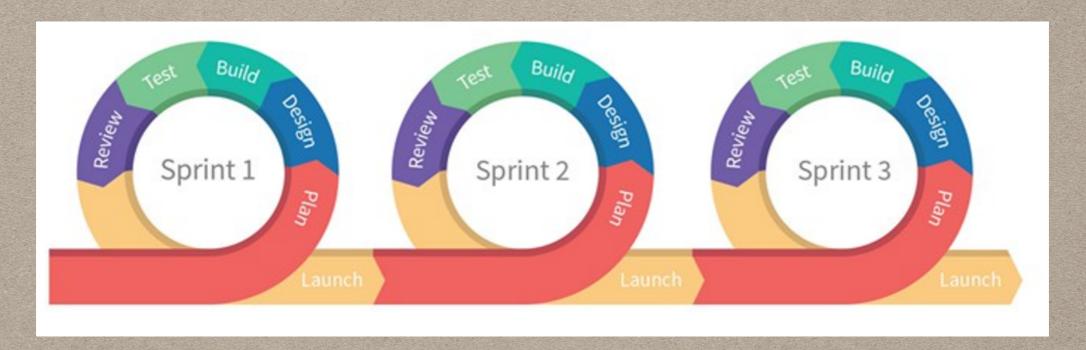
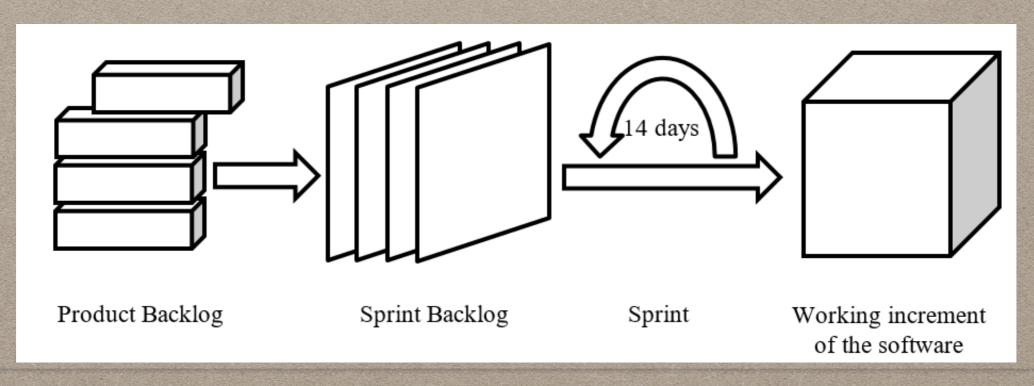
#### Information technology for detecting the hidden content of text messages


Fulfilled by students of the group 3ACIT-17M:
Oleksii O. Maksymov
Anastasiia T. Maksymova
Roman V. Slobodian


Supervisor: Dr. of Sci., Professor Oleg V. Bisikalo

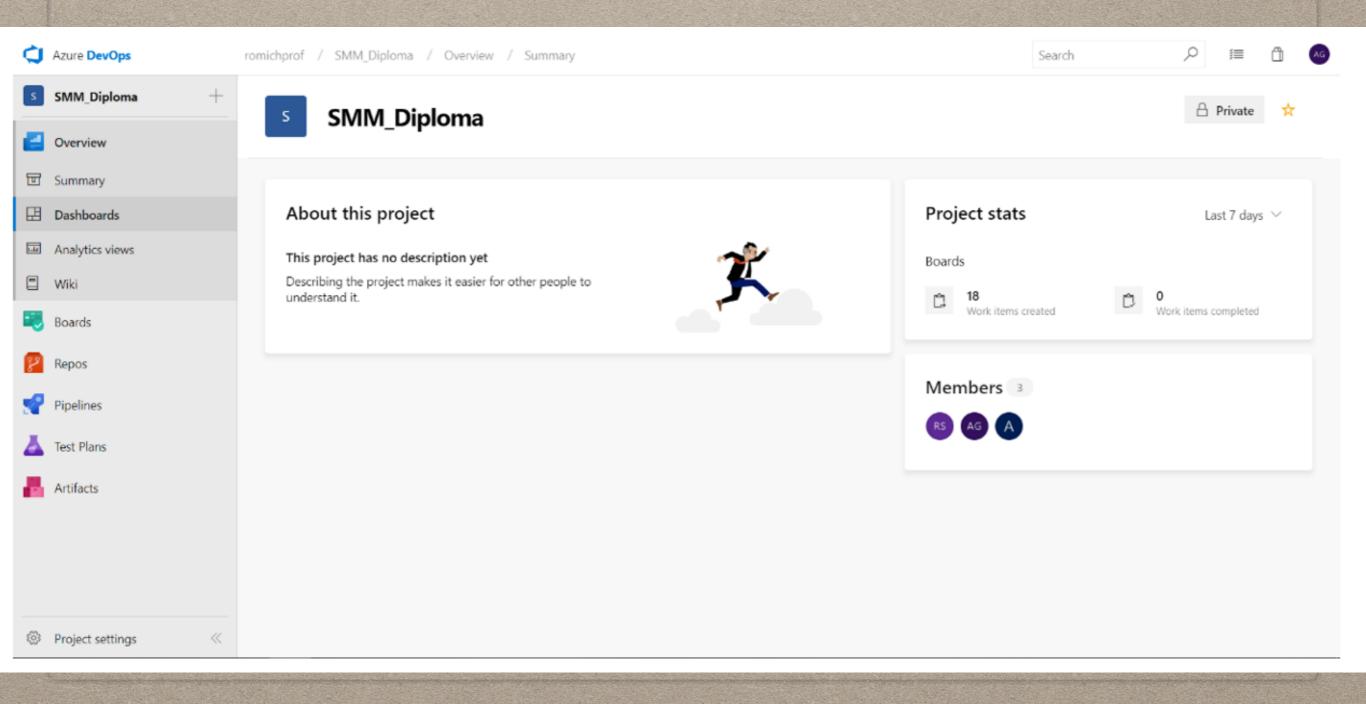
# PART 1. DEVELOPMENT OF A PROJECT TO CREATE INFORMATION TECHNOLOGY FOR DETECTING HIDDEN CONTENT IN TEXT MESSAGES

