
Abstract 

This paper proposes an approach for 
inverse problem solving based on the 
description of the interconnection 
between unobser-ved and observed 
parameters of an object with the 
help of fuzzy IF-THEN rules. The 
essence of the approach proposed 
consists in formulating and solving 
the optim-ization problems, which, 
on the one hand, find the roots of 
fuzzy logical equations, 
corresponding to IF-THEN rules, 
and on the other hand, tune the 
fuzzy model on the readily available 
experimental data. The genetic 
algorithms are proposed for the 
optimization problems solving. 

 
Index Terms— inverse problem, fuzzy IF-
THEN rules, fuzzy logical equations solving   

1. Introduction 

The wide class of the problems, arising in 
engineering, medicine, economics and other 
domains, belongs to the class of the so called 
inverse problems. The essence of the inverse 
problem consists in the following. The 
dependency Y=f(X) is known, which connects 
the vector X of the unobserved parameters with 
the vector Y of the observed parameters. It is 
necessary to ascertain the unknown values of 
the vector X through the known values of the 
vector Y. The typical representative of the 
inverse problem is the problem of medical and 
technical diagnosis, which amounts to the 
restoration and the identification of the 
unknown causes of the disease or the failure 
through the observed effects, i.e. the symptoms 
or the external signs of the failure. 

The classical theory of the inverse problems 
[11] envisages the possibility of description of 
the dependency Y=f(X) with the help of 
differential or other equations. In the cases, 
when it is impossible to obtain such equations, 
the dependency between unobserved and 
observed parameters can be modelled using the 
means of fuzzy sets theory [12, 13]: fuzzy 
relations and fuzzy IF-THEN rules. The 
analytical [1, 2, 6] and numerical [8 – 10] 
methods of solving the inverse problems of 
diagnosis on the basis of fuzzy relations and 
Zadeh’s compositional rule of inference are the 
most developed ones.  

 In this paper we propose an approach for 
solving inverse problem based on description of 
the dependency Y=f(X) with the help of fuzzy 
IF-THEN rules. These rules enable to consider 
complex combinations in cause-effect 
connections simpler and more naturally, which 
are difficult to model with fuzzy relations. For 
example, the expert interconnection of the 
unobserved and the observed parameters (causes 
and effects) in the fuel pipe diagnosis problem 
can look as follows: 

IF feed pressure is high and leakage is low 
and pipe resistance is low,  THEN delivery 
head is high and productivity is high.

This example has three input (unobserved) 
parameters and two output (observed) 
parameters. Each parameter is evaluated by the 
fuzzy term. The problem consists not only in 
solving system of fuzzy logical equations, which 
correspond to IF-THEN rules, but also in 
selection of such forms of the fuzzy terms 
membership functions and such weights of the 
fuzzy IF – THEN rules, which provide maximal 
proximity between model and real results of 
diagnosis.  

The essence of the proposed approach consists 
in formulating and solving the optimization 
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problems, which, on the one hand, find the roots 
of fuzzy logical equations, corresponding to IF-
THEN rules, and, on the other hand, tune the 
fuzzy model on the readily available 
experimental data. The genetic algorithms are 
proposed for the formulated optimization 
problems solving 

2. Fuzzy Model of the Object 

Inputs–outputs connection can be represented 
with use of expert matrix of knowledge (see 
Table 1) [12]. The fuzzy knowledge base below 
corresponds to this matrix: 

 
Table 1: Fuzzy knowledge base 

IF 1x = 11a and 2x = 21a … and nx = 1na
THEN 1y = 11b and 2y = 21b … and my = 1mb
with weight 1w ,
IF 1x = 12a and 2x = 22a … and nx = 2na
THEN 1y = 12b and 2y = 22b … and my = 2mb
with weight 2w ,

…
IF 1x = Ka1 and 2x = Ka2 … and nx = nKa
THEN 1y = Kb1 and 2y = Kb2 … and my = mKb
with weight Kw , (1) 
 
where ila is a fuzzy term for variable ix
evaluation in the rule with number l ; jlb is a 
fuzzy term for variable jy evaluation in the 
rule with number l ; lw is a rule weight, i.e. a 
number in the range [0, 1], characterizing the 
subjective measure of confidence of an expert 
relative to the statement with number l ; K is the 
number of fuzzy rules.  

