The spectral presentation (14) is basing on the linear shift model of the data matrix in the form 
of two LSO (8) associated with the coordinates. The roots of the characteristic polynomial (9) are 
using for generation of the functions basis of the discrete Fourier transform.Such spectral 
presentation may be used if the texture is homogeneous. In other case estimation of the EHD 
component should accounts full texture image matrix. For this aim may be used 2D generalization 
of the LSO  
 

   yQxP
(2)

QP KKK   .       (2.15) 

 
The evaluation of the 2D LSO parameters in the manner of product of two polynomials associated 
with coordinates has nonlinear feature [42]. As it was shown in [43], the parameters of the 
characteristic polynomials (9) associated with the coordinates and approximation of the 
polynomials product can be estimated by using linear extended equations based on the LSO (15). 
The roots of the polynomials products are useful for definition of the 2D harmonics parameters 
pares.  

 
 

III. Optimal Inverse Resonant Filter Design 
 
Linear version (1.9) of the object recognition schema (1.1) is the inverse problem with respect 

to object signal model in the manner of forming filter (1.10). It means restoration of the originating 

signal matrix   1...0

1...0,






Nk

MikieE  using measurement data   1...0

1...0,






Nk

MikidD  of size NM   in the object 

region of the image under the assumption that mentioned matrices are connected by some linear 

operator with unknown transient characteristic   1...0

1...0,






Qn

PmnmhH . The measured data matrix includes 

samples of additive noise ki,  associated with texture model error. Formally the model can be 

written in the discrete manner as the convolution equation 
 

ki

P

m

Q

n nkminmki ehd ,

1

0

1

0 ,,,   






  .      (3.1) 

 
There is classical Wiener solution of the inverse problem for the model (1) using the Fourier 
transform [30, 37]. However, this solution assumes that noise is observed separately and the 
statistical parameters of the image are known. If noise is not significant it is usually ignored. When 
noise is not used the Wiener approach may give unstable or singular solutions. Methods of 
regularization are used to overcome this problem. The modern methods of regularization are based 
on the PCA with SVD or EMD of the measured data.  
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The equation (1) can be considered as a linear dynamic model of the textured object image D 
which is initiated by the generating process E  of known form. This model is similar to those ones 
that were considered in [27-29]. The generating process is the object presence indicator. It should 
have simple form which is easy for recognizing.  

The filter has a much smaller size than the object image size. Therefore the problems of the 
direct and inverse transient response evaluation are ill posed and need the regularization. We offer 
to consider the EHD as the PCA and as the basis of the Fourier transform in (2.13) for design the 
inverse filter and its regularization simultaneously.  

Let the 2D Heaviside step function 
 

























),0()0(,0

;0,0,5.0

);0()0(,1

ki

ki

ki

eik        (3.2) 

 

is the generating process in (1). The textured object image is specified in range )0()0(   ki  

and is a response of linear dynamic system (1) to the excitation (2). Let us consider the problem of 

generating signal reconstruction using an inverse filter with transient characteristic nmh ,

~
. The 

generating signal has constant value E  in the range of image, so the problem appears in the 
following way: 

 

ki
P
m

Q
n nmnkmi Edh ,

1
0

1
0 ,,

~
 



  ,      (3.3) 

 
where ji,  represents error noise. The dispersion value of the noise in (3) serves as a criterion for 

filter matching with object texture.  
There are some approaches to solving the problem (3). We can compile the system of 

equations (3) for shifted data matrices  
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and find minimum square solution of the system (4) with respect to transient characteristic nmh ,

~

elements by pseudoinverse of the extended data matrix. But such solution will be not shift invariant. 
It obtains the shift invariance on condition that it is presented in shift invariant functions basis.  

Let the elements of the object image matrix are presented by EHD (2.13) as the following 
series: 
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where nmA ,  represents the amplitudes of the two-dimensional harmonic functions k
yn

i
xmzz , ki,  is 

the approximation error which has muchless dispersion than signal power. The resonant frequencies 

xmf , ynf are the main parameters of the harmonic functions  ifz xm
i
xm 2exp and

 kfz yn
k
yn 2exp  in (5). Their values characterize eigen fluctuations of the target object surface 
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associated with the coordinate axes OX and OY. This frequencies set relates with roots of 
characteristic polynomial (2.9) of the texture dynamic model (1).  

It is not necessary to use a full textured object image for series (5) parameters determination. 

