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Abstract  In this paper, a problem of MIMO object 
identification expressed mathematically in terms of fuzzy 
relational equations is considered. We use the multivariable 
relational structure based on the modular fuzzy relational 
equations with the multilevel composition law. The 
identification problem consists of extraction of an unknown 
relational matrix and also of parameters of membership 
functions included in the fuzzy knowledge base, which can 
be translated as a set of fuzzy IF-THEN rules. In fuzzy 
relational calculus this type of the problem relates to inverse 
problem and requires resolution for the composite fuzzy 
relational equations. The search for solution amounts to 
solving an optimization problem using the hybrid genetic 
and neural approach. The genetic algorithm uses all the 
available experimental information for the optimization, i.e., 
operates off-line. The essence of the approach is in 
constructing and training a special neuro-fuzzy network, 
which allows on-line correction of the extracted relations if 
the new experimental data is obtained. The resulting solution 
is linguistically interpreted as a set of possible rules bases. 
The approach proposed is illustrated by the computer 
experiment and the example from medical diagnosis. 

Keywords  Knowledge Extraction, Fuzzy Relational 
Identification, Composite Fuzzy Relational Equations, 
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1. Introduction  
Fuzzy relational calculus [1, 2] provides a powerful 

theoretical background for knowledge extraction from data. 
Some fuzzy rule base is modelled by a fuzzy relational 
matrix, discovering the structure of the data set [3 – 5]. Fuzzy 
relational equations, which connect membership functions of 
input and output variables, are built on the basis of a fuzzy 
relational matrix and Zadeh’s compositional rule of 

inference [6, 7]. The identification problem consists of 
extraction of an unknown relational matrix, which can be 
translated as a set of fuzzy IF-THEN rules. In fuzzy 
relational calculus this type of problem relates to inverse 
problem resolution for the composite fuzzy relational 
equations [2].  

Inverse problem resolution is of interest to both simplified 
relational models and multivariable ones. Solvability and 
approximate solvability conditions of the simplified 
composite fuzzy relational equations are considered in [2, 8, 
9]. The non-optimizing approach [10] is widely used for 
fuzzy relational identification. Such adaptive recursive 
techniques are of interest for the most of on-line applications 
[11 – 13]. Under general conditions, an optimization 
environment is the convenient tool for fuzzy relational 
identification [14]. An approach for identification of fuzzy 
relational models by fuzzy neural networks is proposed in 
[15 – 17].  

In the case of multiple variable linguistic model, the inputs 
- outputs dependency is extended to the multidimensional 
fuzzy relational structure and requires modularization of the 
system of fuzzy relational equations [7, 18]. The insufficient 
use of the modular structures is stipulated through the lack of 
effective algorithms for solving fuzzy relational equations 
with multilevel composition law. When dealing with the 
multilevel structure, it is necessary to apply the optimization 
schemes rather than to make attempts to develop analytical 
solutions [18 – 21]. 

An approach for fuzzy relational identification expressed 
mathematically in terms of  composite fuzzy relational 
equations is proposed in [22, 23]. We use two main types of 
relational structures built with the aid of simplified and 
modular multilevel fuzzy relational equations for MIMO 
object identification. In [22, 23], the genetic algorithm [24, 
25] as a tool to solve the simplified composite fuzzy 
relational equations is adapted to identify the relational 
matrix of rules weights. In [26], we suggest some procedures 
of numerical solution of the modular multilevel relational 
equations using genetic algorithms. The procedures envisage 
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the optimal solution growing from a set of primary variants 
by extending the simplified solution set to the case of 
multidimensional fuzzy relational equations. In this paper, 
we use the genetic algorithm [26] as a tool to solve the 
modular composite fuzzy relational equations to identify the 
relational matrix of terms weights for the given 
inputs-outputs data set.  

Following [22, 23], the algorithm for fuzzy relation matrix 
identification is accomplished in two stages. At the first stage, 
parameters of membership functions included in the fuzzy 
knowledge base and elements of the relational matrix are 
defined using the genetic algorithm. In this case, proximity 
of linguistic approximation results and experimental data is 
the criterion of extracted relations quality. At the second 
stage, the obtained null solution allows us to arrange the 
genetic search for the complete solution set for the relational 

matrix. After linguistic interpretation the resulting solution 
can be represented as a set of possible rules collections, 
discovering the structure of the given data.  

The genetic algorithm [24 – 26] uses all the available 
experimental information for the optimization, i.e., operates 
off-line and becomes toilful and inefficient if the new 
experimental data is obtained, i.e., in the on-line mode. In 
this paper, the process of knowledge extraction is augmented 
by a hybrid genetic and neural approach to solving 
composite fuzzy relational equations [23, 27]. The essence of 
the approach is in constructing and training a special 
neuro-fuzzy network, which allows on-line correction of the 
extracted relations.  

The approach proposed is illustrated by the computer 
experiment and the example of medical diagnosis.  

2. «Multiple Inputs – Multiple Outputs» Object 
Let us consider an object )(XY f=  with n inputs ),...,( 1 nxx=X  and m outputs ),...,( 1 myy=Y , for which the 

following is known: 

  intervals of inputs and outputs change ],[ iii xxx ∈ , ni ,1= ; ],[ jjj yyy ∈ , mj ,1= ; 

  classes of decisions jpe  for evaluation of output variable jy , mj ,1= , formed by digitizing the range [ jj yy , ] 

into jq  levels: [ jj yy , ] = [


1

1,

je

jj yy )∪…∪[


jpe

jpjp yy ,1− )∪…∪[


jjq

j

e

jjq yy ,1− ]; 

  training data in the form of L pairs of “inputs-outputs” experimental data ss YX ˆ,ˆ ,  Ls ,1= , where 

)ˆ,...,ˆ(ˆ
1

s
n

s
s xx=X  and )ˆ,...,ˆ(ˆ

1
s
m

s
s yy=Y  are the vectors of the values of the input and output variables in the 

experiment number  s.  
It is necessary to transfer the available training data into the following system of IF-THEN rule [7] 

Rule k : IF 1x = ka1  AND …  nx = nka  THEN 1y = kb1   AND … my = mkb , Nk ,1= ,          (1) 

where ika  ( jkb ) is the fuzzy term describing a variable ix  ( jy ) in rule k ;  

N is the number of rules.  

3. Fuzzy Rules, Relations and Relational Equations 
This fuzzy rule base is modelled by the fuzzy relational matrix presented in Table 1. Inputs-outputs interconnection is 

given by the system of SISO fuzzy relational matrices  

jpilij ec ×⊆R =[ jpilr , , ni ,1= , mj 1, = , ikl 1, = , jqp 1, = ], 

where ilc  is the fuzzy term for a variable ix  evaluation, ni ,1= , ikl 1, = ;  

jpilr ,  is the relation jpil ec × , mj ,1= ,  jqp 1, = . 