The problem of inverse logical inference is set 
in the following way: it is necessary to restore 
and identify the values of the input parameters 

),...,,( **
2

*
1 nxxx through the values of the 

observed output parameters ),...,,( **
2

*
1 myyy .

The restoration of the inputs amounts to the 
solution of the system of fuzzy logical 
equations, which is derived from relation (1): 
 

)()...()( 12111 21 n
aaa xxx nµµµ ∧∧ =

))()...()(( 12111 211 m
bbb yyyw mµµµ ∧∧⋅

)()...()( 22212 21 n
aaa xxx nµµµ ∧∧ =

))()...()(( 22212 212 m
bbb yyyw mµµµ ∧∧⋅

… … … …
)()...()( 21 21 n

aaa xxx nKKK µµµ ∧∧ =

))()...()(( 21 21 m
bbb

K yyyw mKKK µµµ ∧∧⋅ .
(2) 

Here ( )i
a xilµ is a membership function of a 

variable ix to the fuzzy term ila ; ( )j
b yjlµ is a 

membership function of a variable jy to the 
fuzzy term jlb .
Taking into account the fact that operation ∧ is 
replaced by min in fuzzy set theory [13], system 
(2) is rewritten in the form 
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=
, Kl ,1= , (3) 

where ),( Ywl
Blµ is the measure of the effects 

combination significance in the rule number l .

The use of fuzzy logical equations provides for 
the presence of the fuzzy terms membership 
functions included in the knowledge base. We 
use a bell-shaped membership function model of 
variable u to arbitrary term T in the form [7]: 

 ( ) ,

1

1
2






 −

+

=

σ
β

µ
u

uT (4)  

where β is a coordinate of function maximum, 

1)( =βµT ; σ is a parameter of concentration. 
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Correlations (3) and (4) define the generalized 
fuzzy model of an object as follows:  

 ),,,,(),,( EE
B

CCY WYXF ΩΒ=ΩΒ µ (5)    
where ),...,,( 21 nxxxX = is the vector of input 
variables; ),...,,( 21 myyyY = is the vector of 

output variables; Bµ = ),...,,( 21 KBBB µµµ is 
the vector of effects combinations significances 
measures in the IF–THEN rules; 

),...,,( 21 KwwwW = is the vector of  fuzzy rules 

weights; ),...,,( 21 NCCC
C βββ=Β and 

),...,,( 21 NCCC
C σσσ=Ω are the vectors of β -

and σ - parameters for input variables 
membership functions to the fuzzy terms 

1C , 2C , … , NC ; ),...,,( 21 MEEE
E βββ=Β

and ),...,,( 21 MEEE
E σσσ=Ω are the vectors 

of β - and σ - parameters for output variables 
membership functions to the fuzzy 
terms 1E , 2E , … , ME ; N is the total number of 
fuzzy terms for input variables; M is the total 
number of fuzzy terms for output variables; YF
is the operator of inputs – outputs connection, 
corresponding to formulae (3), (4). 

3.  Solving Fuzzy Logical Equations 

Following the approach, proposed in [8 – 10], 
the problem of solving system of fuzzy logical 
equations (3) is formulated as follows. Vector 

Cµ =( NCCC µµµ ,...,, 21 ) of the membership 
degrees of the inputs to fuzzy terms 

1C , 2C , … , NC , should be found which 

satisfies the constraints ]1,0[∈kCµ , and also 
provides the least distance between model and 
observed measures of effects combinations 
significances, that is between the left and the 
right parts of each system equation (3): 

 

F = [ ] min
1

2

n1,i
)()(min

C
lil

K

l

B
i

a Yx
µ

µµ =







−∑

= =
. (6)  

 
In accordance with [1, 2, 6], in the general case 
system (3) has a solution set )( BS µ , which is 
completely characterized by the unique minimal 

solution Cµ and the set of maximal solutions 

)(* BS µ =




 = TtC

t ,1,µ :

)( BS µ = U
*

,
S

C
t

C
C
t ∈







µ

µµ . (7) 

Here Cµ =( NCCC µµµ ,...,, 21 ) and 

C
tµ =( NC

t
C
t

C
t µµµ ,...,, 21 ) are the vectors of the 

lower and upper bounds of the membership 
degrees of the inputs to the terms kC , where the 

union is taken over all )(* BC
t S µµ ∈ .