Some base region DD:B  of the size yx nn  : Pnx 2 ; Qny 2  is sufficient. This region should 

covers the texture kernel B. The EHD of the base region is equivalent to (2.13) and it can be 
represented in the matrix form as 
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 Let point attention to shift invariance of the direct and pseudo-inverted EHD bases because it 
is important for the spectral presentation (6) – (7). The t-shifted along space coordinate matrix 

]...[ 1
t
xP

t
xx

t
x zzdiagZZ   in pseudo-inverted manner has the form of t-shifted matrix 

#
1

# ]...[ x
t

xP
t

x
t

x ZzzdiagZ   too. So, the pseudo-inverted matrix #
1

# ]...[ x
t

xP
t

x
t

x ZzzdiagZ   is shift invariant 

too.  
By analogy to (6) – (7), we find the EHD of transient characteristic, 
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The substitution equations (5) – (8) into (1) with neglecting the error yields the following spectral 
decomposition. 
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where  

      









  1

0
1
0

1
0

1
0 ,,

P
i

Q
k

k
yn

i
xm

P
i

Q
k

k
yn

i
xmkinm zzzzeE .    (3.10) 

 
in accordance with (2). As it follows from expressions (1), (9), nmnmnm EHA ,,,   and the IRF 

spectrum  
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The transient characteristic of the IRF (3) for object texture recognition can be defined using 
equation  
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The schema (6) – (12) implements the approach to filter design basing on Fourier transform. 

It differs from the well-known classic schema by using EHD instead usual discrete Fourier 

transform. The EHD allows avoid of small amplitudes nmA ,  influence because all eigen 

fluctuations have comparative value levels. This creates the effect of the regularization of the 
solution (12).  

In the given above schema the base equations (5), (8) and (9) are approximate. So, this 
approach gives an estimate of the aim transient characteristic. It needs optimization in accordance 
with a criterion of quality. The main factor of an influence is variation of data spectrum because the 
recognizing objects are only similar to template object which was used for filter design. As the 
elements of nmE , in (10) are not varied by data fluctuations directly the better way is to define the 

transient characteristic of the forming filter as nmnmnm AEH ,
1
,,

  and then evaluate the inverse filter 

using the condition  
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where H  is the matrix which is equivalent to convolution operation with vector h
~
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where 0  – the null matrix. The vector h
~

 is the lexicographical presentation of the matrix H
~

 (12). 
The solution of the (13) we can find by the method of minimum squares [30]. 
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where 2/)12(  PQM .  

The approximate solution (15) is not optimal because it is not shit invariant and includes 
fluctuations which are enforced by operation of inversion.  

Using (13) and (14) we can define the functional for the IRF spectrum optimization. 
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where ),( 00 ki  is a central point in object region, Reg  and   are regularization functional and 

parameter, which set conditions for additional restrictions on the function H
~

surface. As the 

regularization functional can be used the area of the surface H
~

 with the aim to minimize it. This 
condition provides minimization of fluctuations and serves main part of the characteristic feature. 
The surface area of the function ),( yxH  is defined as [33]  
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where xyxHHx  /),(  and yyxHH y  /),( . In the spectral domain the surface area (17) as the 

regularization functional will be of the following form:  
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where )(5.0 1
)()()(

 myxmyxmyx zzdz  are spectrum coefficients introduced by discrete derivatives of 

the harmonic functions. Euler-Lagrangevariational derivativeof the functional (16) and surface area 
(18) looks as the following equation (all indexes serve numbering like in (16)). 
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The PQ expressions (19) create the system of equations for iterative evaluation of the IRF transient 

characteristic optimal spectrum H
~

 elements,  
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nmH  is the result of p-th iteration step, nmnm HH ,
)0(

,

~~
  in (11) or )0(

,

~
nmH  can be obtained by EHD of 

the (15). The solution of the (20) looks as  
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The regularization parameter   can be chosen by the help of the condition of convergence of the q  

first iterations: 
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where qt ,..,2,1 ,   – a positive value The iteration process can be stopped if  
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where 

H
~  is a small value.  

The optimization of the IRF transient characteristic may be made in space coordinates. But in 
this case on each step of iterations the operation of projection in to EHD spectrum space is 
necessary for serving of the IRF shift invariance. The projection consists in direct and inverse 
Fourier transforms (7) and (6). Because the basis of EHD is not complete this operation is not 
trivial. 

The next step of the optimal IRF transient characteristic evaluation is its normalization in 
accordance with the condition:  
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Let multiply both parts of (24) by TH . Then as well as in (15) we can define the vector 
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The obtained vector in (25) can be considered as the next in the series of iterations. The right part of 

the expression (25) includes the matrix H
~

 that is compiled with using of the previous solution 
vector. The iterative process is continuing up to the condition  
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will be met ( 108
~ 10...10~ 

h
 ).  