 The goal of the project management is to solve a specific task in a short time with minimum transaction costs (related to poor communication, changes, outflow of resources, etc.).

### SCHEMATIC OF THE AGILE METHODOLOGY



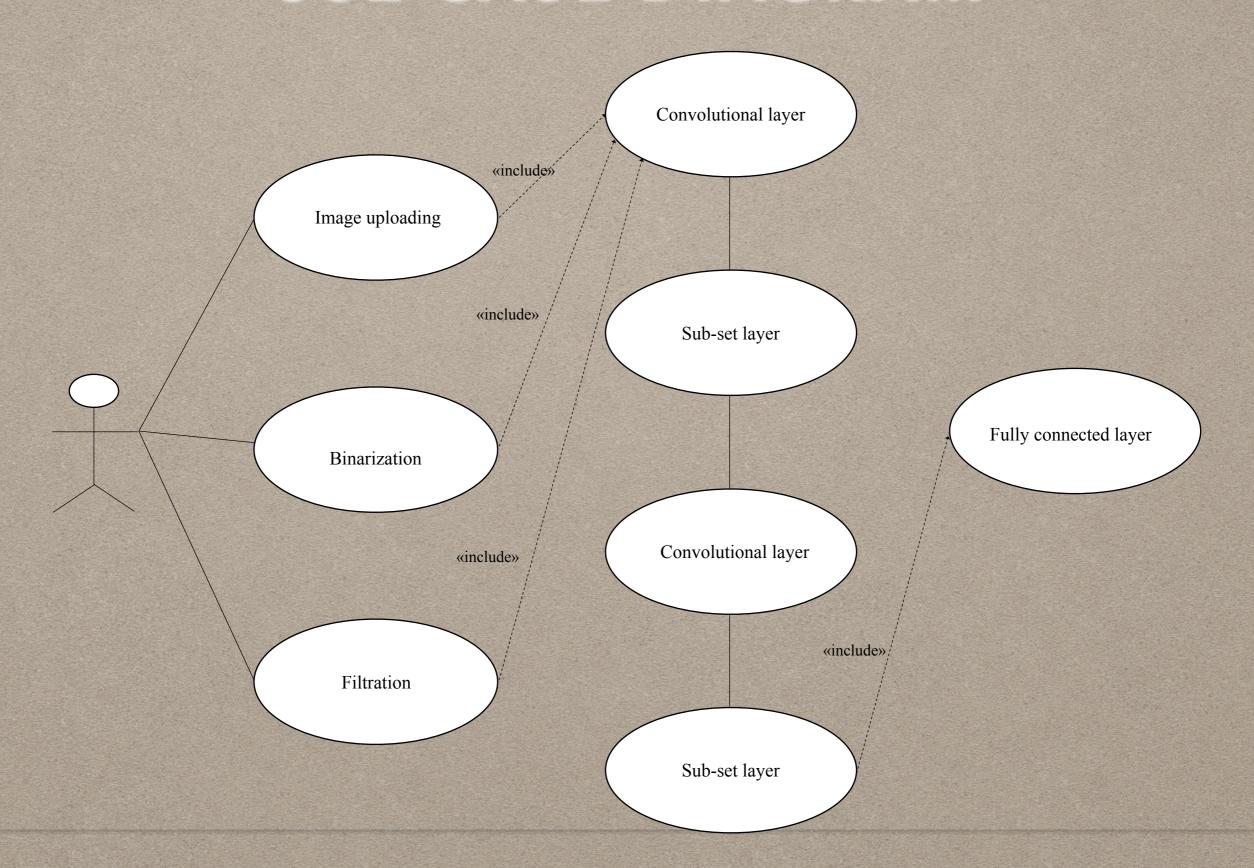



## ROLES FOR EACH MEMBER OF THE TEAM

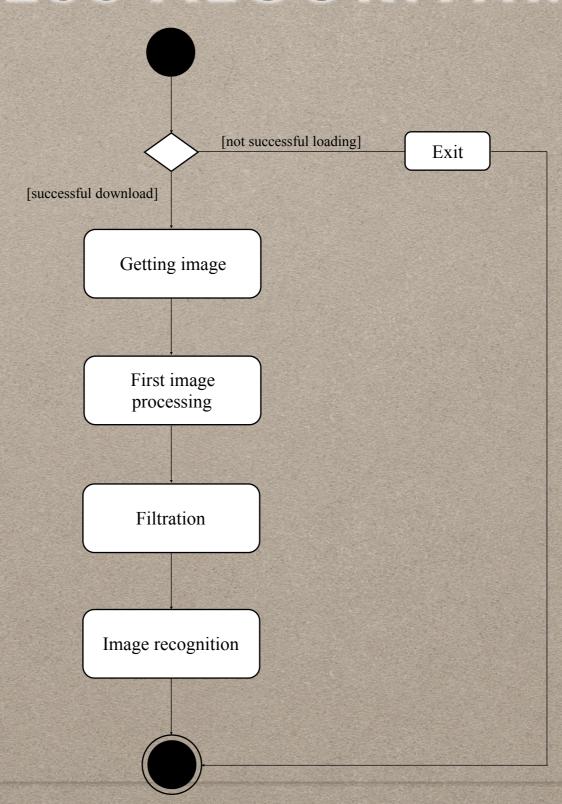
| Role member of the team            | Full Name               |
|------------------------------------|-------------------------|
| Project Manager, Quality Assurance | Anastasiia T. Maksymova |
| Project Analyst                    | Oleksii O. Maksymov     |
| Project Developer                  | Roman V. Slobodian      |