We shall redenote the set of input and output terms-assessments in the following way },...,{ 1 NCC
={ nnknk cccc ,...,,...,,..., 1111 1 }, },...,{ 1 MEE ={ mmqmq eeee ,...,,...,,..., 1111 1 }, where nkkN ++= ...1 ,  

mqqM ++= ...1 . Thus, the collection of SISO fuzzy relational matrices is equivalent to the MIMO fuzzy relational 

 



12  Knowledge Extraction In Fuzzy Relational Systems Based on Genetic and Neural Approach  
 

matrix JI EC ×⊆R =[ IJr , NI 1, = , MJ 1, = ]. 
This relational matrix can be translated as a set of MISO rules 

Rule k :  IF kax 11 =  
(with weight jpkv ,1 ) … AND =nx nka  (with weight jpnkv , )  

THEN jy = jpe
 
(with weight jpkw , ), mj ,1= ,  jqp 1, = ,

 
Nk ,1= ,                    (2) 

where jpikv ,  is the weight of the term ika
 
in the rule k  interpreted as a relation jpik ea × ,  },...,{ 1 iikiik cca ∈ ;  

jpkw ,  is the weight of the rule k  determined as jpkw , = jpikni
vmin ,,1=

. 

Table 1.  Fuzzy knowledge base 

IF inputs 

THEN outputs 

1y  
… my

 

11e  
… 

 
… 1me

 
… mmqe

 

1E  
… ME  

1x  

11c  1C  

11R  
… m1R

 … 

… 
11kc

 
… … … … … 

nx
 

1nc
 

1nR
 

… nmR
 

… 

nnkc
 NC

 

Given the matrix R , the inputs-outputs dependency can be described with the help of the extended compositional rule of 
inference [7] 

))()(( 1
1

n
AA x,...,x nμμ















nmn

m

RR

RR

...
.........

...
*

1

111
= ))()(( 1

1
m

BB y,...,y mμμ ,                    (3) 

where  ))(),...,(())()(( 111111
1

nnknkn cccc
n

AA ,...,,...,x,...,x µµµµ=μμ  or Cμ = ),...,( 1 NCC µµ  is the 

vector of membership degrees of variables ix  to fuzzy terms ilc , ni ,1= , ikl 1, = ; 

))(),...,(())()(( 111111
1

mmqmqm eeee
m

BB ,...,,...,y,...,y µµµµ=μμ  or Eμ = ),...,( 1 MEE µµ  is the vector of 

membership degrees of variables jy  to classes jpe , mj 1, = , jqp 1, = ; 

*  is the operation of ( , ) [7]. 
The system of fuzzy relational equations is derived from relation (3): 

111 ...11
n

AAB n RμRμμ =  

nm
A

m
AB nm RμRμμ  ...1
1= .                                       (4) 

Since the operation   is associated with max-min and the operation   is replaced by min in fuzzy set theory [7], system (4) 
can be rearranged as: 

11qe
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))],,(min([
1,1,

il,jp
c

klni

e rmaxmin il

i

jp µµ
==

=  mj 1, = , jqp 1, = .                        (5) 

Here )( i
c xilµ  is a membership function of a variable ix  to the fuzzy term ilc , ni ,1= , ikl 1, = ; 

)( j
e yjpµ  is a membership function of a variable jy  to the class jpe , mj 1, = , jqp 1, = . 

We use a bell-shaped membership function model of variable u to arbitrary term T in the form [23]: 

,)))((1(1)( 2σβµ −+= uuT                                          (6) 

where β  is a coordinate of function maximum, 1)( =βµT ; σ
 
is a parameter of concentration-extension.  

The operation of defuzzification is defined as follows [23]: 

∑∑ ⋅=
==

j
jp

j
jp

q

p
j

eq

p
j

e
jpj yyyy

11
)()( µµ   .                                    (7) 

Correlations (5) - (7) define the generalized fuzzy model of the object as follows: 

),,,,( CCRF ΩΒRXY =                                                    (8) 

where  ),..,( 1 NCC
C ββ=Β  and ),...,( 1 NCC

C σσ=Ω  are the vectors of β - and σ - parameters for fuzzy terms 

NCC ,...,1  membership functions;  

RF  is the operator of inputs-outputs connection, corresponding to formulae (5) – (7). 

4. Optimization Problem for Fuzzy Relations Extraction 

Let us impose limitations on the knowledge base (2) volume in the following form: 11 kk ≤ , …, nn kk ≤ , where ik  is 

the maximum permissible total number of fuzzy terms describing a variable ix , ni ,1= . 

So as content and number of linguistic terms ilc  ( ni ,1= , ikl ,1= ) used in fuzzy knowledge base (2) are not known 

beforehand then we suggest to interpret them on the basis of membership functions (6) parameter values ( ilcβ , ilcσ ). 
Therefore, knowledge base (1) synthesis is reduced to obtaining the matrix of knowledge base parameters (Table 1). This 
problem can be formulated as follows. It is necessary to find such a knowledge base parameters matrix, which satisfies the 
limitations imposed on knowledge base volume and provides the least distance between model and experimental outputs of 
the object: 

∑ =−
=

L

s
sCCsR

CC
F

1 ,,
2 min]ˆ),,,ˆ([

ΩΒR
YΩΒRX .                                 (9) 

5. Solving Composite Fuzzy Relational Equations 

5.1. Optimization Problem 

If 0R  is a solution of the optimization problem (9), then 0R  is the exact solution of the composite system of fuzzy 
relational equations 

))ˆ(ˆ)ˆ(ˆ( 1
1 s

n
AsA x,...,x nμμ















nmn

m

RR

RR

...
.........

...
*

1

111
= ))ˆ(ˆ)ˆ(ˆ( 1

s
B

s
B m,..., XμXμ ,                (10) 

where the experimental input and output matrices  
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are obtained for the given training data. 
The problem of solving fuzzy relational equations (10) is formulated as follows [24 – 26]. Fuzzy relation matrix 

][ IJr=R , NI 1, = , MJ 1, = , should be found which satisfies the constraints ]1,0[∈IJr  and also provides the least 
distance between model and experimental outputs of the object; that is, the minimum value of the criterion (9). 

In the general case, system (10) has a solution set )ˆ,ˆ( BAS μμ , which is completely characterized by the set of upper 

solutions )ˆ,ˆ(
* BAS μμ = },1,{ Tkk =R  and the set of lower solutions )ˆ,ˆ(* BAS μμ = },1,{ Hll =R . This implies 

that the solution set )ˆ,ˆ( BAS μμ  contains the simplified subsets )ˆ,ˆ( BA
kD μμ , Tk ,1= , each of which is determined 

by the unique greatest solution ∈kR )ˆ,ˆ(
* BAS μμ  and the set of lower solutions )ˆ,ˆ(* BAS μμ = },1,{ Hll =R . 