 The procedures of optimization in spectral domain and presented above procedure of the 
normalization can be rearranged in their sequence. The equations (16) and (25) show that in case of 
normalization the influence of the forming filter transient characteristic is more significant then in 
the case of the optimization in spectral domain. So, if the forming filter is given with high level of 
trust then the normalization should be the last operation. If not then it should be first one or omitted.  
 The alternative to the IRF is so called auto-regression with shifted mean (ARSM) [30] which 
can be written as  
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    kiki
P
m

Q
n nkminm Edda ,,1 1 ,,     ,     (3.27) 

 

where nma ,  are the parameters of the model, E  is the shift of the mean of the error noise ki, . It is 

evident similarity of the models (3) and (27). The ARSM is shift invariant. This follows from its 
definition form. In general, it can not be presented as series of harmonics. This differs it from the 
IRF. We will study this difference with using examples of object recognition below.  

 
 
 
 
 

IV. Creation of the Functions Basis for Eigen Harmonic Decomposition 
 
The first step of the IRF design is the EHD of the target textured object template. There are 

known some approaches to 2D nonlinear spectral analyses. The simplest way is the estimation of 
the LSO (2.8) parameters and its characteristic polynomial (2.9) roots for two space coordinates. 
This approach gives appropriate result if the 2D signal is uniform. If the signal is not uniform, the 
full matrix of 2D data should be used. The following approaches to 2D EHD are developed: 2D-
MUSIC (Multiple Signal Classification) [30], 2D-ESPRIT (Estimation of Signal Parameter via 
Rotational Invariance Techniques) [44], 2D-Matrices Pencil Method (MPM) [45], Total Least 
Squares (TLS) version of MPM [46], and 2D-Linear Prediction Method (LPM) using the 2D 
generalization of the LSO (2.8) as (2.14) [42, 43]. In the case of texture EHD, it is necessary to take 
into account important restrictions to the model parameters: 

- The texture model is considering as a response on excitement (3.2) of the linear dynamic 
system (3.1). Texture stationarity implies the condition of periodicity which is defined by (2.12). 
Therefore, the eigen modes in (3.5) should have a trivial dumping factor. This imply that the 
characteristic polynomial (2.9) roots of the model must be placed on the unit circle. In other words, 
the dynamic model must have unitary symmetry in respect to the linear shift operations. 

- Texture might not be a smooth function. Therefore the method of the EHD should not be 
sensitive to image signal breaks.  

- The inverse problem solution in spectral domain of the EHD requires the determination of the 
principal eigen mode numbers to exclude unstable results.  

- A high order filter is required when background texture is complicated, quasi-regular, or 
corrupted by noise spikes.  

The last two requirements above are mutually conflicting when used to determine the IRF 
order. This conflict requires the design of a spectral basis adapted to the specific image signal 
properties if high order inverse filtration is to be performed.  

 
A. Estimation of Texture Resonant Spectrum  
The methods of spectral parameter estimation that we have examined are based on a 

correlative relation between two mutually shifted data sets. Linear parameterization of this relation 
yields the linear prediction (LP) model and its various implementations. LP based methods are 
sensitive to signal phase. Usually this sensitivity becomes apparent in splitting of spectral lines[30]. 
Methods that are not sensitive to image signal phase brake must be designed. We will consider an 
approach based on 1D data harmonic decomposition, and an approach based on 2D data harmonic 
decomposition. 

 
The linear symmetry method  
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The product of sample matrices 1....0,1...00 ][  PNkPikixX  and TX0  forms the 

correlation matrix of size PP  
 

   T
P XXR 00 .         (4.1) 

 

The same product of matrices 1....0,1...011 ][  PNkPikixX  and TX1 .gives the correlation 

matrix too. These matrices and matrices in (1) are related by OLS (2.8): 
 

T
P

T
P

T KXXKXX 0011  T
PPP KRK .       (4.2) 

 
If data set is infinitely long then the product (2) is equal to (1). So, we have the equation  
 

   T
PPPP KRKR           (4.3) 

 
which define the Linear Symmetry (LS) [47] of the correlation matrix. The usual LP model like 
(3.27) is shift invariant relatively data first moments in the manner of data samples. The LS 
supplement the LP model by the condition of invariance to shift operations of the second moments 
– correlation samples. This restriction on the data model is imposed with the aim to reduce 
sensitivity to data breaks. As it was shown in [47] this additional symmetry removes LP model 
dependence on signal initial phase. Equation (3) providesunitarityof the LSO because the 
similarity transformation (3) does not change energy of the correlation matrix. It can be easy 
proved that transformation (3) is valid on condition that correlation matrix has Toeplitz structure. 
This allows to use the correlation function for evaluation model LS parameters as well as in 
Levinson-Durbin algorithm [30]. Though, when data set is short the Toeplitz structure corrupts 
spectrum. Therefore we consider the solution of the LS equation which gives unitarity LSO and 
uses the correlation matrix (1).  

Let write expression of the last row and column transforms in equation (3) on condition the 

correlation matrix is Toeplitz and is signed by correlation function vector 1...0][  Piir . To simplify the 

expressions we will use the following designations: iPi a  , 1...0  Pi . Then the equation 

for first 1p  elements has the next form. 
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2
010  ,    (4.4) 

 
where 2...0  pk . The equation for the last element is the following.  
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The system of equations (4) – (5) contains the nonlinear equation (5) relatively of 2P  squares of the 
desired values. Therefore it does not have unique solution. One of them can be found by the 
approach basing on the reference element method.  