#### PROJECT IMPLEMENTATION REPORT

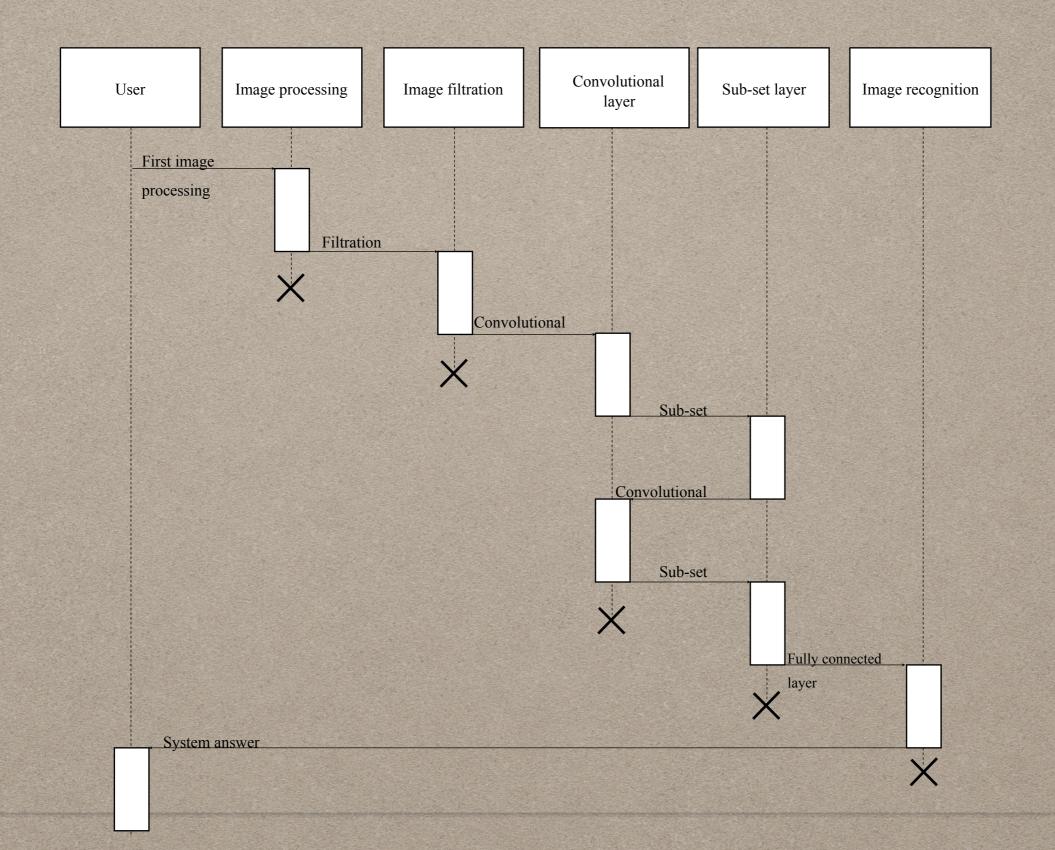
| #  | Task Title                             | Stort | End   | Estimate | Sprint 1 |      |      |    | Sprint 2 |      |       |      | Sprint 3 |     |   | Sprint 4 |     |   | Sprint 5 |      |     |     |     | S    | prin | t 6 |    | Sprint 6 |         |    |    |    |
|----|----------------------------------------|-------|-------|----------|----------|------|------|----|----------|------|-------|------|----------|-----|---|----------|-----|---|----------|------|-----|-----|-----|------|------|-----|----|----------|---------|----|----|----|
| #  | Task Title                             | Start | End   | Estimate | 15 1     | 16 1 | 7 18 | 19 | 22 2     | 3 24 | 25 26 | 5 29 | 30       | 311 | 2 | 5 6      | 7 8 | 9 | 12       | 13 1 | 4 1 | 5 1 | 6 1 | 9 20 | 21   | 22  | 23 | 26       | 27 2    | 28 | 29 | 30 |
| 1  | Split tasks into sprints               | 15/10 | 16/10 | 2 days   |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 2  | Determine the terms                    | 17/10 | 18/10 | 2 days   |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 3  | Analytical review of literature        | 15/10 | 19/10 | 5 days   |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 4  | Installation Matlab 2016b              | 22/10 | 26/10 | 5 days   |          |      |      |    |          |      |       |      |          |     |   |          |     | Ш |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 5  | Prepare Virtual Machine                | 22/10 | 26/10 | 5 days   |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 6  | Develop the verbal model               | 22/10 | 26/10 | 5 days   |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 7  | Analysis of the text recognize         | 29/10 | 31/10 | 3 days   |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 8  | Analysis of the therorists threats     | 1/11  | 2/11  | 2 days   |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          | $\perp$ |    |    |    |
| 9  | Develop mathematical description       | 29/10 | 9/11  | 10 days  |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 10 | Develop text content analysis system   | 29/10 | 16/11 | 15 days  |          |      |      |    |          |      |       |      |          |     |   |          |     | Ш |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 11 | Analysis of Big Data storage methods   | 5/11  | 9/11  | 5 days   |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 12 | Develop CNN classifier                 | 12/11 | 22/11 | 9 days   |          |      |      |    |          |      |       |      |          |     |   |          |     | Ш |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 13 | Develop hidden content analysis system | 19/11 | 22/11 | 4 days   |          |      |      |    |          |      |       |      |          |     |   |          |     | Ш |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 14 | Analysis of the management systems     | 12/11 | 16/11 | 5 days   |          |      |      |    |          | Ш    |       |      |          |     |   |          |     | Ш |          |      |     |     |     |      |      |     |    |          | $\perp$ |    |    |    |
| 15 | Analysis of the start up common info   | 19/11 | 22/11 | 4 days   |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 16 | Checkout 1 chapter (Anastasiia)        | 23/11 | 23/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 17 | Checkout 1 chapter (Oleksii)           | 23/11 | 23/11 | 1 day    |          |      |      |    |          | Ш    |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          | $\perp$ |    |    |    |
| 18 | Checkout 1 chapter (Roman)             | 23/11 | 23/11 | 1 day    |          |      |      |    |          | Ш    |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      | Ш   |    |          | $\perp$ |    |    |    |
| 19 | Checkout 2 chapter (Anastasiia)        | 26/11 | 26/11 | 1 day    |          |      |      |    |          | Ш    |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          | $\perp$ |    |    |    |
| 20 | Checkout 2 chapter (Oleksii)           | 26/11 | 26/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          | _       |    |    |    |
| 21 | Checkout 2 chapter (Roman)             | 26/11 | 26/11 | 1 day    |          |      |      |    |          | Ш    |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 22 | Checkout 3 chapter (Anastasiia)        | 27/11 | 27/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 23 | Checkout 3 chapter (Oleksii)           | 27/11 | 27/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 24 | Checkout 3 chapter (Roman)             | 27/11 | 27/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     | Ц |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 25 | Finish all explanatory notes           | 28/11 | 28/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 26 | Writing articles                       | 29/11 | 29/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |
| 27 | Preparation of the presentation        | 30/11 | 20/11 | 1 day    |          |      |      |    |          |      |       |      |          |     |   |          |     |   |          |      |     |     |     |      |      |     |    |          |         |    |    |    |


