MIHICTEPCTBO OCBITHU I HAYKH YKPAIHU

OJIECHKA HAIIIOHAJIBHA AKAJIEMISI XAPYOBUX TEXHOJIOI'TIA

X1 MIZKHAPOTHA
HAYKOBO-TIPAKTUYHA
KOH®EPEHLIIS

TH®OPMAIIMUHI TEXHOJIOI'II I
ABTOMATU3AIIS - 2018

30ipHuK 10MOBiei

Yacruna 1

Oneca,
4-5 xoBTHa 2018



3MICT

PUTILINA DARIA, MEDVEDEV MAXYM, TROYNINA ANASTASYA
VYATKIN SERGEY I., ROMANYK ALEXANDER N.
VYATKIN S.I., ROMANYUK S.A., PAVLOV S.V.
KRASILENKO V.G., LAZAREV A.A., NIKITOVICH D.V.
BOJIKOB B.3., KOBAJIEHKO A.B., MAKCHMOBA O.F.
LOBODA U.G., KIRICHENKO V.1., VOLKOV V.E.
VOLKOV V.E., MAKOYED N.A.

T'ARVEB K.O., EFOPOB B.F.

T'OHYAP B.O.

T'PATIH T.1., BEPE3OBCHKA JI.B.

JIVEOBKA B. C.

ZHYGAILO A M., DETSD.V.

IBAHOBA JI.B., KPACHIEHKO H.B.
KOBAJIEBCHKHH B. M.

KOBAJIBYYK JI. A., MA3YP O.B.

JKYYEHKO O. A., KOPOTHHCBHKHH A. IT,

KOTJIUK C.B., KOPHICHKO I0.K., COKOJIOBA O.11., [IAPPEHIOK O.€.

KOTJIUK C.B., CIPOMJII C.I, KVIIPIAHOB A.b.
KRYVCHENKO Yu., KRYVCHENKO A.

LEVINSKYI V.M., LEVINSKY| M.V.

MA3YPOK TJI.

12
19
20
22
24
27
28

30

32
35
37
40
43
45
48
50
52
53



V]IK 781.6.18
VYATKIN SERGEY I., ROMANYK ALEXANDER N.!
Institute of Automation and Electrometry SB RAS,
Vinnytsia National Technical University

SEPARATION OF THE COMPLEX TASK OF PLANNING STREAMING MULTIPROCESSORS
INTO SEVERAL SIMPLER WARP SCHEDULERS

Introduction

GPU architectures have emerged that use a stream as the basic computational unit [1-3]. What is a
processor dependency (CPU dependency), to 3D-accelerators with reference to? This is because no exist-
ing 3D-accelerators of user class do not to accelerate the whole process of visualization three-
dimensional scene (geometric transformations, calculation of luminosity, removing the invisible surfaces
etc.). Different video cards accelerate different stages, usually lying closer to the calculation chain end
sometime, for instance, rasterization (i.e. translation of two-dimensional vector expressing in the two-
dimensional raster scene) and imposition of textures. The whole rest work lies on the shoulder of central
processor (CPU). Herewith for organizations of interaction with 3D-accelerator is usually required cer-
tain additional number of steps. Processor dependency, thereby, consist from two component - a percent
of calculations, not accelerated by the card, and percent of additional calculations, which are produced
already by the graphic processor. As a processor dependency is connected with scalable, i.e. possibility
of growing of card output with the processor output growing. In most cases there is certain length of pro-
cessor power, under which card demonstrates nearly single-line growing of output. Bound this with that
processor does not be able to prepare data for the graphic accelerator, and any data are processed before
the arrival of following portions. Herewith, obviously that than greater area of tract of calculations under-
takes a graphic accelerator, that load less on the processor, but signifies CPU quicker prepares data, and,
as a result, is narrowed single-line scaling area. Thence follows that than less processor-dependent card-
accelerator, that it usually less scalable. As from some moment graphics accelerator begins more and
more to hold up a processor, and under the unlimited growing of output of last, velocity of rendering be-
comes constant, speed to peak accelerator output. Certainly a model several simplified. In real systems to
the processor will always find, than will be occupied, additionally reception capacity of buses, sending
data, on today highly limited. That apropos is one more narrow bottleneck on way of achievement of
maximum output. As evaluations of limiting output of accelerator possible to use known features of
amount of triangles, which it can process at a second and velocity a fill-rate, i.e. amount texturing and
filtering pixels taken out at one second.