The reference element should be that which is most sensitive to influence of the polynomial 
(2.9) roots. It is known that 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjhnJu_ob3LAhUD1hQKHQ9yB94QFggoMAE&url=http%3A%2F%2Fwww.mathworks.com%2Fhelp%2Fsignal%2Fref%2Flevinson.html&usg=AFQjCNGnKTmLFePFHJpmclwnidG5jYrheQ&sig2=zrOeYuqQIAc6LWurNfXsbg&bvm=bv.116636494,d.bGs
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If 1iz  then it is evident from (6) that 11  Pa   is mostly sensitive to roots variations 1z  

because the rest coefficients are combinations of sums of multiplicative components. The 
multiplicative components include second other variations and weighted variations.   

Let select in 1P  equations (4) the components related with 1P  and carry them from the 

left part to the right part. The obtained equations system in the matrix form can be written as  
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The Toeplitz matrix in (7) can be changed by associated elements of the matrix like (1). Then 
instead the exact equation (7) we obtain the approximate expression  
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Let 2...0,, ][  Pkiki  is the inverse matrix with respect to matrix in left part of (8). Then the 

solution of the system (8) can be presented as  
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ki rg  . The nonlinear equation (5) generalized for 

arbitrary correlation matrix has the next manner  
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The substitution (9) into (10) gives square equation  
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1   cba pp  .        (4.11) 

 
The minimal sensitivity to variations has the extreme of the (11). Therefore as the sought we take 
the value  
 

a
b
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where   
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The numerical experiments have shown that the solution in the form of (9) and (12) corresponds to 

unitary model of the signal. The element 10  pa  with the accuracy 1010~  .  

 An arbitrary arrow and column of the target object image matrix can be used for definition 
of the LSO (2.8) parameters and roots of the characteristic polynomial (2.9) if the image signal is 
homogeneous. In other casethe components of a 2D correlation matrix are more informative. The 
2D correlation matrix of the object image region is the following, 
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The correlation matrices that characterize data along coordinates in (4.13) may be defined as 

 

     0,

1...0,

)2(
0,0,,

)2( 




yy

xxxx

ki

Pkikix rR ; 

              (4.14) 
1...0,

0,

)2(
,,0,0

)2(









Qki

ki
kiy

yy

xx
yy

rR . 

 

These matrices can be used as pR  in expression (1) for the estimation of two LSO parameters.  

 
The 2D Correlation Matrix Splitting Method (CMSM) 
When texture is dynamic the correlation matrices (1), (14) do not reflect the dynamic nature 

of the image, so the 2D correlation matrix (13) should be used for estimation of the texture resonant 
frequencies. The methods of 2D EHD mentioned above differ by data type employed. The MUSIC 
and ESPRIT methods use second data moments. The MPM method uses first data moments. 2D 
LPM uses first and second data moments. The 2D EHD method is based on first moment data shift 
of the dynamic model, which transforms the data along coordinates. We will consider a 
generalization of these approaches on the platform of the SVD. This decomposition allows select a 
principal part of an image signal and omit weak fluctuations. Also, it allows split data on mutually 
shifted matrix pencils in the orthogonal vector space. The matrix pencils create an eigenvalues 
problem that can be solved by the TLS approach. The eigenvalues are equal to roots of polynomial 

(2.9). The eigenvalues problem may be written for 2D data nmd ,  of size NM   as matrix pencils 

[45, 46]: 
 

)2()2( DzD xx  ; )2()2( DzD yy  ,      (4.15) 

where  
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zis the spectral parameter, and L  is the splitting parameter. If the 2D data include 2/P real 
harmonics and do not contain noise, value LP  , the rank of matrix pencils (15) is equal to P , the 

data can be presented by P  vectors of the SVD. If xz  and yz are equal to the matrix pencils 

eigenvalues, then the expressions (15) are equal to zero. In order to solve the eigenvalues problem 
the following matrices can be used relatively to x  and y  coordinates. 
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The SVD can be used for the operation of pseudoinverse in (16) by using of the Plargest 
singular values and corresponding them eigen vectors. As we mentioned above, the textured image 
object dynamic model needs in unitary shift transform by the matrix in left part (16) as well as by 
LSO (2.8). This condition may be supported by including into (16) direct and backward shift 
transforms to eliminate influence of the dumping factors of the spectral parameters in the case of 
data matrices splitting. The data matrices in (16) can be accomplished by inverse direction 

components as  )2()2( JDD , where J is the matrix with unit cross-diagonal.  