The solution set  )ˆ,ˆ( BAS μμ  is obtained by extending the simplified solution subsets )ˆ,ˆ( BA
kD μμ  to the case of 

multidimensional composite fuzzy relational equations [26]: 

)ˆ,ˆ( BAS μμ =


**
,

S
kl

S lk ∈∈






RR

RR , Hl ,1= , Tk ,1= .                      (11) 

Here kR = ][ k
IJr  and lR =[ l

IJr ] are the matrices of the upper and lower bounds of the fuzzy relations IJr , where the 

union is taken over all )ˆ,ˆ(
* BA

k S μμR ∈  and )ˆ,ˆ(* BA
l S μμR ∈ .  

Following [24 – 26], formation of the intervals (11) is accomplished by way of solving a multiple optimization problem (9) 

and it begins with the search for its null solution ][ 0
0 IJr=R , where 

k
IJIJ rr ≤0 , NI 1, = , MJ 1, = . The lower bound 

( l
IJr ) for 1 =l  is found in the range ],0[ 0

IJr , and for 1 >l  – in the range ],0[
,1

p
IJ

kp
rmin

=
, where the minimal solutions 

sR , ls < , are excluded from the search space. The upper bound (
k
IJr ) for 1 =k  is found in the range ]1,[ 0

IJr , and for 

1 >k  – in the range ]1,[
,1

s
IJ

ls
rmax

=
, where the maximal solutions pR , kp < , are excluded from the search space.  

Let )]([)( trt IJ=R  be some t-th solution of optimization problem (9), that is )())(( 0RR FtF = , since for all ∈R

)ˆ,ˆ( BAS μμ  we have the same value of criterion (9). While searching for upper bounds (
k
IJr ) it is suggested that 

)1()( −≥ trtr IJIJ , аnd while searching for lower bounds ( l
IJr ) it is suggested that )1()( −≤ trtr IJIJ . The definition of 

the upper (lower) bounds follows the rule: if )1()( −≠ tt RR , then 
k
IJr ( l

IJr )= )(trIJ , Hl ,1= , Tk ,1= . If 

)1()( −= tt RR , then the search for the interval solution ],[ kl RR  is stopped. Formation of intervals (11) will go on till 

the conditions pk RR ≠  and sl RR ≠ , kp < , ls < , have been satisfied.  

The hybrid genetic and neural approach is proposed for solving optimization problem (9).  

5.2. Genetic Algorithm for Fuzzy Relations Extraction 

The chromosome needed in the genetic algorithm for solving this optimization problem includes the real codes of 
parameters R , CΒ , CΩ . While searching for the complete solution set it is suggested that the chromosome includes only 
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the codes of parameters IJr . Parameters of membership functions are defined simultaneously with the null solution. The 

crossover operation is carried out by way of exchanging genes inside each variable IJr , ICβ , ICσ , NI ,1= ,

MJ ,1= . The multi-crossover operation provides a more accurate adjusting direction for evolving offsprings that allows to 
systematically reduce the size of the search region. The non-uniform mutation, the action of which depends on the age of the 
population, provides generation of the non-dominated solutions. We used the roulette wheel selection procedure giving 
priority to the best solutions. The greater the fitness function of some chromosome the greater is the probability for the given 
chromosome to yield offsprings. The fitness function is built on the basis of criterion (9). While performing the genetic 
algorithm the size of the population stays constant. That is why after crossover and mutation operations it is necessary to 
remove the chromosomes having the worst values of the fitness function from the obtained population [28, 29]. 

5.3. Neuro-Fuzzy Network for Fuzzy Relations Extraction 

Limitations on the knowledge base (2) volume allow embedding system (10) into the special neuro-fuzzy network, which 
is able to extract knowledge (See Fig. 1) 

 

Figure 1.  Neuro-fuzzy network for knowledge extraction 

To train the parameters of the neuro-fuzzy network, the recurrent relations 

)(
)()1(

,
,, tr

trtr
jpil

t
jpiljpil ∂

∂
−=+

ε
η ; 

)(
)()1(

t
tt

il
ilil

c
tcc

β

ε
ηββ
∂

∂
−=+ ; 

)(
)()1(

t
tt

il
ilil

c
tcc

σ

ε
ησσ
∂

∂
−=+ ,             (12) 

are used which minimize the criterion 

2)ˆ(
2
1

ttt yy −=ε , 

where ty  and tŷ  are the model and the experimental outputs of the object at the t-th step of training;  

)(, tr jpil  are fuzzy relations at the t-th step of training;  

)(tilcβ , )(tilcσ  are parameters for the fuzzy terms membership functions at the t-th step of training; 

 η is a parameter of training [30].  
The partial derivatives appearing in recurrent relations (12) can be obtained according to the results from [27].  

6. Computer Experiment 
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The aim of the experiment is to generate the system of IF-THEN rules for the target “two inputs ( 21, xx ) – two outputs 

( 21, yy )” model presented in Fig. 2: 

)215(  )1917(  )17(  )9.02(
10
1),( 2111 −−−−== zzzzxxfy , 

1
2
1),( 12122 +−== yxxfy , 

where 
40

)5.2()0.3( 2
2

2
1 −+−

=
xxz . 

The training data in the form of the interval values of input and output variables is presented in Table 2.  

Table 2.  Training data ( sX̂ , sŶ ) 

Preliminary data 

 Inputs Outputs  

s 1x  2x  1y  2y  

1 [0, 2.0] [0, 2.0] [0.16, 1.85] [0.07, 0.92] 

2 [0, 2.0] [2.0, 4.0] [0.44, 1.85] [0.07, 0.78] 

3 [2.0, 4.0] [0, 2.0] [0.16, 1.85] [0.07, 0.92] 

4 [2.0, 4.0] [2.0, 4.0] [0.44, 3.40] [-0.70, 0.78] 

5 [4.0, 6.0] [0, 2.0] [0.16, 1.85] [0.07, 0.92] 

6 [4.0, 6.0] [2.0, 4.0] [0.44, 1.85] [0.07, 0.78] 

 Specified data 

 Inputs Outputs  

s 1x  2x  1y  2y  

1 [0.2, 1.2] [0.3, 1.6] [0, 1.0] [0.5, 1.0] 

2 [0.2, 1.2] [1.3, 4.0] [0, 0.8] [0.6, 1.0] 

3 [0.7, 3.0] [0.3, 1.6] [0, 2.3] [-0.15, 1.0] 

4 [0.7, 3.0] [1.3, 4.0] [0, 3.4] [-0.7, 1.0] 

5 [3.0, 5.3] [0.3, 1.6] [0, 2.3] [-0.15, 1.0] 

6 [3.0, 5.3] [1.3, 4.0] [0, 3.4] [-0.7, 1.0] 

7 [4.8, 5.8] [0.3, 1.6] [0, 1.0] [0.5, 1.0] 

8 [4.8, 5.8] [1.3, 4.0] [0, 0.8] [0.6, 1.0] 

The experiment methods consist of carrying out the following steps. 
10. Given the training data, find the null matrix of fuzzy relations between the input and output fuzzy terms by solving the 

optimization problem (9). 
20. For the composite system of fuzzy relational equations (10),

 
generate the experimental input and output matrices 

)ˆ(ˆ s
A Xμ  and )ˆ(ˆ s

B Xμ , Ls ,1= , using the obtained parameters of the membership functions. 