Begin from existing raster graphic system analysis and will show that nor one of these architectures
does not allow single-line to scale output. In the machine graph enormous computing difficulty of algo-
rithms and potentially endless difficulty of expressing models require a single-purpose hardware support.
Big computing syntheses cost of photorealistic expressing results from complex geometric transforma-
tions, using the complex illuminating models, displaying a texture and surrounding ambiences, as well as
methods of eliminating the distortion, appearing because of the discrete nature of devices of conclusion
of expressing. In scientific visualizations by reasons of greater computing expenses are an enormous size
visual models and algorithmic difficulty of separation significant information from possible multivariate
given. Typical operation of ray tracing or ray-casting for the scalar field comprises of itself recovering a
value to functions, calculation of gradient and its modular, separation of features of ambience, painters
and compositions for each spot of ray. For this are required solely greater amounts, high reception capac-
ity of memory, and enormous speed. Problems appear any time requests reach a limit of one graphic
pipeline output, in most cases because of limited reception capacity of memory. Then for getting a de-
sired speedup, it is necessary to put parallel several pipelines and select a suitable method of sharing da-
ta. In the ideal event system output grows single-line with number of parallel pipelines. However, in
practice, graphs of output are asymptotically drawn near to certain value, but increasing output is in gen-
eral founded on certain suggestions, which can and be not executed for all exhibits. The simple pipeline
can execute calculations that necessary for visualization of polygonal surfaces. Logical sequence of cal-
culations in the pipeline prompts a first method of multisequencing of problem to visualizations in the
hardware pipeline. Such partitioning a problem on stage possible to find nearly in all produced today
graphic systems. Method of multisequencing insufficient, if multiplies canonical scheme by means of
repetitions of all components. Regrettably, duplicated "pipelines" cannot work independently. An ex-

5



change data must occur in certain spot between pipelines.
We consider the control logic, which distributes and plans to work and exchange of data for the
cores of three well-known architectures.

Separation of the complex task

Fermi:

In computing architecture «Fermi» used the third generation of streaming multiprocessors (Stream-
ing Multiprocessor). The Amount cores (CUDA cores), compared with the previous architecture, and has
more than doubled.

Used several Polymorph Engines and ROP units (Raster Engines), working in parallel. Caches the
first and second levels provide quick access to the geometric attributes of stream processors and blocks
tessellation. Fast switching context between graphical and non-graphical calculations, the competitive
performance of computing programs and improved architecture caching. Manager GigaThread is the cen-
ter of the chip; it creates and distributes blocks streams for different multiprocessors. Multiprocessors
distribute warp (warps, a group of 32 threads) among stream processors (CUDA cores) and other execu-
tion units. Each Streaming Multiprocessor (SM) supports up to 48 simultaneous execution of the warp
and CUDA core can perform all types of programs: vertex, pixel, geometry, computational.

Multiprocessors running thread in groups of 32 pieces, these groups are called the warp. Each mul-
tiprocessor contains two Warp Scheduler (Warp Scheduler) and two controller instructions (Instruction
Dispatch Unit), which allows to simultaneously performing two warps on each SM.

Double warp scheduler selects two warps and executes one instruction from each of them in a
group of 16 cores, 16 blocks LSU or four SFU. Since warp executed independently of each other, the
scheduler should not GPU check the flow of instructions dependent on the commands. Using this model,
the simultaneous execution of two instructions (dual-issue) per cycle to achieve high performance close
to the theoretical values of the peak.

Most instructions can be executed simultaneously in two: a pair of integer instructions, two floating
point instructions, or a combination of integer, floating point instructions, load data, store data, special
instructions SFU. Is this applies only to single-precision instructions.

For a modern GPU is very important and effective organization of the memory subsystem. Espe-
cially when more and more attention given to non-graphical computing. Was improved memory model.
There is a dedicated cache of the first level in each multiprocessor (SM).

Cache memory is working with a shared (common) memory multiprocessor and complements it.
Shared memory improves the speed with predictable memory access and cache L1 faster access when the
address of the requested data is not known beforehand.

The unified cache is more efficient than separate caches for different purposes. When selected
caches might get position when one of them is used in full, but to take advantage of idle volumes of other
types of cache memory at the same time is impossible.

In addition, the effectiveness of caching is below the theoretically possible. A unified L2 cache dy-
namically allocates space below different needs, to achieve high efficiency.

One L2 cache replaces the texture cache and L2 cache ROP. Second-level cache is used to read and
write data, and is fully consistent (coherent).