Let multiply the matrices in the left side of (16) by transposed matrices and by such way find 

the correlation matrix    )2()2()2()2()2( JDDJDDR
T

 . Its SVD can be written as the follows. 

 

    TVΞUR )2( ,        (4.17) 

 

where U  and V  are the matrices of the left and right orthogonal eigen vectors, Ξ is the diagonal 
matrix of the singular values. Using expression (31) matrix (30) may be rewritten as  
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where matrices 0U , )( yxU  have M  vectors which correspond to M largest singular values in 

decomposition (17). Their rows correspond to reciprocally shifted matrices )2(D  and )2(
)( yxD , The 

matrix 0U  is the basis matrix of expression (18), the shifted matrix )( yxU  has structure that depends 

on thedirection of the shift: toward x  yields xU ; toward y  yields yU . The basic matrix 0U  is 
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formed by extracting from matrix U  the last 1 LM  rows and each 1 LN  rows starting from 

the last row. The matrix xU  is formed by extracting from matrix U  in (17) the first 1 LM  

rows. The matrix yU  is formed by each 1 LN  row of matrix U, starting from the first row. The 

inversion of the matrix 00 UU H  may be executed by iteration operation [30],  
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where MIE 0  is the identity matrix of size M , and u  isthe vector of  th row of the matrix U 

first M  vectors, the indices   denote the set of rows that extracted as was described above. If all 

extracted rows are used sequentially in (19), then the last matrix kF  is equal to 1
00 )( UU H . The 

eigenvalues xiz , yiz )1( Mi   can be defined as eigenvalues of the matrices (15), (16), (18) 

which are modified depending on shift direction.  
As it follows from the method description, the number of principal harmonic components of 

the textured image signal EHD is defined by the rank of the matrices in (16). The SVD allows to 
define harmonics number carefully if PML  . The chosenM vectors correspond to largest 
singular values and therefore the method is not sensitive to phase brakes and noise spikes which 
usually relate with vectors of the small singular values. This property of the method confirms the 
earlier made conclusion that alignment with texture EHD is equivalent to the SVD and the EVD.  

 
B. Creation of a Function Basis for High Order EHD 
The matrix operator of the DFT of size NN   can be presented as a multiplication of simpler 

matrices on condition that N  is a composite number, for example nmN  , where m , n  are 
arbitrary integer constants. The factorized presentation gives the algorithm of Fast Fourier 
Transform (FFT) [30, 39]. As it is presented in [48] 
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where  ii
m

xkI in ,  is a unitary diagonal matrix with numbered rows and columns corresponding to 

ik  and ix , 1/,,1,0,  iii mNxk  . The matrix inm
I  index means its size, 1,,1,0  mui  , ix  

are the numbers of data vector elements which are multiplied by the phase rotating matrix  
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where the indices 1,,1,0  mvi   together with ik  are the number of result vector elements. The 

factorization (20) can be generalized for any N  that is a product of arbitrary integer values. If 
1 nmpN  the matrix (21) for 1i  in (20) is follows: 
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The first term of the sum in the exponent factor in (22) creates elements of the DFT operator of size 

pN  . The second term is the modulation coefficient which serves to extend low order DFT.  

The DFT operator in the base of texture eigen harmonics is presented by matrices #
yxZ )( , 

)( yxZ  in (3.6), (3.7). We can extend these matrices by such way as is extended phase rotating 

matrix (21) in the Fourier operator (20). For this let change the first term of the sum in (22) by 
elements which are analogues to the matrix )( yxZ . Then we will obtain the following phase rotating 

matrix:  
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The substitution of the matrix (23) into the DFT equation (20) yields the operator of DFT with the 
eigen kernel (EK) associated with the textured object image signal. This signal is characterized by 

series of resonant frequencies pff 1 . Let’s write this equation in factored form. 
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The DFT (24) is equivalent to ppNzN ZFF  / . The inverse DFTEK is similar to (24) with 

phase rotating matrix:  
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where 
11uvz  are the elements of a matrix #Z  like the matrices in (3.7) of size pp  . 
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The DFTEK implements the PCA and EMD approaches. The p  main components can be 

selected using the EHD and they can be considering as principal components. These p  empirical 

modes are splintered on pN /  aliquot quasi-harmonic components and together they create the 

DFTEK. The textured image signals usually are quasi-periodical, but not exactly harmonic. 
Therefore the DFTEK spectrum is numerically valid and informative. So, the application of the 
DFTEK for inverse problem solution and high-order filtering is well-founded. The DFTEK is not 
exactly orthogonal and has a partly multiplicative functions basis. 

 
 
 
 
 

V. Implementation and Experimental Analysis of the IRF 
 

The IRF can be realized in spatial domain using the convolution of image data with transient 
characteristic (3.12) or with obtained by the transform (3.8) optimized characteristic (3.20). This 
operation needs QP  multiplications and accumulations per pixel. Another approach is based on 

filtration in the spectral domain. This approach may be significantly more effective but it has some 
particularities which will be considered bellow.  