30. Given the null solution 0R , find the complete solution set for the relational matrix of terms weights. 
40. For the obtained relations between input and output fuzzy terns, generate the system of fuzzy rules. 
50. Give some linguistic interpretation of the solution set for the relational matrix of rules weights. 

We shall evaluate the quality of the model using the following root mean-squared errors jRMSE : 
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∑ −=
=

L

s

s
jCCijsjj yy

L 1

2]ˆ),,,ˆ([1RMSE ΩΒRX ,
 

ni ,1= , mj 1, = . 

The total number of fuzzy terms for input variables is limited to three. 
The classes for output variables evaluation are formed as follows: 

[ 11, yy ] = [


11

2.0,0
e

)∪ [


12

)2.1,2.0
e

]∪ [


13

4.3,2.1
e

],  [ 22, yy ] = [


21

0,7.0
e

− )∪ [


22

2.1,0
e

]. 

 

Figure 2.  Inputs-outputs model-generator 

The null solution g
0R  presented in Table 3 together with the parameters of the knowledge matrix is obtained using the 

genetic algorithm for the preliminary data. 

Table 3.  Fuzzy relational matrix (null solution) synthesized using the genetic algorithm 

IF inputs 

THEN outputs 

1y  2y  

11e  12e  13e  21e  22e  

1x  

11c  (0.00, 0.70) 0.10 0.86 0.05 0.11 0.82 

12c  (3.03, 0.90) 0.08 0.68 0.90 0.86 0.30 

13c  (5.98, 0.72) 0.12 0.81 0.09 0.12 0.84 

2x  
21c  (0.01, 0.75) 0.12 0.74 0.10 0.14 0.76 

22c  (3.00, 0.93) 0.12 0.39 0.92 0.88 0.48 

The obtained null solution g
0R  allows us to arrange for the genetic search for the solution set of the system (10), where 

the matrices )ˆ(ˆ s
A
g Xμ  and )ˆ(ˆ s

B
g Xμ  for the preliminary data take the following form: 
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The complete solution set for the fuzzy relation matrix is presented in Table 4, where input 1x  is described by fuzzy terms 

Low (L), Average (A), High (H); input 2x  is described by fuzzy terms Low (L), High (H); output 1y  is described by fuzzy 

terms higher than Low (hL), lower than Average (lA), High (H); output 2y  is described by fuzzy terms Low (L), lower than 
Average (lA).  

Table 4.  Fuzzy relational matrix (complete solution set) synthesized using the genetic algorithm 

IF 
inputs 

THEN outputs 

1y  2y  

hL lA H L  lA 

1x  

L 0.10  
[0, 0.10] 

0.74  
[0.74, 1] 

0.74  
[0.74, 1] [0, 0.43] [0.11, 0.43] 0.76  

[0.76, 1] 
0.76  
[0.76, 1] 

A [0, 0.10]  
 0.10 0.68 [0.12, 0.68] 0.90  

[0.90, 1] 
0.86  
[0.86, 1] [0.12, 0.48] 0.48 

H 0.12 0.74  
[0.74, 1] 

0.74  
[0.74, 1] [0, 0.46] [0.12, 0.46] 0.76  

[0.76, 1] 
0.76  
[0.76, 1] 

2x  
L 0.12 [0.74, 1] 

0.74 
[0.74, 1]

0.74 [0, 0.46] [0.12, 0.46] [0.76, 1] 
0.76 

[0.76, 1] 
0.76 

H 0.12 [0.12, 0.39] 0.39 [0.90, 1] 
0.90 

[0.86, 1] 
0.86 0.48 [0.12, 0.48] 

The obtained solution provides the approximation of the object shown in Fig. 3. 
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Figure 3.  Inputs-outputs model synthesized using the genetic algorithm 

The matrix of rules (terms combinations) weights, which corresponds to the preliminary solution, is presented in Table 5. 
The preliminary matrix of rules weights can be linguistically interpreted as (See Table 9): 
  the set of the four possible rules bases for output 1y , which differ in the fuzzy terms describing output 1y  in rules 4 
and 6 with overlapping weights; 
  the set of the eight possible rules bases for output 2y , which differ in the fuzzy terms describing output 2y  in rules 2, 
4, 6 with overlapping weights. 

Table 5.  Matrix of rules weights for the preliminary solution 

IF inputs 
THEN outputs 

1y  2y  

1x  2x  hL lA H L lA  

L L 0.10  
[0, 0.10] 

0.74  
[0.74, 1] [0, 0.43] [0.11, 0.43] 0.76  

[0.76, 1] 

A L 0.10  
[0, 0.10] 

0.68  
[0.12, 0.68] [0, 0.46] [0.12, 0.46] [0.12, 0.48] 

H L 0.12 0.74  
[0.74, 1] [0, 0.46] [0.12, 0.46] 0.76  

[0.76, 1] 

L H 0.10  
[0, 0.10] 

0.39  
[0.12, 0.39] [0, 0.43] [0.11, 0.43] 0.48  

[0.12, 0.48] 

A H 0.10  
[0, 0.10] 

0.39  
[0.12, 0.39] 

0.90  
[0.90, 1] 

0.86  
[0.86, 1] 

0.48  
[0.12, 0.48] 

H H 0.12 0.39  
[0.12, 0.39] [0, 0.46] [0.12, 0.46] 0.48  

[0.12, 0.48] 

For the specified data, a neural adjustment of the null solution (Table 3) has yielded the new solution n
0R  presented in 

Table 6 together with the parameters of the knowledge matrix. 

