

UDC 004.056

Y. Baryshev

DESIGN PATTERNS SECURITY ANALYSIS FOR BLOCKCHAIN-

BASED APPLICATIONS DEVELOPMENT WITH JAVASCRIPT

AND SOLIDITY

Vinnytsia National Technical University;

Анотація

Представлено аналіз процесу проектування застосунків із використанням технології блокчейн. Визначено

основні загрози застосункам, що базуються на технології блокчейн. Наведено аналіз шаблонів проектування

та можливості їх застосування при розробці застосунків на основі технології блокчейн.

Ключові слова: блокчейн, гешування, шаблоні проектування, атаки, протидії.

Abstract

The analysis of the application design process using the blockchain technology is presented. The main threats to the

applications based on blockchain technology are identified. An analysis of design patterns and their application

possibilities in the development of secure applications based on the blockchain technology is presented.

Keywords: blockchain, hashing, design patterns, attack, counteractions.

Introduction

Development of blockchain technology provides ability to implement data processing algorithms. In par-

ticular, Ethereum is one of the most advanced blockchains from this point of view. Its structure allows ap-

preciating brainchild security of blockchain technology [1], while it is supplemented by both native smart-

contract language Solidity [2] and Application Programming Interface (API) for several programming lan-

guages, in particular web3.js for JavaScript [3]. This encourages development of sophisticated blockchain-

based software. However complexity of an application causes development complexity increasing and the

latter one causes programming errors. One should bear in mind, that blockchain technology utilization usual-

ly is caused by increased security demands for the designed software product. Recent research results pre-

sented in works [4, 5] show imperfection of made design solutions for the most well-known blockchains

comparatively to "ideal" cryptographic algorithms. It should ring the bell for the cybersecurity specialists

regardless of the fact, that possible attacks are more theoretical, than practical ones, because theoretical at-

tack possibility would be powered by particular design flaws and programming errors.

Design patterns are utilized for complexity management in case of "common" desktop or web applica-

tions development. Thus their usage is to be considered for blockchain-based application development focus-

ing on security provided by these patterns.

The research goal is to reduce complexity of blockchain-based application development without security

measures losses by the usage of design patterns.

To reach the goal the following tasks are to be solved:

- analyze blockchain-based applications security;

- design patterns comparative analysis according to the criteria;

- develop recommendations towards design patterns implementation.

Blockchain-based Applications Threats Analysis and Their Counteractions Development

Before analysis of the application development process one should consider design flaws, which had been

committed during blockchain development, and thus shouldn't be magnified by application design flaws. The

focus of the work was set mostly on Ethereum blockchain as one of the most advanced from the application

development point of view, and Bitcoin as the most well-known and widely used one. The abovementioned

security analysis results [4] showed similarities between vulnerable to generic multicollision attacks Merkle-

Damgård hash construction and blockchain structure despite Ethereum utilizes Keccak hash function [1],

which is implementation of sponge hash construction. The point is that Ethereum and Bitcoin implements

block connection in the way stated by Merkle-Damgård construction and thus while the very hash function

(Keccack in case of Ethereum) isn't an object of the attack, the block chaining structure is similar to this con-

struction [4]. Moreover the analysis showed, that the transaction hashes within the block are computed using

Merkle tree construction, which could be object of the attack proposed in [6]. Several other mistakes were

revealed in [5], the most devastating of which is usage of 160 bit addresses, while public key consists of 256

bits. Thus even brute-force preimage attack complexity is 2
96

 (≈10
28,8

) times reduced [5]. The effect of these

flaws could be reduced by implementation of techniques proposed in [7] and storing results within block-

chain, but it would result in doubling "blockchaining" (i.e. application data protection) and thus causing in-

creased resources consumption by the application, which is undesirable in the most cases, because of the

resources limit and high cost of data storing on the blockchain side (which is implemented by the all block-

chain nodes). Therefore the "cryptographic" flaws couldn't be fixed by design patterns in the most cases.