Filtration in spectral domain includes definition an image fragment of the size QP  with 

spectrum A in accordance to equation (3.7). The fragment is then multiplied using the elements of 
the filter spectrum (3.11) or (3.20), and then the filtered values are calculated according to the 
approximation equation (3.6). These operations need 1)(2  QP  complex MACC operations per 

pixel. Therefore the filtration in spectral domain has higher efficiency in comparison with the 
filtration in spatial domain when filter order 64)( QP .  

We will consider IRF realization in spectral domain using the example of textured image with 
foreign object of the size 768288  pixels in Fig.1. The aim is to recognize the texture of dried up 
riverbed and remove it. The accompanying problem is to detect the foreign object. One color 
component of the image signal is presented in Fig.2. As it seen in the figure, the signal amplitude of 
the foreign object is analogous to the background signal and differs by another dynamic and statistic 
features. The analysis of inverse correlation matrices [47] has shown that IRF order can be chosen 
as 3232QP . The base region of size 6464 yx nn  was chosen in the upper left corner of 

the image for the IRF transient characteristic evaluation. The result of filtration is the surface 
presented in Fig. 3. The figure shows that the surface has variation in the neighborhood of 1E  as 
it is presented in (3.3). Because of background texture heterogeneousthere is a surface displacement 
which becomes lager in the corner opposite to the base region. Signal in the region of the foreign 
object is clearly observable due to its essential difference from the background. Statistical analysis 
of the filtered signal was made using the dispersion of the filter (3.3) error noise in the object base 
region. It was estimated as 
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where kiji Ed ,,
~

  represents the filtered image signal values. The dispersion (1) is the parameter 

of the target textured object pattern as well as the transient characteristics of the IRF (3.12) or 
(3.20).  
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We can generate an image 3,2,1;: )(
,  tGdG t
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the IRF (3.3) which contains foreign objects using the following logical filter:  
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The top indices in the brackets point to color components. The dispersion (1) was estimated for 
each color component. The filtered image is presented in Fig. 4. As a result of the deviation of 
image pattern, the image G  includes the foreign object, and error fragments of the background that 
differ slightly from the base region pattern. The appearance of error fragments is also caused by the 
image fragment spectrum (18) differing in phase from the base region spectrum. The phase 
equalization of fragments spectrum can be performed in order to eliminate the error objects. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let the spectrum matrix (3.7) of the object base region is the )0(A . The approximation (3.6) 
of some shifted fragment can be written using phase displacement functions as it is shown in (2.11). 

Fig. 4. Filtered texture image with recognized 
foreign object 

Fig. 2. Image signal of textured background Fig. 1. Textured image background with foreign object 

Fig. 3. Image signal filtered by the IRF. 
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The phase coefficients in (3) can be found using the least square method from the condition of 
minimization of the following functional:  
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where  ii exp . The variation of the functional (4) 
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gives the system of nonlinear equations 
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This system can be simply solved using the iterative method. The initial values of the phase 

displacement functions in the right part of both equations (5) are trivial: 1)0(
)(  iyx . The first and 

next iterations give the sequence of values )(
)(

k
iyx , ,...2,1k . If this sequence agrees with the 

condition  
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the iteration process can be stopped. The resulting values of )(
)(

k
iyx  are using for spectrum 

redefinition as it was done in (3). If condition (6) is not met the system (5) has no solution and the 
phase multipliers are not using.  

The image signal filtered by the inverse filter with phase equalization accordingly to (3) – (6) 
is presented in Fig. 5. In comparison with the signal in Fig. 3, the signal surface is flatter but it has 
chaotic spikes. That is why the target object image in Fig. 6 is recognized without substantial error 
zones. Though, it has solitary chaotic error pixels. From the view of object classification such errors 
are less dangerous than those that are in Fig.4. They can be ignored. No more than 5 iterations were 
used to solve equation system (5).  
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Fig. 4 and Fig. 6 show that filtration in spectral domain has some deficiencies. Image zones 

can be recognized with some space step. This reduces resolution ability of the recognition. 
Therefore the filtration in the spectral domain may be considering as a fast and rough estimator of 
the target object boundaries. The object boundaries can be refined by post-filtering of the 
recognized and adjoined zones using the same IRF in the spatial domain. The results of post-
filtering of nontrivial zones of the images in Fig. 4 and in Fig. 6 are shown in Fig. 7 and Fig.8.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5. Image signal filtered by the inverse 
filter with spectrum phase equalization 

Fig. 6. Object image filtered by the inverse filter 
with spectrum phase equalization. 