Table 6.  Fuzzy relational matrix (null solution) specified using neural adjustment 

IF inputs 

THEN outputs 

1y  2y  

11e  12e  13e  21e  22e  

1x  
11c  (0.00, 0.73) 0.86 0.83 0.10 0.08 0.84 

12c  (3.00, 0.91) 0.14 0.20 0.93 0.89 0.25 

13c  (6.00, 0.76) 0.85 0.88 0.12 0.10 0.80 

2x  21c  (0.02, 0.75) 0.12 0.77 0.11 0.10 0.72 

22c  (3.00, 0.90) 0.82 0.09 0.92 0.90 0.63 
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The obtained null solution n
0R  has allowed adjustment of the bounds in the interval solution (Table 4) and generation of 

the complete solution set of the system (10), where the matrices )ˆ(ˆ s
A
n Xμ  and )ˆ(ˆ s

B
n Xμ  for the specified data take the 

following form: 

 

 

The complete solution set for the fuzzy relation matrix is presented in Table 7.  

Table 7.  Fuzzy relational matrix (complete solution set) specified using neural adjustment 

  IF inputs 

THEN outputs 

1y  2y  

hL lA H L lA 

1x  

L [0.82, 1]  
 0.82 

[0.77, 1]  
 0.77 [0, 0.20] [0, 0.20] [0.72, 1]  

 0.72 

A [0.12, 0.52] [0.14, 0.52] [0.92, 1]  
 0.92 

0.89  
[0.89, 1] [0.14, 0.52] 

H [0.82, 1]  
 0.82 

[0.77, 1]  
 0.77 [0, 0.20] [0, 0.20] [0.72, 1]  

 0.72 

2x  
L [0.12, 0.29] 0.77  

[0.77, 1] [0, 0.29] [0, 0.29] 0.72  
[0.72, 1] 

H 0.82  
[0.82, 1] [0.09, 0.26] 0.92  

[0.92, 1] 
[0.89, 1]  
 0.89 0.63 

The obtained solution provides the approximation of the object shown in Fig. 4. 
For output variables 1y  and 2y , the root mean-squared errors take the values of: 1RMSE =0.82 and 2RMSE =0.47 
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after 10000 iterations of the genetic algorithm; 1RMSE =0.60 and 2RMSE =0.35 after 3000 iterations of the 
neuro-fuzzy network, respectively (100 min on Intel Core 2 Duo P7350 2.0 GHz).  
The matrix of rules (terms combinations) weights, which corresponds to the resulting solution, is presented in Table 8. The 
resulting matrix of rules weights can be linguistically interpreted as the unique set of IF-THEN rules (See Table 9). 

Table 8.  Matrix of rules weights for the specified solution 

IF inputs 
THEN outputs 

1y  2y  

1x  2x  hL lA H L lA 

L L [0.12, 0.29] [0.77, 1]  
 0.77 [0, 0.20] [0, 0.20] [0.72, 1]  

 0.72 

A L [0.12, 0.29] [0.14, 0.52] [0, 0.29] [0, 0.29] [0.14, 0.52] 

H L [0.12, 0.29] 0.77  
[0.77, 1] [0, 0.20] [0, 0.20] [0.72, 1]  

 0.72 

L H [0.82, 1]  
 0.82 [0.09, 0.26] [0, 0.20] [0, 0.20] 0.63 

A H [0.12, 0.52] [0.09, 0.26] [0.92, 1]  
 0.92 

0.89  
[0.89, 1] [0.14, 0.52] 

H H 0.82  
[0.82, 1] [0.09, 0.26] [0, 0.20] [0, 0.20] 0.63 

 

Figure 4.  Inputs-outputs model specified using neural adjustment 

Table 9.  System of IF-THEN rules synthesized using the genetic and neural algorithm 

Rule 
IF inputs THEN outputs 

1x  2x   2y  
   Genetic Neural Genetic Neural 

1 L L lA lA 

2 A L lA L or lA lA 

3 H L lA lA 

4 L H lA or H hL L or lA lA 

5 A H H L 

6 H H lA or H hL L or lA lA 

7. Fuzzy Relations Extraction for Heart Diseases Diagnosis 

1y

 



22  Knowledge Extraction In Fuzzy Relational Systems Based on Genetic and Neural Approach  
 

The aim is to generate the system of IF-THEN rules for diagnosis of heart diseases.  
Input parameters are (variation ranges are indicated in parentheses): 1x  – aortic valve size (0.75 – 2.5 cm2); 2x  – mitral 

valve size (1 – 2 cm2); 3x – tricuspid valve size (0.5 – 2.7 cm 2); 4x  – lung artery pressure (65 – 100 mm Hg).  

Output parameters are: 1y – left ventricle size (11–14 mm); 2y – left auricle size (40–70 mm); 3y – right ventricle size 

(36–41 mm); 4y  – right auricle size (38–45 mm). 
The training data obtained in the Vinnitsa Clinic of Cardiology is represented in Table 10.  
In current clinical practice, the valve sizes 31 xx ÷  are described by fuzzy terms stenosis (S) and insufficiency (I); 

pressure 4x  is described by fuzzy terms normal (N) and lung hypertension (H). 
The classes for output variables jy

 
evaluation are formed as follows:  

[ 11, yy ] = [


11

12,11
e

) [


12

14,13
e

],   [ 22 , yy ] = [


21

50,41
e

) [


22

70,50
e

], 

[ 33, yy ] = [


31

38,36
e

)  [


32

41,38
e

],   [ 44 , yy ] = [


41

40,38
e

)  [


42

45,40
e

]. 

In clinical practice these classes correspond to the types of diagnoses 1je  low inflation and 2je  dilation (hypertrophy) 

of heart sections 41 yy ÷ . The aim of the diagnosis is to translate a set of specific parameters 41 xx ÷  into decision jpe  

for each output 41 yy ÷ . 

Table 10.  Training data 

 
s 

Input parameters Output parameters 

1x  2x  3x  4x  1y  2y  3y  4y  

Preliminary data 

1 0.75-2.5 2 2 65-69
 

12-13 40-44 36 38 

2 2.0-2.5 1-2 2 71-80
 

11 40-60 37-39 39-44 

3 2.0-2.5 1-2 0.5-2.7 72-90
 

11-12 50-70 40-41 40-43 

4 2.0-2.5 1-2 2-2.7 80-100
 

11 45-55 38-41 38-40 

Specified data 

1 0.75-2.0 2 2 65-69 12-14 41-44 36 38 

2 2.0-2.5 2 2 65-69 11-13 40-41 36 38 

3 2.0-2.5 1-2 2 71-80 11 40 38-40 40-45 

4 2.0-2.5 2 2 71-80 11 50-70 37-38 38-40 

5 2.0-2.5 2 0.5-2 72-90 11-12 60-70 40-41 40-45 

6 2.0-2.5 1-2 2-2.7 80-90 11-12 40 40-41 38 

7 2.0-2.5 2 2 80-100 11 50-60 36 38 

8 2.0-2.5 1-2 2-2.7 80-100 11 40 40-41 38-40 

The null solution g
0R  presented in Table 11 together with the parameters of the knowledge matrix is obtained using the 

genetic algorithm for the preliminary data. The obtained null solution g
0R  allows us to arrange for the genetic search for the 

solution set of the system (10), where the matrices )ˆ(ˆ s
A
g Xμ  and )ˆ(ˆ s

B
g Xμ  for the preliminary data take the following 

form: 
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Table 11.  Fuzzy relational matrix (null solution) synthesized using the genetic algorithm 