## OVERVIEW AZURE USER INTERFACE




## PART 2. DEVELOPMENT OF THE ANALYTICAL AND MATHEMATICAL SUPPORT FOR INFORMATION TECHNOLOGY FOR DETECTING HIDDEN CONTENT IN THE TEXT MESSAGES

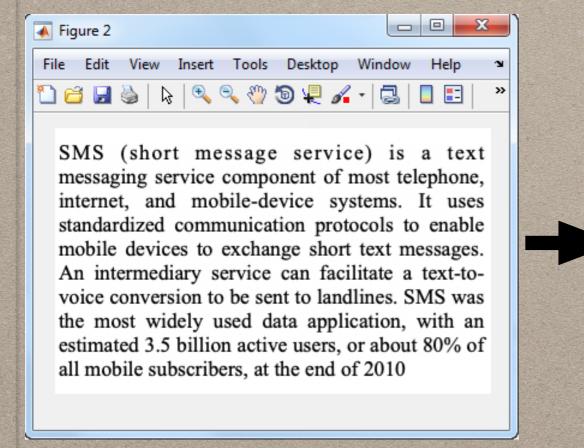
- The purpose of master's qualification work is:
- 1. Create analytical and mathematical support for information technology.
- 2. to improve the quality of recognition of hidden content in text messages through the use of methods of working with Big Data, as well as neural networks and machine learning.