Formation of solution set (7) begins with the 
search for the null solution of optimization 
problem (6). As the null solution of 
optimization problem (6) we designate 

),...,,( 0000
21 NCCCC µµµµ = , where  kk CC µµ ≥0 ,

N1,k = . The modified vector of the effects 
combinations significances measures 

),...,,( 0000
21 KBBBB µµµµ = , which corresponds 

to the obtained null solution C
0µ , provides the 

analytical solvability of the system of fuzzy 
logical equations (3). Formation of the solution 
set )( 0

BS µ for the modified vector B
0µ is 

accomplished by exact analytical methods [1, 2, 
6] supported by the free software [6]. 

The real-coded genetic algorithm is used for the 
null solution finding [3 – 5]. We define the 
chromosome as the vector of real parameters 

kCµ , N1,k = . The multi-crossover operation 
[3] provides a more accurate adjusting direction 
for evolving offsprings that allows to 
systematically reduce the size of the search 
region. The non-uniform mutation whose action 
depends on the age of the population provides 
generation of the non-dominated solutions. We 
used the roulette wheel selection procedure 
giving priority to the best solutions. We choose 
criterion (6) as the fitness function. While 
performing the genetic algorithm the size of the 
population stays constant. That is why after 
crossover and mutation operations it is 
necessary to remove the chromosomes having 
the worst values of the fitness function from the 
obtained population. 
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4. Fuzzy Model Tuning 

It is assumed that the training data which is 
given in the form of L pairs of experimental data 
is known: pp YX ˆ,ˆ , Lp ,1= , where 

( )p
n

pp
p xxxX ˆ,...,ˆ,ˆˆ

21= and ( )p
m

pp
p yyyY ˆ,...,ˆ,ˆˆ

21=

are the vectors of the values of the input and 
output variables in the experiment number p. 

The essence of tuning of the fuzzy model (5) 
consists of finding such vector of fuzzy rules 
weights W and such vectors of membership 
functions parameters CΒ , CΩ , EΒ , EΩ ,
which provide the least distance between model 
and experimental vectors of the effects 
combinations significances measures: 

[ ]∑
=

=ΩΒ−ΩΒ
L

1p

2
EECCp min),,,ˆ(ˆ),,X̂( WYF p

B
Y µ

(8) 

The chromosome needed in the multi-crossover 
real-coded genetic algorithm for solving this 
optimization problem is defined as the vector of 
real parameters W, CΒ , CΩ , EΒ , EΩ . Fitness 
function is built on the basis of criterion (8). 

5. Computer Experiment 

The aim of the experiment consists of checking 
the performance of the above proposed models 
and algorithms with the help of the target 
“inputs – outputs” model. The target model 
were some analytical functions 1y = 1f ( 21, xx )
and 2y = 2f ( 21, xx ). These functions were 
approximated by the combined fuzzy knowledge 
base, and served simultaneously as training and 
testing data generator. The input values 
( 21, xx ), restored for each output combination 
( 21, yy ), were compared with the target level 
lines. 

The target model is given by the formulae:         
( ) ( ) ( ) ( ) ( )2151917179,02

10
1, 22112111 −−−−== zzzzxxfy ,

( ) 4.3, 12122 +−== yxxfy , where 
( ) ( )

39
9,29,2 2

2
2

1
1

−+−
=

xxz , ( ) ( )
41

1,31,3 2
2

2
1

2
−+−

=
xxz .

The target model is represented in Figure 1.   

The fuzzy IF-THEN rules correspond to this 
model (see Table 2). 