IF inputs 

THEN outputs 

1y  2y  3y  4y  

11e  12e  21e  22e  31e  32e   41e  42e  

1x  
(0.76, 1.12) 0.15 0.14 0.21 0.35 0.10 0.24 0.08 0.17 

(2.43, 0.94) 0.96 0.36 0.39 0.87 0.76 0.91 0.95 0.79 

2x  
(1.06, 0.88) 0.93 0.58 0.84 0.90 0.22 0.98 0.17 0.82 

(1.97, 0.76) 0.48 0.19 0.32 0.26 0.89 0.30 0.93 0.12 

3x  
(0.53, 0.95) 0.12 0.07 0.16 0.98 0.37 0.22 0.24 0.05 

(2.58, 1.12) 0.98 0.76 0.91 0.15 0.88 0.64 0.96 0.77 

4x  
(65.90, 16.54) 0.34 0.58 0.83 0.72 0.39 0.48 0.61 0.24 

(97.85, 20.27) 0.67 0.19 0.40 0.29 0.56 0.92 0.73 0.69 

The complete solution set for the fuzzy relation matrix is presented in Table 12. The obtained solution provides the 
preliminary results of diagnosis presented in Table 16 for 57 patients. 

The matrix of rules (terms combinations) weights, which corresponds to the preliminary solution, is presented in Table 13. 
The preliminary matrix of rules weights can be linguistically interpreted as (See Table 18): 
 the set of the sixteen possible rules bases for output 1y , which differ in the fuzzy terms describing output 1y  in 

rules 13 – 16 with overlapping weights; 
 the set of the two possible rules bases for output 2y , which differ in the fuzzy terms describing output 2y  in rule 9 

with overlapping weights; 
 the set of the four possible rules bases for output 3y , which differ in the fuzzy terms describing output 3y  in rules 

14 and 16 with overlapping weights; 
 the set of the sixteen possible rules bases for output 4y , which differ in the fuzzy terms describing output 4y  in 

rules 10, 12, 14, 16 with overlapping weights. 
While interpreting the preliminary results in Table 13, the outputs 41 yy ÷  are described by the additional fuzzy term 

Normal (N) in the rules 1 – 8 with low weights for both types of diagnoses 1je  and 2je . 

 



24  Knowledge Extraction In Fuzzy Relational Systems Based on Genetic and Neural Approach  
 

Table 12.  Fuzzy relational matrix (complete solution set) synthesized using the genetic algorithm 

IF  
inputs 

THEN outputs 

1y  2y  3y  4y  

L D L D L D L D 

1x  
S [0, 0.24] [0, 0.24] [0, 0.24] [0.29, 1] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

I [0.56, 0.92] 
 [0.92, 1] 

[0.52, 1]  
[0.30,0.52] 

[0.38, 0.72] 
 [0.72, 1] 

[0.80, 1]  
[0.29,0.80] 

[0.75, 1]  
[0.32,0.75] 

[0.90, 1]  
[0.56, 0.90] 

[0.88, 1]  
[0.30,0.88] 

[0.75, 1]  
[0.56,0.75] 

2x  

S 
 [0.92, 1]  
[0.56,0.92] 

 

{[0, 0.52]  
[0.30,0.52]} 
 [0.52, 1] 

{[0, 0.72]  
[0.38,0.72]} 
 [0.72, 1] 

{[0.29,0.80]  
 [0,0.80]} 
 [0.80, 1] 

{[0.32,0.75]  
 [0,0.75]} 
 [0, 1] 

 [0.56,0.90] 
 [0.90, 1] 

{[0, 0.88]  
[0.30,0.88]} 
 [0, 1] 

 [0.56,0.75] 
 [0.75, 1] 

I [0, 0.56] 
{[0.30,0.52] 
 [0, 0.52]} 
 [0, 0.52] 

{[0.38,0.72]  
 [0, 0.72]} 
 [0, 0.72] 

{[0, 0.80]  
[0.29,0.80]} 
 [0, 1] 

[0.75, 1]  
{[0, 0.75]  
[0.32,0.75]} 

[0, 0.52] 
[0.88, 1]  
{[0.30,0.88] 
 [0, 0.88]} 

[0, 1]  
[0, 0.75] 

3x  
S [0, 1]  

[0, 0.92] 
[0, 1] 

 [0, 0.52] 
[0, 1]  
[0, 0.72] 

[0.29, 0.80] 
 [0.80, 1] 

[0, 1]  
[0, 0.75] 

[0, 1] 
 [0, 0.90] 

[0, 1]  
[0, 0.88] 

[0, 1]  
[0, 0.75] 

I  [0.92, 1]  
[0.56,0.92] 

[0.52, 1]  
[0.30, 0.52] 

 [0.72, 1]  
[0.38, 0.72] [0, 0.29] [0.75, 1]  

[0.32,0.75] 
[0.90, 1]  
[0.56,0.90] 

[0.88, 1]  
[0.30,0.88] 

[0.75, 1]  
[0.56,0.75] 

4x  

N [0, 0.56] 
{[0, 0.52]  
[0.30, 0.52]} 
 [0.52, 1] 

 [0.72, 1]  
[0.38, 0.72] 

[0.29, 1]  
[0.29,0.80] 

 [0.32,0.75] 
 [0.75, 1] [0.38, 0.52]  [0.30, 0.88] 

 [0.88, 1] [0, 0.33] 

H  [0.92, 1]  
[0.56,0.92] 

{[0.30, 0.52] 
 [0, 0.52]} 
 [0, 0.52] 

[0, 0.58] [0.80, 1]  
[0.29,0.80] [0, 0.58]  [0.56, 0.90] 

 [0.90, 1] [0.56, 0.88] [0.56, 0.75] 
 [0.75, 1] 

Table 13.  Matrix of rules weights for the preliminary solution 

Rule 

IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  

     L
 

D
 

L
 

D
 

L
 

D
 

L
 

D
 

1 S S S N [0, 0.24] [0, 0.24] [0, 0.24] [0.29, 1] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

2 S S S H [0, 0.24] [0, 0.24] [0, 0.24] [0.29, 1] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

3 S S I N [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.29] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