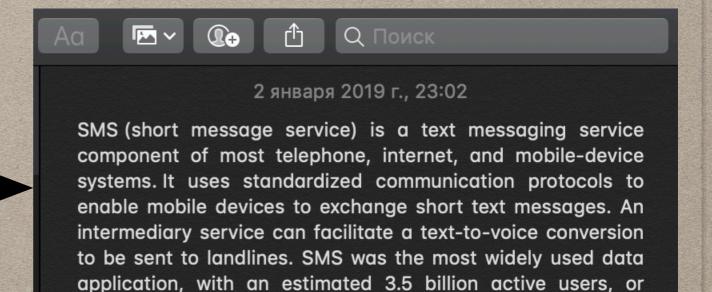

#### USE CASE DIAGRAM



#### PROCESS ALGORITHM

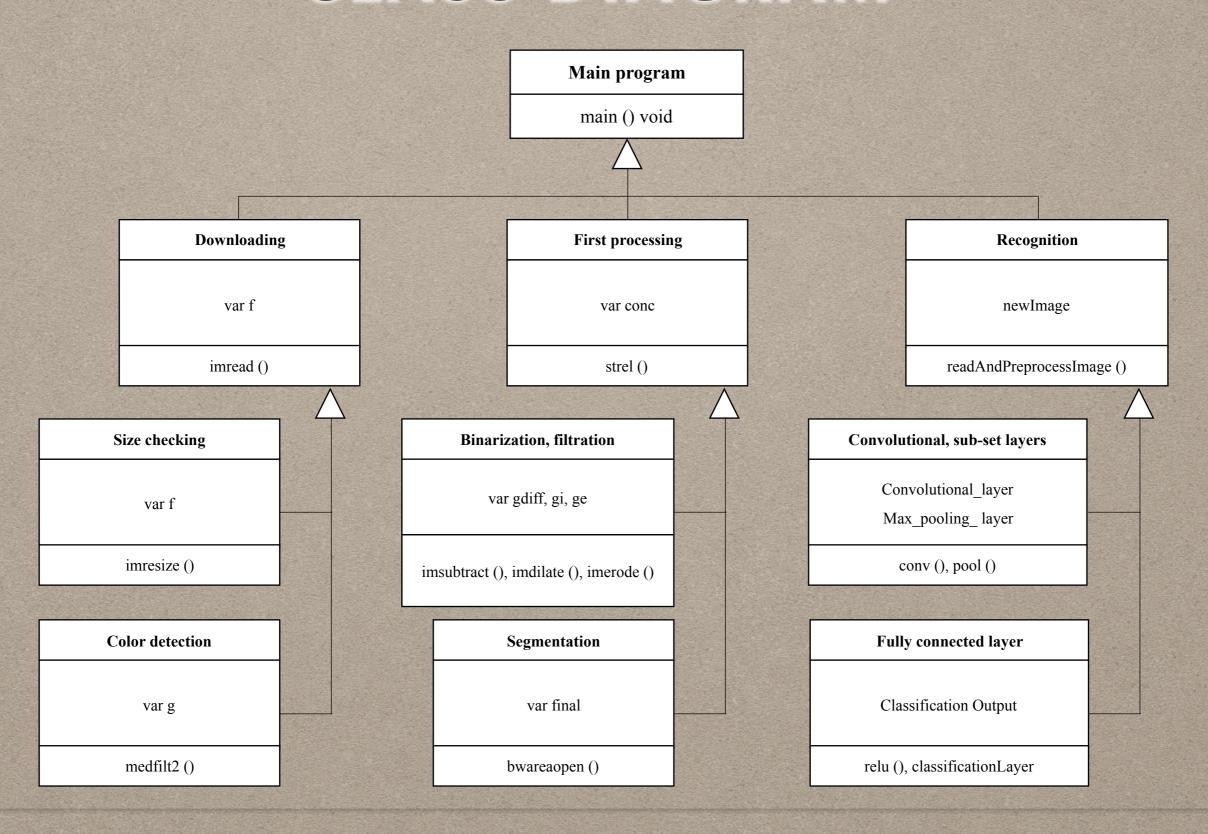



#### SEQUENCE DIAGRAM




#### WORK OF THE MAIN FUNCTION

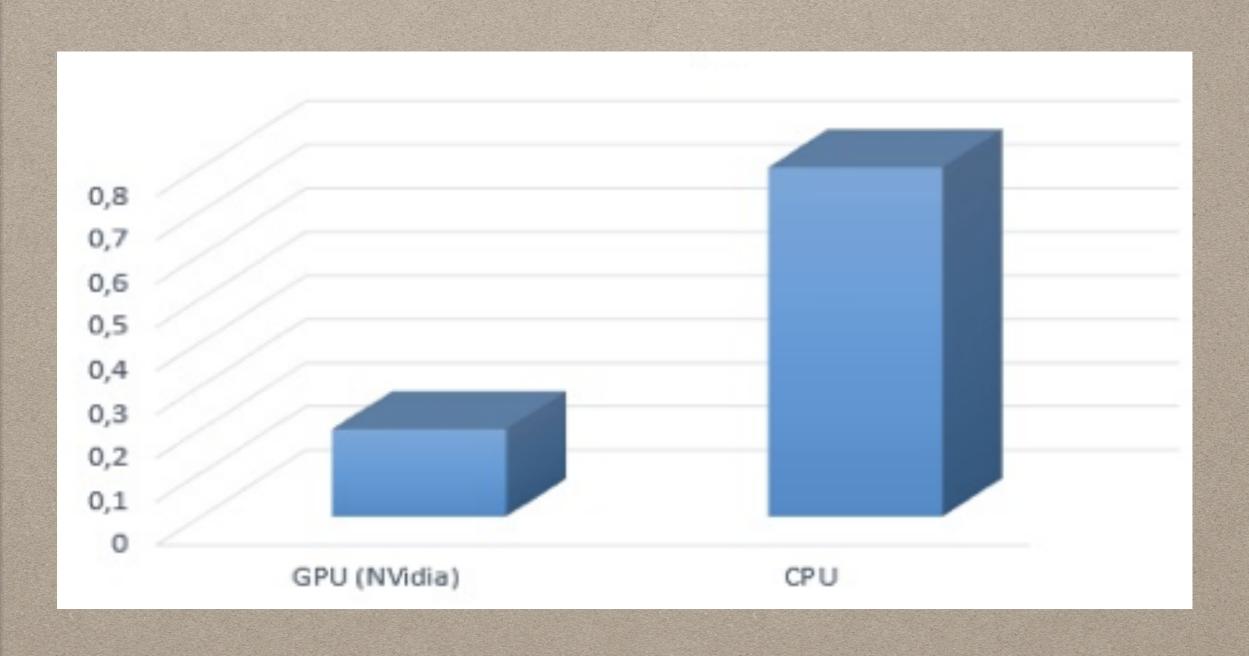
```
newImage = fullfile(rootFolder, 'airplanes', 'image_0690.jpg');
% Pre-process the images as required for the CNN
img = readAndPreprocessImage(newImage);
% Extract image features using the CNN
imageFeatures = activations(convnet, img, featureLayer);
% Make a prediction using the classifier
label = predict(classifier, imageFeatures)
label =
     airplanes
```