Fig. 7. The result of image post-filtration in 
spatial domain of the image in Fig.4 

Fig. 8. The result of image post-filtration in 
spatial domain of the image in Fig.6 

a) b) c) d) 
d) 

e) f) g) h) 

Fig. 9. Initial image a), one color signal b), the results of filtration by AR c), by AR with 
shifted mean (3.27) d), by IRF (3.12) e), by IRF in spectral domain f), by IRF in spectral 

domain with phase equalization g), by the post filtration by the optimal IRF (3.20). 
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The example in fig. 9 demonstrates ability of the IRF to recognize dynamic texture and 

sensitivity to small objects. The texturein Fig. 9a) can be considering as spatial dynamic type 
because each its fragment isa result of a dynamic change or extension of an adjacent fragment. 
Fragments are similar but not identical. This is evident in Fig 9b). The foreign objects signal slowly 
differs from the background texture signal. The Fig. 9c)-d) shows that alternative to the IRF usual 
AR filter and AR filter with shifted mean (3.27) of 16th order give dissatisfied results. As it seen in 
Fig. 9e), the IRF (3.12) of 16th order allows to recognize target texture as well as small (white 
points) and slow foreign objects. It was used the region of size 6464  in the left high corner of the 
initial image for evaluation of the filters parameters. Fast filtration in the spectral domain (Fig. 9f)-
g) gives same results but with rough objects boundaries and some errors. The result of the post 
filtration of selected and adjoining zones of the image by optimal IRF (3.20) is shown in Fig. 9h). 
The filter allows to specify foreign objects boundaries and eliminate mistake objects in all color 
components.  

The example in Fig. 10 shows implementation of high order filtration with using of DFTEK. 
The multi-component image in Fig. 10a) of size 30722496  pixels includes the target textured 
background composed of wheat grain. There are zones of wet grain, grains of oats and rye with 
fuzzy boundaries within the image. A filter order of 9696QP  was used for texture 

recognizing. The filter order was decomposed as 426)(  nmpQP . For generation of the 

DFTEK basis (4.24) where used three pairs of complex roots of the characteristic polynomial (2.9) 
of 96th order which correspond to maximal amplitudes of the spectrum (3.7). Results of the filtration 
are presented in Fig. 10 b)-d). They have the same properties as the previous examples. The results 
of the filtration with using the EHD of 96th order have same quality but it needs up to 7 times more 
MACC complex operations.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LS (4.3) of correlation matrices (4.14) was used for LSO (2.8) parameters estimation as 

well as EHD basis synthesis in the caseof the first two examples. The method 2D CMSM was used 
to estimate the 96 principal harmonic components of the target texture model.  

The bank of IRF can be used for classification of textured components of the 
multicomponent image. The example of the filter bank is shown in the Fig. 11. Three filters of 16th 
order are designed for corresponding textured images in Fig. 11b), d), f) and was used for filtration 
of the initial image in Fig. 11a). The results of the optimal filtration are shown in Fig. 11c), e), g). 

Fig. 10. Object recognition using DFTEK. Initial multi-component image a), image filtered in spectral domain b), in 
spectral domain with phase alignment c), post-filtration of previous image in spatial domain d). 

a) b) c) d) 
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As it seen from Fig. 11, the target textured objects are recognized and image in Fig. 11a) can be 
decomposed on separated components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When texture is varying in time and space and is characterizing by non-stationary surges the 
application of simple statistical analysis and logical filtration as in (1) – (2) will not provide high 
quality filtration and recognition. If texture tracking is continuous it is possible to remove false 
foreign objects by binary correlation of the objects that are found in consequent frames. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The method of filtration by binary correlation includes [49]:  
1) Estimation of the objects size and its geometrical center.  
2) Evaluation of the correlation coefficients between objects in L  consecutive frames: 
 

 

 

 


 






1
0 ,

][
,

1
0 ,

][
,

]0[
,

}0{

}0{}^0{

L
t SSji

t
ji

L
t SSji

t
jiji

yx

yx

g

gg
r ,     (5.7) 

 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

Fig. 11. Filtration of the multicomponent texture a) by the IRF bank of the textures b), d), f) which gives the result 
images c), e), g) where the corresponding textures are eliminated. 

Fig. 12. Three consecutive fragment of the dynamic time and space varying texture as the marine surface (high 
row) are filtered by the IRF (middle row) and correlation filter (5.7) (low row) for robust recognition of the foreign 

object. 
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where }0{}^0{ ][
,

]0[
,  t

jiji gg denotes the logical function“AND”. If the condition in the brackets is 

true then the value is equal to one, otherwise the value is zero. SySx  is the object location. The 

numbers in the square brackets point to the frame number.  
3) If the correlation coefficient (7) exceeds the threshold level then the object is true, 

otherwise, it is false.  
4) A true object is refined with its immediate surrounding background for further 

classification.  
5) The L frames running time should be much smaller in comparison to the moving time of 

the object of interest within the location rectangle SySx .  