4 S S I H [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.29] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

5 S I S N [0, 0.24] [0, 0.24] [0, 0.24] [0.29, 1]  [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

6 S I S H [0, 0.24] [0, 0.24] [0, 0.24] [0.29, 1] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

7 S I I N [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.29] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

8 S I I H [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.29] [0, 0.24] [0, 0.24] [0, 0.24] [0, 0.24] 

9 I S S N [0, 0.56] [0, 1] [0, 1]  [0.29, 1]  [0, 1]  [0, 0.52] [0, 1] [0, 0.33] 

10 I S S H [0, 1] [0, 0.52] [0, 0.58] [0.80, 1]  [0, 0.58] [0, 1]  [0, 0.88] [0, 1]  

11 I S I N [0, 0.56]  [0.52, 1]   [0.72, 1]  [0, 0.29] [0.32, 1] [0.38, 0.52] [0.30, 1] [0, 0.33] 

12 I S I H [0.92, 1] [0.30,0.52] [0, 0.58] [0, 0.29] [0, 0.58] [0.90, 1]  [0.30, 0.88] [0.75, 1]  

13 I I S N [0, 0.56] [0, 0.52] [0, 0.72] [0.29, 1] [0, 1] [0, 0.52] [0, 1]  [0, 0.33] 

14 I I S H [0, 0.56] [0, 0.52] [0, 0.58] [0.29, 1] [0, 0.58] [0, 0.52] [0, 0.88] [0, 1]  

15 I I I N [0, 0.56] [0.30,0.52] [0.38,0.72] [0, 0.29] [0.32, 1] [0, 0.52] [0.88, 1]  [0, 0.33] 

16 I I I H [0, 0.56] [0.30,0.52] [0, 0.58] [0, 0.29] [0, 0.58] [0, 0.52]  [0.56, 0.88] [0, 1]  

For the specified data, a neural adjustment of the null solution (Table 11) has yielded the new solution n
0R  presented in 

Table 14 together with the parameters of the knowledge matrix. 
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Table 14.  Fuzzy relational matrix (null solution) specified using neural adjustment 

IF inputs 

THEN outputs 

1y  2y  3y  4y  

11e  12e  21e  22e  31e  32e   41e  42e  

1x  
(0.75, 1.08) 0.23 0.95 0.74 0.35 0.68 0.29 0.43 0.32 

(2.46, 0.96) 0.98 0.61 0.25 0.79 0.17 0.86 0.59 0.80 

2x  
(1.04, 0.83) 0.59 0.48 0.11 0.28 0.39 0.18 0.32 0.41 

(1.95, 0.78) 0.36 0.89 0.82 0.64 0.90 0.47 0.96 0.85 

3x  
(0.51, 0.97) 0.17 0.32 0.44 0.80 0.26 0.12 0.61 0.58 

(2.58, 1.16) 0.89 0.94 0.63 0.47 0.85 0.91 0.87 0.14 

4x  
(65.73, 19.22) 0.05 0.75 0.96 0.14 0.92 0.17 0.91 0.43 

(98.14, 20.68) 0.92 0.29 0.37 0.79 0.53 0.98 0.32 0.96 

The obtained null solution n
0R  has allowed adjustment of the bounds in the interval solution (Table 12) and generation of 

the complete solution set of the system (10), where the matrices )ˆ(ˆ s
A
n Xμ  and )ˆ(ˆ s

B
n Xμ  for the specified data take the 

following form: 

 

 

The complete solution set for the fuzzy relation matrix is presented in Table 15. The resulting solution provides the final 
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results of diagnosis presented in Table 16 for 57 patients.  

Table 15.  Fuzzy relational matrix (complete solution set) specified using neural adjustment 

IF  
inputs 

THEN outputs 

1y  2y  3y  4y  

L D L D L D L D 

1x  

S [0, 1] [0.43, 0.80] 
 [0.80, 1] 

{[0.24, 0.78] 
 [0, 0.78]} 
  [0, 1] 

[0, 0.65] 
{[0.24,0.80] 
  [0, 0.80]} 
  [0, 0.80] 

[0.28, 1] [0.43,0.80] 
  [0.80, 1] [0.30, 1] 

I [0.43,0.87] 
 [0.87, 1] 0.61 

{[0, 0.78]   
[0.24,0.78]} 
 [0.78, 1] 

[0.65, 1]    
[0.30,0.65] 

{[0, 0.80]   
[0.24,0.80]} 
  [0.80, 1] 

[0.80, 1]   
[0.38,0.80] [0.43,0.80] [0.80, 1]   

[0.30,0.80] 

2x  
S [0.87, 1]  

[0.43,0.87] [0.40,0.61] [0, 0.78] [0, 0.65] [0, 0.64] [0, 0.80] [0, 0.64] [0.30, 1] 

I [0, 0.87] [0.80, 1]  
[0.43,0.80] 

[0.78, 1]   
[0.24, 0.78] 

[0.65, 1]    
[0.30,0.65] 

[0.80, 1]   
[0.24, 0.80] 

[0.80, 1]   
[0.38,0.80] 

[0.80, 1]   
[0.43,0.80] 

[0.80, 1]   
[0.30,0.80] 

3x
 

S [0, 1] [0.30,0.61] [0, 0.78] [0.30, 0.65] 
  [0.30, 1] [0, 0.80] 

{[0, 0.80]    
[0.24,0.80]} 
  [0, 1] 

[0, 0.80] [0.30,0.80] 
  [0.80, 1] 

I [0.87, 1]   
[0.43,0.87] 

[0.80, 1]   
[0.43,0.80] 

[0.78, 1]   
[0.24,0.78] [0.37, 0.56] [0.80, 1]   

[0.24, 0.80] 

{[0.38,0.80] 
  [0, 0.80]} 
  [0.80, 1] 

[0.80, 1]   
[0.43,0.80] [0, 0.30] 

4x  
N [0, 0.33] [0.80, 1]   

[0.43,0.80] 
[0.78, 1]    
[0.24,0.78] [0, 0.33] [0.80, 1]    

[0.24, 0.80] [0, 0.33] [0.80, 1]   
[0.43,0.80] [0.30,0.80] 

H [0.87, 1]  
[0.43,0.87] [0, 0.64] [0, 0.64] [0.65, 1]   

[0.30,0.65] [0, 0.64] [0.38, 0.80] 
  [0.80, 1] [0, 0.64] [0.80, 1]   

[0.30,0.80] 