 

Figure 1:  «Inputs – outputs» model-generator 
 
Table 2: Fuzzy IF-THEN rules for target model 

Inputs Outputs Rule 
1x 2x 1y 2y

1 L L lA hA 
2 A L hL lH 
3 H L lA hA 
4 L A hL lH 
5 A A H L
6 H A hL lH 
7 L H lA hA 
8 A H hL lH 
9 H H lA hA 

In Table 2 the total number of the terms for the 
input and output variables consists of: 1C Low 
(L), 2C Average (A), 3C High (H) for 1x ,

4C (L), 5C (A), 6C (H) for 2x ; 1E =higher 
than Low (hL), 2E = lower than Average (lA), 

3E = High (H) for 1y ; 4E =Low (L), 5E =higher 
than Average (hA), 6E =lower than High (lH) 
for 2y .

Fuzzy logical equations take the following form: 

1Cµ ∧ 4Cµ = ⋅1w ( 2Eµ ∧ 5Eµ )
2Cµ ∧ 4Cµ = ⋅2w ( 1Eµ ∧ 6Eµ )
3Cµ ∧ 4Cµ = ⋅3w ( 2Eµ ∧ 5Eµ )
1Cµ ∧ 5Cµ = ⋅4w ( 1Eµ ∧ 6Eµ )
2Cµ ∧ 5Cµ = ⋅5w ( 3Eµ ∧ 4Eµ )
3Cµ ∧ 5Cµ = ⋅6w ( 1Eµ ∧ 6Eµ )
1Cµ ∧ 6Cµ = ⋅7w ( 2Eµ ∧ 5Eµ )
2Cµ ∧ 6Cµ = ⋅8w ( 1Eµ ∧ 6Eµ )
3Cµ ∧ 6Cµ = ⋅9w ( 2Eµ ∧ 5Eµ ).      (9) 

 

y

2x1x
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The parameters of the fuzzy model before 
(after) tuning are given in Tables 3, 4. The 
results of solving the inverse problem after 
tuning are shown in Figure 2. The same figure 
depicts the membership functions of the fuzzy 
terms for the input and output variables. 

 
Table 3: Rules weights 

Table 4: Membership functions parameters for 
the input and output variables fuzzy terms  

Figure 2:  Solution to the inverse problem  

Let the specific values of the output variables 
consists of *

1y =0.95 and *
2y =2.65. The degrees 

of membership of the outputs to the fuzzy terms 
61 EE ÷ for these values can be defined with the 

help of the membership functions in Figure 2 
)( *

11 yEµ =0.30; )( *
12 yEµ =0.94; )( *

13 yEµ =0.40; 

)( *
24 yEµ =0.36; )( *

25 yEµ =0.75; )( *
26 yEµ =0.32 

Taking into account the rules weights (Table 3), 
the vector of the effects combinations 
significances measures takes the following 
form: 

)( *YBµ =( =1Bµ 0.70; =2Bµ 0.29; =3Bµ 0.70;

=4Bµ 0.29; =5Bµ 0.36; =6Bµ 0.29; =7Bµ 0.70;

=8Bµ 0.29; =9Bµ 0.70). 

The null solution was obtained with the help of 
the genetic algorithm 

,8.0,3.0,9.0( 321
0000 ==== CCCC µµµµ

)7.0,3.0,7.0 654
000 === CCC µµµ ,

for which the modified vector of effects 
combinations significances measures 
corresponds  

,3.0,7.0,3.0,7.0( 4321
00000 ===== BBBBB µµµµµ

).7.0,3.0,7.0,3.0,3.0 98765
00000 ===== BBBBB µµµµµ

The optimization criterion (6) takes the value of 
F=0.0040.   
This modified vector allows us to use the 
implemented in MATLAB Fuzzy Relational 
Calculus Toolbox [6] for finding the solution set 

)( 0
BS µ . Using the standard solver solve_flse [6] 

we obtain the following results. The solution set 
)( 0

BS µ for the modified vector B
0µ is 

completely determined by the minimal solution 
Cµ =( 1Cµ =0.7, 2Cµ = 0.3, 3Cµ =0.7,  

4Cµ =0.7, 5Cµ =0.3, 6Cµ =0.7) 

and the two maximal solutions },{ 21
* CCS µµ=

C
1µ =( 1

1
C

µ =0.7, 2
1
Cµ =0.3, 3

1
C

µ =0.7, 

 4
1
Cµ =1.0, 5

1
Cµ =0.3, 6

1
C

µ =1.0); 
C
2µ =( 1

2
C

µ =1.0, 2
2
C

µ =0.3, 3
2
C

µ =1.0, 
4

2
C

µ =0.7, 5
2
C

µ =0.3, 6
2
C

µ =0.7). 