This ensures a more efficient exchange of data between pipeline stages. As well as significant sav-
ings in bandwidth capacity external memory.

Kepler:

As in the case of Fermi, Kepler architecture has in its composition a few blocks GPC (clusters of
graphics processing - Graphics Processing Clusters), which are composed of independent devices GPU.
These units can operate as separate units, since them composition have all the necessary own resources:
rasterizer geometric calculators and texture units. That is, most performed within the functional blocks
GPC. To download the data processing units SMX, each comprising four schedule block warp (warp
scheduler), each of which, in turn, processes the two instructions per clock cycle per warp. On Compared
with the SM Fermi, Kepler SMX architecture reduces the number of control logic in the chip. In Fermi
complicated logic, and then Kepler to simplify it.

Although Kepler and Fermi contain similar hardware units that manage data loading and warp,
flow control instructions, but the scheduler Fermi also contains more complex and hardware logic de-
signed to prevent conflicts of access to data. Special table registers (multi-port register scoreboard) moni-
tors registers, in which data are not yet ready, and the block check dependencies (dependency check)

6



analyzes using them, depending checking teams. However, once information about delays in Access is
known in advance and they do not change, then a similar analysis can be carried out even in the compi-
ler. Moreover, Kepler part of the control logic decided to transfer from GPU to the compiler, which is
partly responsible for planning. Dependency checking and ordering instructions on Fermi implemented
in hardware inside the GPU, in the case of Kepler compiler performs these tasks. Of course, this reduced
the effectiveness of streaming data in some problems. However, in most applications, it is little different
from the efficiency Fermi. However, taken solution allowed to remove the complex and energy-intensive
units, replacing them with simple, easy to take predefined data about delays the compiler and use them in
your planning. One of the most interesting features of the architecture is the technology of Kepler GPU
Boost. It should accelerate performance. This is a combined hardware and software technology, which
dynamically changes the frequency of GPU, based on the conditions of his work and some of the charac-
teristics.

Maxwell:

One of the most interesting changes in the architecture of Maxwell became new streaming multi-
processors (Streaming Multiprocessor - SM), which have both better efficiency and productivity relative
to the chip area. Despite the fact that SMX design multiprocessors in Kepler and so was quite effective in
the development of architecture was modified Maxwell multiprocessors, giving them the name of the
SMM. Has been improved a lot, including control units and planning, load balancing between the blocks,
the number of issued for execution of instructions per clock cycle, and more. The organization changed
multiprocessors very seriously. While multiprocessor SMX in Kepler is a big block, at Maxwell each
multiprocessor further divided into four distinct logical computing sections, each of which has its own
instruction buffer, the scheduler Warp and consists of 32 cores. Kepler architecture approach with the
number of stream cores, not powers of two, was abolished, and a partition of SMM on computing topics
similar to what it was in the Fermi. Separation of computational units simplified overall design and con-
trol logic chip, reduced latency, and chip area of energy to power.

REFERENCES

1. Duca, N., Cohen, J., and Kirchner, P., 2003. Stream caching: A mechanism to support multi-
record computations within stream processing architectures. DIMACS

Working Group on Streaming Analysis 11, March.

2. Feigenbaum, J., Kannan, S., Strauss, M., and Viswanathan. M. 1999. An approximate I1-
difference algorithm for massive data streams. In Proc. 40th Symposium on Foundations of Computer
Science, IEEE.

3. Kapasi, U. J., Dally, W. J., Rixner, S., Owens, J. D., and Khailany, B. 2002. The imagine stream
processor. In Proc. IEEE International Conference on Computer Design, 282-288.



XI MIZKHAPOJHA HAYKOBO-ITPAKTUYHA KOH®EPEHIIA

TH®OPMAIIHI TEXHOJIOTTi I ABTOMATH3ALIIS — 2018
OECA
4 — 5 JKOBTHA, 2018

30ipHUK BKIJItOYA€e JOMOBiMI ydacHHKiB X| MixHapomaHOT HayKOBO-TIPAKTHYHOI KOH(epeHIii
«IH(hopmartifini TexHojori1 1 aBTomaTu3aiiist — 2018»

Penakuiiina koJserisa: Kornuk C.B., Xo06ix B.A.
Komn'torepunii Ha6ip i Bepcerka: llampait O.A.

Binnosinansuuii 3a Bunyck: Kornuk C.B.

57



JJIsI HOTATOK

58