Table 16.  Genetic and neural algorithm efficiency characteristics 

Output parameter Type of diagnosis 
Number  
of cases 

Probability of the correct diagnosis 

Genetic algorithm Neural network 

1y  
11e  20 18/20=0.90 19/20=0.95 

12e  37 34/37=0.92 36/37=0.97 

2y  
21e   26 22/26=0.84 24/26=0.92 

22e  31 27/31=0.87 29/31=0.93 

3y  
31e   28 25/28=0.89 27/28=0.96 

32e  29 26/29=0.90 28/29=0.96 

4y  
41e   40 34/40=0.85 38/40=0.95 

42e  17 14/17=0.82 16/17=0.94 
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Table 17.  Matrix of rules weights for the specified solution 

Rule 
IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  

 
    

L
 

D
 

L
 

D
 

L
 

D
 

L
 

D
 

1 S S S N [0, 0.33] [0.30,0.61] [0, 0.78] [0, 0.33] [0, 0.64] [0, 0.33] [0, 0.64] [0.30,0.80] 

2 S S S H [0, 1]  [0, 0.61] [0, 0.64] [0, 0.65] [0, 0.64] [0, 0.80] [0, 0.64] [0.30, 1]  

3 S S I N [0, 0.33] [0.40,0.61] [0, 0.78] [0, 0.33] [0, 0.64] [0, 0.33] [0, 0.64] [0, 0.30] 

4 S S I H [0, 1]  [0, 0.61] [0, 0.64] [0, 0.56] [0, 0.64] [0, 0.80] [0, 0.64] [0, 0.30] 

5 S I S N [0, 0.33] [0.30,0.61] [0, 0.78] [0, 0.33] [0, 0.80] [0, 0.33] [0, 0.80] [0.30,0.80] 

6 S I S H [0, 0.87] [0, 0.61] [0, 0.64] [0, 0.65] [0, 0.64] [0.24, 1] [0, 0.64] [0.30, 1]  

7 S I I N [0, 0.33] [0.80, 1] [0.24, 1] [0, 0.33] [0.24,0.80] [0, 0.33] [0.80, 1]  [0, 0.30] 

8 S I I H [0, 0.87] [0, 0.64] [0, 0.64] [0, 0.56] [0, 0.64] [0.28, 1]  [0, 0.64] [0, 0.30] 

9 I S S N [0, 0.33] [0.30,0.61] [0, 0.78] [0, 0.33] [0, 0.64] [0, 0.33] [0, 0.64] [0.30,0.80] 

10 I S S H [0, 1]  [0, 0.61] [0, 0.64] [0, 0.65] [0, 0.64] [0, 0.80] [0, 0.64] [0.30, 1]  

11 I S I N [0, 0.33] [0.40,0.61] [0, 0.78] [0, 0.33] [0, 0.64] [0, 0.33] [0, 0.64] [0, 0.30] 

12 I S I H [0.87, 1]  [0, 0.61] [0, 0.64] [0, 0.56] [0, 0.64] [0, 0.80] [0, 0.64] [0, 0.30] 

13 I I S N [0, 0.33] [0.30,0.61] [0, 0.78] [0, 0.33] [0, 0.80] [0, 0.33] [0, 0.80] [0.30,0.80] 

14 I I S H [0, 0.87] [0, 0.61] [0, 0.64] [0.30, 1] [0, 0.64] [0.24, 1] [0, 0.64] [0.80, 1]  

15 I I I N [0, 0.33] [0.43,0.61] [0.78, 1]  [0, 0.33] [0.80, 1]  [0, 0.33] [0.43,0.80] [0, 0.30] 

16 I I I H [0, 0.87] [0, 0.61] [0, 0.64] [0.37, 0.56] [0, 0.64] [0.80, 1]  [0, 0.64] [0, 0.30] 

Table 18.  System of IF-THEN rules synthesized using the genetic and neural algorithm 

Rule 
IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  

 
    

Genetic Neural Genetic Neural Genetic Neural Genetic Neural 

1 S S S N N D D L N L N D 

2 S S S H N L D L or D N D N D 

3 S S I N N D N L N L N L 

4 S S I H N L N L N D N L 

5 S I S N N D D L N L N L or D 

6 S I S H N L D L or D N D N D 

7 S I I N N D N L N L N L 

8 S I I H N L N L N D N L 

9 I S S N D L or D L L L D 

10 I S S H L D L or D D L or D D 

11 I S I N D L L L 

12 I S I H L L D L or D L 

13 I I S N L or D D D L L L L or D 

14 I I S H L or D L D L or D D L or D D 

15 I I I N L or D D L L L 

16 I I I H L or D L L L or D D L or D L 
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The matrix of rules (terms combinations) weights, which 
corresponds to the resulting solution, is presented in Table 17. 
The resulting matrix of rules weights can be linguistically 
interpreted as (See Table 18): 
 the unique set of IF-THEN rules for outputs 1y  and 

3y ; 
 the set of the eight possible rules bases for output 

2y , which differ in the fuzzy terms describing 
output 2y  in rules 2, 6, 10 with overlapping 
weights; 

 the set of the four possible rules bases for output 4y , 
which differ in the fuzzy terms describing output 

4y  in rules 5 and 13 with overlapping weights. 
For output variables 41 yy ÷ , the root mean-squared 

errors take the values of: 1RMSE =0.37, 2RMSE =4.82, 

3RMSE =0.59, 4RMSE =1.28 after 50000 iterations of 
the genetic algorithm; 1RMSE =0.21, 2RMSE =3.17, 

3RMSE =0.25, 4RMSE =0.43 after 10000 iterations of 
the neuro-fuzzy network (250 min on Intel Core 2 Duo 
P7350 2.0 GHz).  

For heart diseases diagnosis, we obtain the average 
accuracy rates of 87% and 95% after genetic and neural 
training, respectively. 

8. Conclusion 
This paper proposes a method based on fuzzy relational 

equations to identify MIMO systems. In experimental data 
analysis rules generation combined with solving fuzzy 
relational equations is a promising technique to restore and 
identify the relational matrix together with some rules base 
explanation. The method proposed is focused on generating 
accurate and interpretable fuzzy rule-based systems. The 
obtained results depend on the randomness of the training 
data initialization, e.g., on the generation of the training 
intervals during the execution. In some cases the model may 
have the highest rule performance only with the special test 
and training data partition, which is used to build and test the 
model.  

For the practical applications the initial and specified 
training intervals are derived directly from the problem. In 
this paper, the issue of adaptation of the resulting solution, 
while the samples of experimental data (training intervals) 
are changing, is considered. The genetically guided global 
optimization is augmented by more refined gradient-based 
adaptation mechanisms to provide the invariability of the 
generated fuzzy rule-based systems. Such an adaptive 
approach envisages the development of a hybrid genetic and 
neural algorithm for solving composite fuzzy relational 
equations. Using our new hybrid approach it is possible to 
avoid random effects caused by different partitions of 
training and test data by detecting a representative set of 
rules bases. 
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