Thus the solution of the system (9) of fuzzy 
logical equations can be represented in the form 
of intervals: 

)( ES µ ={ 1Cµ =0.7, 2Cµ =0.3, 3Cµ =0.7, 

 4Cµ ∈ [0.7, 1.0], 5Cµ =0.3, 6Cµ ∈ [0.7, 1.0]}  

U { 1Cµ ∈ [0.7, 1.0], 2Cµ =0.3, 3Cµ ∈ [0.7, 1.0],  

 4Cµ =0.7, 5Cµ =0.3, 6Cµ =0.7}.             (10) 

The intervals of the values of the input variable 
for each interval in solution (10) can be defined 
with the help of the membership functions in 
Figure 2:  

*
1x =0.3 or *

1x ∈ [0, 0.3]  for 1C ;
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*
1x =1.8 or *

1x =4.3 for 2C ;
*
1x =5.7 or *

1x ∈ [5.7, 6.0]  for 3C ;
*
2x ∈ [0, 0.3] or *

2x =0.3  for 4C ;
*
2x =1.7 or *

2x =4.4 for 5C ;
*
2x ∈ [5.7, 6.0] or *

2x =5.7  for 6C .

The restoration of the input set for *
1y =0.95 and 

*
2y =2.65 is shown in Figure 2. The values of the 

membership degrees of the inputs to fuzzy terms 
61 CC ÷ are marked. The comparison of the 

target and restored level lines for *
1y =0.95 and 

*
2y =2.65 is shown in Figure 3. 

a)                                                    b) 
Figure 3: Comparison of the target (а) and 
restored (b) level lines for *

1y (__) and *
2y (---) 

6. Example of Technical Diagnosis 
We shall consider faults causes diagnosis of the 
hydraulic elevator (for dump truck body, 
excavator ladle etc.). Input parameters are 
(variation ranges are indicated in parentheses):  

1x – engine speed (30–50 r/s); 2x – inlet 
pressure  (0,02–0,15 kg/cm2); 3x – clearance of 
the feed change gear (0.1–0.3 mm); 4x – oil 
leakage (0.5–2.0 cm 3/min). Output parameters 
of the hydro elevator are:  1y – productivity 
(17–22 l/min); 2y – force main pressure (13–24 
kg/cm2); 3y – consumed power (2.1–3.0 kw); 

4y – suction conduit pressure (0.5–1.0 kg/cm2).  

The IF-THEN rules are used for hydro elevator 
diagnosis (see Table 5). 

Table 5: Fuzzy rules for hydroelevator diagnosis 
Inputs Outputs 

1x 2x 3x 4x 1y 2y 3y 4y
1 D D D I D D D I
2 D I D D D D I D
3 I D D I D I D I
4 I D D D I I D D
5 I I D I D I I D
6 I I I D I D I I
7 I I I I D D I I

In Table 5 the total number of the causes and 
effects consists of: 1C Decrease (D) and 2C
Increase (I) for 1x , 3C (D) and 4C (I) for 2x ,

5C (D) and 6C (I) for 3x , 7C (D) and 8C (I)
for 4x ; 1E (D) and 2E (I) for 1y , 3E (D) and 

4E (I) for 2y , 5E (D) and 6E (I) for 3y , 7E
(D) and 8E (I) for 4y .