#### RECOGNITION RESULTS





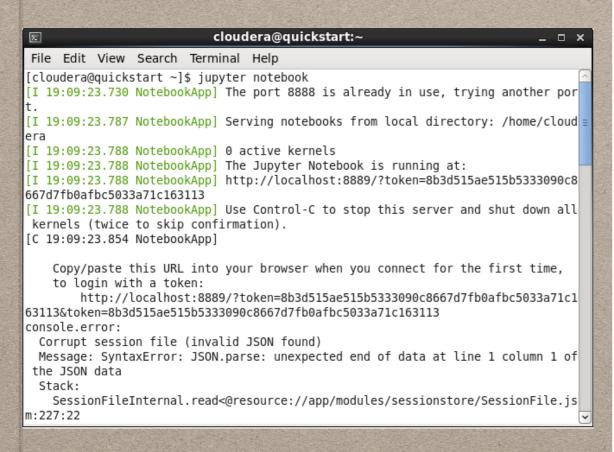
about 80% of all mobile subscribers, at the end of 2010

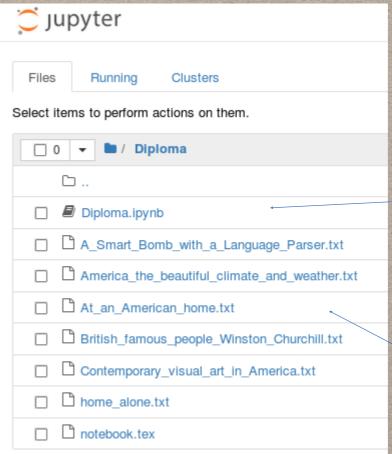

#### **CLASS DIAGRAM**



#### DEVELOPED CLASSIFIER

```
ew to MATLAB? See resources for Getting Started.
    Layers: [23×1 nnet.cnn.layer.Layer]
ans =
  23x1 Layer array with layers:
         'input'
                                  Image Input
                                                                227x227x3 images with 'zerocenter' normalization
         'conv1'
                                 Convolution
                                                                96 11x11x3 convolutions with stride [4 4] and padding [0 0]
         'relu1'
                                 ReLU
                                                                ReLU
        'norm1'
                                 Cross Channel Normalization
                                                              cross channel normalization with 5 channels per element
        'pool1'
                                 Max Pooling
                                                                3x3 max pooling with stride [2 2] and padding [0 0]
     5
        'conv2'
                                 Convolution
                                                                256 5x5x48 convolutions with stride [1 1] and padding [2 2]
        'relu2'
                                 ReLU
                                                                ReLU
        'norm2'
                                 Cross Channel Normalization
                                                                cross channel normalization with 5 channels per element
         'pool2'
                                 Max Pooling
                                                                3x3 max pooling with stride [2 2] and padding [0 0]
                                 Convolution
         'conv3'
                                                                384 3x3x256 convolutions with stride [1 1] and padding [1 1]
         'relu3'
                                 ReLU
                                                                ReLU
    11
        'conv4'
                                 Convolution
                                                                384 3x3x192 convolutions with stride [1 1] and padding [1 1]
    12
                                 ReLU
         'relu4'
    13
                                                                ReLU
         'conv5'
                                 Convolution
                                                                256 3x3x192 convolutions with stride [1 1] and padding [1 1]
    14
                                 ReLU
    15
         'relu5'
         'pool5'
                                 Max Pooling
                                                                3x3 max pooling with stride [2 2] and padding [0 0]
    16
         'fc6'
                                 Fully Connected
                                                                4096 fully connected layer
    17
         'relu6'
                                 ReLU
                                                                ReLU
    18
        'fc7'
                                  Fully Connected
                                                                4096 fully connected layer
    19
        'relu7'
                                 ReLU
                                                                ReLU
        'fc8'
                                  Fully Connected
                                                                1000 fully connected layer
                                                                softmax
         'prob'
                                  Softmax
        'classificationLayer'
                                                                cross-entropy with 'n01440764', 'n01443537', and 998 other classes
                                 Classification Output
```


## DEPENDENCIES OF THE CHOSEN PLATFORM




## PART 3. DEVELOPMENT OF SOFTWARE AND TECHNOLOGY PROVISION OF INFORMATION TECHNOLOGY FOR DETECTING HIDDEN CONTENT IN TEXT MESSAGES

 The goal of this work is to investigate and apply on practice methods and tools of Big Data's processing and analyzing on the information that generates in real time during the everyday communication between people to detect hidden content in it.