Consecutive frames of marine surface filtering are shown in Fig. 10. As it seen in high row, 
the texture of marine surface is heterogeneous and therefore the filtration was made by filters bank 
of fore IRF for fore separated image zones along vertical coordinate. Full frame size is 600200
pixels. A base region of size 3232  for design the IRF of 8th order in each zone was chosen in its 
upper left corner.It was used theCMSM. The binary correlative filter (7) with parameters 3L  and 

3.0r  was used. As it seen in middle row of Fig. 10, some errors remained after IRF and logical 
filtration (2), these zones were removed successfully with the help of correlative filtration (7).  

 
 
Conclusion. 
 
Analysis of methods of textured image modeling has shown that current researches focus on 

the decompositions and integral transforms that provide the most informative parameters and reflect 
the spatial and temporal properties of the texture. These methods are founded on the symmetry of a 
texture in respect to shift and rotate transforms. The symmetry means that exist character of a 
texture pattern transform which reflects its changes in space or time. This type of dynamic 
transform can be represented by the linear shift operator that models step-type changes of texture 
pattern as well as its periodicity. The eigenvectors of the LSO can serve as a basis for eigen-
harmonic decomposition of the texture with invariance to shift transforms.  

The problem of object recognition against a textured background can be solved by elimination 
of the background by the IRF if the background is presented as a response of the dynamic model on 
exciting signal of simple form. The classification of the exiting signal pattern is sufficiently simpler 
than classification of the original image.  

We have shown in (1.14) that if the inverse filtration is resonant in respect to texture pattern 
than such filter is optimal. The term “resonant” has many means. In general, this is equivalence of a 
target object to some templates of pattern. The resonance with harmonic fluctuations is mostly 
known. 

The next step of the filtration optimization is evaluation of the optimal transient characteristic 
(3.20) in spectral domain. Although the EHD basis provides a mathematically correct solution of 
the inverse problem with a certain number of estimated harmonic principal components, the 
elements of the amplitude matrix in (3.7) and their inverse values are sensitive to empirical data 
chaotic fluctuations. Therefore the optimization of the found spectrum (3.12) needs for enforcing of 
main harmonic components. This is achieved by the help of additional restrictions on the form of 
the spectral matrix in (3.16) – (3.18). The restriction of minimal surface allows select principal 
spectral components. It was need up to 5 iterations (3.20) to achieve the condition (3.23). The next 
step of the optimization (3.24) is rather a verification of the transient characteristic inversion. The 
condition (3.26) is satisfied after 2 iterations (3.25).  

The couple of transforms (3.6) and (3.7) play the key role in the filter design. They relay with 
careful estimation of the LSO and its eigenvalues which mean the parameters of the texture pattern 
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eigen fluctuations. The numerical experiments have shown that the IRF carefully eliminates 
fluctuations if the series (3.6) approximates the texture surface with error level not exceed -40 dB in 
respect to image signal power. This criterion can serves for choosing of the method of harmonic 
decomposition, correlation matrices (4.13) or (4.14), target of approximation – original image or its 
reflexes in the manner of flat plane projection, curvature or Laplace-Beltrami flow and others.  

The inverse filter designed and implemented using EHD of the texture acquires the same 
invariance to space transforms that the EHD provides. Therefore the filtration in spectral domain is 
preferable for high order filtration.Foreign object presence in a texture fragment corrupts an 
arbitrary number of the pattern spectral components. So, the filtration in spectral domain resolution 
ability is determined by fragment size which is equivalent to filter order. But, as it was shown by 
computation examples, the resolution can be improved by optimization of resonant interaction of 
the filter and texture fragments by phase aligning (5.3). The phase alignment is unitary operation 
which does not change image signal power. This procedure also reduces sensitivity of the filter to 
weak variations in the textured image structure. 

The filtration in spectral domain was optimized in respect to number of computations by 
generation of the DFTEK basis in the manner of factorized fast transform (4.24). The using of the 
DFTEK instead of the usual EHD does not essentially change the quality of filtration. The 
computational advantage depends from the DFTEK structure and can be significant in comparison 
with the EHD. 

Also, we offer the optimized schema of the objects recognition. The schema includes the next 
stages:  

- fast rough filtration in spectral domain; 
- statistical analysis and selection nontrivial zones; 
- the filtration in space domain using convolution with transient characteristic of the nontrivial 

zones and adjacent ones to them; 
- statistical analysis of the obtained signal for exact texture bound recognition. 

The considered above method of textured image filtration and foreign object recognition 
differs from other known method by following features: each texture is characterized by unique 
own filter;it is feasiblefilter implementation in real time using graphic processor units;regulation of 
resolution and quality is provided; invariance to image movement induced changes;based on 
principal harmonic decomposition that is more convenient than the EMD, or the EVD, because it 
has an analytical form, and may be adapted to any image and image sample fragment.  
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