Fuzzy logical equations take the following form:  

1Cµ ∧ 3Cµ ∧ 5Cµ ∧ 8Cµ = 1w ( 1Eµ ∧ 3Eµ ∧ 5Eµ ∧ 8Eµ )

1Cµ ∧ 4Cµ ∧ 5Cµ ∧ 7Cµ = 2w ( 1Eµ ∧ 3Eµ ∧ 6Eµ ∧ 7Eµ )

2Cµ ∧ 3Cµ ∧ 5Cµ ∧ 8Cµ = 3w ( 1Eµ ∧ 4Eµ ∧ 5Eµ ∧ 8Eµ )

2Cµ ∧ 3Cµ ∧ 5Cµ ∧ 7Cµ = 4w ( 2Eµ ∧ 4Eµ ∧ 5Eµ ∧ 7Eµ )

2Cµ ∧ 4Cµ ∧ 5Cµ ∧ 8Cµ = 5w ( 1Eµ ∧ 4Eµ ∧ 6Eµ ∧ 7Eµ )

2Cµ ∧ 4Cµ ∧ 6Cµ ∧ 7Cµ = 6w ( 2Eµ ∧ 3Eµ ∧ 6Eµ ∧ 8Eµ )

2Cµ ∧ 4Cµ ∧ 6Cµ ∧ 8Cµ = 7w ( 1Eµ ∧ 3Eµ ∧ 6Eµ ∧ 8Eµ )

(11) 
For the fuzzy model tuning we used the results 
of diagnosis for 340 hydroelevators. The results 
of the fuzzy model tuning are given in Tables 6, 
7 and Figure 4. 
 
Let us represent the vector of the observed 
parameters for a specific elevator: *Y =( *

1y =18 

l/min; *
2y =21.5 kg/cm2; *

3y =2.35 kw; *
4y =0.8 

kg/cm2). The degrees of membership of the 
outputs to the effects 81 EE ÷ for these values 
can be defined with the help of the membership 
functions in Figure 4,b:  
 

Table 6: Parameters of the membership 
functions for the causes and effects fuzzy terms 

Table 7: Rules weights  
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a)                                    b) 
Figure 4: Membership functions of the causes 
(a) and effects (b) fuzzy terms after tuning 

 

)( *
11 yEµ =0.87; )( *

12 yEµ =0.26; )( *
23 yEµ =0.14; 

)( *
24 yEµ =0.86; )( *

35 yEµ =0.81; )( *
36 yEµ =0.41; 

)( *
47 yEµ =0.42; )( *

48 yEµ =0.80. 

Taking into account the rules weights (Table 7), 
the vector of the effects combinations 
significances measures takes the following 
form: 

)( *YBµ =( =1Bµ 0.11; =2Bµ 0.09; =3Bµ 0.80; 

=4Bµ 0.25; =5Bµ 0.40; =6Bµ 0.13; =7Bµ 0.07). 

The null solution was obtained with the help of 
the genetic algorithm  

,4.0,0.1,9.0,1.0( 4321
00000 ===== CCCCC µµµµµ

),9.0,25.0,1.0,8.0 8765
0000 ==== CCCC µµµµ

for which the modified vector of effects 
combinations significances measures 
corresponds 

,25.0,8.0,1.0,1.0( 4321
00000 ===== BBBBB µµµµµ

)1.0,1.0,4.0 765
000 === BBB µµµ .

The optimization criterion (6) takes the value of  
F=0.0020.   

Using the standard solver solve_flse [6] we 
obtain the following results. The solution set 

)( 0
BS µ for the modified vector B

0µ is 
completely determined by the minimal solution 

Cµ =( 1Cµ =0.1, 2Cµ =0.8, 3Cµ =0.8, 4Cµ =0.4,  

5Cµ =0.8, 6Cµ =0.1, 7Cµ =0.25, 8Cµ =0.8) 