#### ENVIRONMENT





Developed script

Test data

```
#Configuring Tone Analyzer
toneAnalyzer = ToneAnalyzerV3(
    version='2017-09-21',
    username='27c7d59f-9fbe-4a2f-bf56-853bbe8a2ec7',
    password='axELJYGVTMPg',
    url='https://gateway.watsonplatform.net/tone-analyzer/api'
)

#Configuring Natural Language Understanding tool
natural_language_understanding = NaturalLanguageUnderstandingV1(
    version='2018-03-16',
    username='7abd47el-13ad-4d04-9a45-059777f0e969',
    password='qUwHcJjS5fXo',
    url='https://gateway.watsonplatform.net/natural-language-understanding/api'
)

#File to read name/path
fileToRead = 'Contemporary_visual_art_in_America.txt'
```

IBM Watson API connections configuration

File to read path

```
#Analyzing text tone using TA
logs.append("{} - Text Tone Analysis: Start".format(datetime.now()))
TAResult = toneAnalyzer.tone(
        'text': text
    'application/json'
).get result()
logs.append("{} - Text Tone Analysis: End".format(datetime.now()))
#Analyzing text to undertand keywords
logs.append("{} - Natural Language Understanding: Start".format(datetime.now()))
NLUAResult = natural language understanding.analyze(
    text=text,
    features=Features(
        entities=EntitiesOptions(
           emotion=True,
            sentiment=True,
            limit=10
        keywords=KeywordsOptions(
           emotion=True,
            sentiment=True.
            limit=10
        #categories=CategoriesOptions(
        # limit=10
        #),
        #concepts=ConceptsOptions(
        # limit=10
        #semantic roles=SemanticRolesOptions(),
        relations=RelationsOptions()
).get result()
logs.append("{} - Natural Language Understanding: End".format(datetime.now()))
```

API Calls to IMB Watsons for Text tone analysis and Natural Language Processing (Understanding)

```
tonesD = {}
for tone in TAResult['document_tone']['tones']:
    tonesD.update({tone['tone_id']: tone['score']})

keywordsD = {}
for keyword in NLUAResult['keywords']:
    keywordsD.update({keyword['text']: keyword['relevance']})

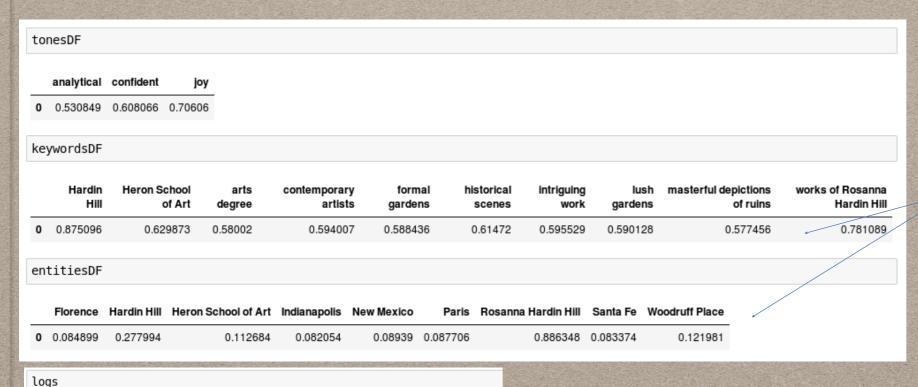
entitiesD = {}
for entity in NLUAResult['entities']:
    entitiesD.update({entity['text']: entity['relevance']})

tonesDF = pd.DataFrame(tonesD, index=[0])
keywordsDF = pd.DataFrame(keywordsD, index=[0])
entitiesDF = pd.DataFrame(entitiesD, index=[0])
```

Text analysis results parsing

Converting parsed results to Pandas DataFrames (to simplify future manipulations)

```
#Tasks creation
client = VstsClient('romichprof.visualstudio.com', '335ljb5s3edh3lpyrtr42pk42m4jpu5coq6c66an2b7jonlshlpq')


#Analysis task
ATdoc = JsonPatchDocument()
ATdoc.add(JsonPatchOperation('add', SystemFields.TITLE, 'Check {} analysis result'.format(fileToRead)))
ATdoc.add(JsonPatchOperation('add', SystemFields.DESCRIPTION, json.dumps({"FileName": fileToRead, "DateTime": datetime.now
#client.create_workitem('SMM_Diploma', 'Task', ATdoc)

#Logs task
LTdoc = JsonPatchDocument()
LTdoc.add(JsonPatchOperation('add', SystemFields.TITLE, 'Check {} analysis logs'.format(fileToRead)))
LTdoc.add(JsonPatchOperation('add', SystemFields.DESCRIPTION, json.dumps({"FileName": fileToRead, "DateTime": datetime.now
#client.create_workitem('SMM_Diploma', 'Task', LTdoc)
```

Task with text analysis results creation

Task with text analysis processing logs creation

#### RESULTS OVERVIEW



Parsed and converted Natural Language Processing (Understanding) results

**Execution logs** 

## THAT'S ALL. THANKS FOR ATTENTION!