and the four maximal solutions 

},,,{ 4321
* CCCCS µµµµ=
C
1µ =( 1

1
Cµ =0.1, 2

1
Cµ =0.8, 3

1
Cµ =1.0, 4

1
Cµ =0.4,  

5
1
Cµ =1.0, 6

1
Cµ =0.1, 7

1
Cµ =0.25, 8

1
Cµ =1.0) 

C
2µ =( 1

2
Cµ =0.1, 2

2
Cµ =1.0, 3

2
Cµ =0.8, 4

2
Cµ =0.4,  

5
2
Cµ =1.0, 6

2
Cµ =0.1, 7

2
Cµ =0.25, 8

2
Cµ =1.0)  

C
3µ =( 1

3
Cµ =0.1, 2

3
Cµ =1.0, 3

3
Cµ =1.0, 4

3
Cµ =0.4,  

5
3
Cµ =0.8, 6

3
Cµ =0.1, 7

3
Cµ =0.25, 8

3
Cµ =1.0) 

C
4µ =( 1

4
Cµ =0.1, 2

4
Cµ =1.0, 3

4
Cµ =1.0, 4

4
Cµ =0.4,  

5
4
Cµ =1.0, 6

4
Cµ =0.1, 7

4
Cµ =0.25, 8

4
Cµ =0.8). 

Thus the solution of the system (11) of fuzzy 
logical equations can be represented in the form 
of intervals 

)( BS µ ={ 1Cµ =0.1, 2Cµ =0.8, 3Cµ ∈[0.8, 1], 4Cµ =0.4,  

 5Cµ ∈[0.8, 1], 6Cµ =0.1, 7Cµ =0.25, 8Cµ ∈[0.8, 1]} 

U { 1Cµ =0.1, 2Cµ ∈[0.8, 1], 3Cµ =0.8, 4Cµ =0.4, 

5Cµ ∈[0.8, 1], 6Cµ =0.1, 7Cµ =0.25, 8Cµ ∈ [0.8, 1]}  

U { 1Cµ =0.1, 2Cµ ∈[0.8, 1], 3Cµ ∈[0.8, 1], 4Cµ =0.4, 

5Cµ =0.8, 6Cµ =0.1, 7Cµ =0.25, 8Cµ ∈[0.8, 1]}        

U { 1Cµ =0.1, 2Cµ ∈[0.8, 1], 3Cµ ∈[0.8, 1], 4Cµ =0.4, 

5Cµ ∈[0.8, 1], 6Cµ =0.1, 7Cµ =0.25, 8Cµ =0.8}. 
(12) 

The resulting solution (12) allows analyst to 
make the following conclusions. The causes 

2C , 3C , 5C and 8C are the causes of the 
observed elevator state, so that 2Cµ > 1Cµ ,

3Cµ > 4Cµ , 5Cµ > 6Cµ , 8Cµ > 7Cµ .

The intervals of the values of the input variables 
for these causes can be defined with the help of 
the membership functions in Figure 4,a:  

*
1x ∈ [47, 50] r/s for 2C ;
*
2x ∈ [0.020, 0.043] kg/cm2 for 3C ;
*
3x ∈ [0.100, 0.135] mm for 5C ;
*
4x ∈ [1.69, 2.00] cm3/min  for 8C .

Thus, the causes of the observed elevator state 
should be located and identified as the increase 
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of the engine speed to 47-50 r/s, the decrease of 
the inlet pressure from 0.043 to 0.020 kg/cm2,
the decrease of the feed change gear clearance 
to 100-135 mk, and the increase of the oil 
leakage to 1.69-2.00 cm3/min.   

To test the fuzzy model we used the results of 
diagnosis for 210 hydro elevators with different 
kinds of faults. The tuning algorithm efficiency 
characteristics for the testing data are given in 
Table 8. The fault causes diagnosis obtained an 
accuracy rate of 95% after 10000 iterations of 
the genetic algorithm (20 min on Celeron 700). 
 
Table 8: Tuning algorithm efficiency characteristics 

7. Conclusion 

This paper proposes an approach for inverse 
problem solving based on the description of the 
interconnection between unobserved and 
observed parameters of an object with the help 
of fuzzy IF-THEN rules. The restoration and 
identification of the inputs through the observed 
outputs is accomplished by way of solving 
system of fuzzy logical equations, which 
correspond to IF-THEN rules, and tuning the 
fuzzy model on the available experimental data. 
The approach proposed can find application not 
only in engineering but also in medicine, 
economics, military affairs, and other domains, 
in which the necessity of interpreting the 
experimental observations arises.  
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