However these attacks complexity allows talking about their theoretical implementation, because nowadays

from the practical point of view ones implementation couldn't be performed in reasonable time duration [4].

Other threats of application were analyzed such as different DoS attacks according to the classification

proposed in [8]. The analysis results shows, that DoS avoiding could be performed by implementation of

central/integrating element of an application within blockchain, which is robust to such kinds of attacks.

Attacks on the database analysis showed, that combination of the critical data storing at blockchain with

multilayer access proposed in [9] would solve most of possible security issues.

Design Patterns Comparative Analysis and Recommendations

Blockchain-based application usually consists of two major parts: actually blockchain part, i.e. smart-

contract written using Solidity [2] for Ethereum blockchain, and user interface written using high-level lan-

guage such as JavaScript utilizing API [3]. Consequently the analysis was performed bearing in mind these

parts. The known software design patterns could be divided into three groups [10]:

- creational;

- structural;

- behavioral.

All design patterns were analyzed according to the abovementioned security analysis results and practical

use-cases. The generic design patterns [10, 11] were presented. Results of analysis and yielded recommenda-

tions are presented in table 1 [10, 11].

Table 1 – Design patterns and usage recommendation

Design pattern Description Usage recommendation

Creational patterns

Factory Generates an instance for the client

without providing any instance logic

Contract deployment, blockchain one-

time usage service instance creation

Factory method Delegates the instantiation logic to child

classes

Custom parameters contracts deployment

Abstract Factory Factory of other factories Multiple blockchain interaction instances

creation

Builder Creation of particular objects with several

parameters avoiding constructors replica-

tion

Contract with several parameters creation

(multisig for instance)

Prototype Clones object Only JS part usage/Avoiding for Solidity

Singleton Ensures that only one object of a

particular class is ever created

ERC721 and other unique tokens and

contracts

Structural patterns

Adapter Wrap an otherwise incompatible objects For interfaces creation with already dep-

loyed contract

Bridge Compose object, while implementation

details are delegated to another object

with a separate inheritance hierarchy

User interface creation/Avoiding for

Solidity

Composite Lets clients treat the individual objects in

a uniform manner

Different similar contract interaction

(ERC20 tokens for instance)

Decorator Allows dynamically change the behavior

of an object at runtime by wrapping them

in an object of a decorator

Avoid

Facade Provides a simplified interface to a

complex subsystem

During integration of sophisticated appli-

cation, different contracts interaction

Continuation of Table 1

Design pattern Description Usage recommendation

Flyweight Shares as much as possible with similar

objects

Wise and restrained contracts variables

implementation

Proxy Class represents the functionality of

another class

For security implementation and com-

plexity management

Behavioral Design Patterns

Chain of Responsibility Request enters from one end and keeps

going from object to object till it finds the

suitable handler

Only for JS part

Iterator Presents a way to access the elements of

an object without exposing the underlying

presentation

Only for JS part/Too expensive for Solidi-

ty implementation

Mediator Adds a third party object to control the

interaction between two objects

Escrow creation

Memento Storing and retrieving current state of the

object

Already implemented within blockchain

Observer Monitoring state changes Monitoring contract counterparties activi-

ty to notify user/other contract

Visitor Separating an algorithm from an object

structure on which it operates

Contract interaction

Strategy Allows to switch the algorithm or strategy

based upon the situation

Avoid

State Lets change the behavior of a class when

the state changes

Implements contracts with "stages" of

their existence

Template Define carcass of implementation

workflow

Avoid

The cases, which recommend avoiding usage of certain patterns, don't mean these patterns inefficiency in

general, but merely seemed to cause security issues at certain circumstances during blockchain application

development.

Conclusion

Performed analysis of blockchain-based application development shows increased requirements to their

security. The instances of such threats were presented for cases of privacy, integrity and availability viola-

tion. It was determined, that some privacy issues, those had arisen because imperfection of the blockchain

technology implementation, are nearly impossible to fix. However, certain counteractions were proposed for

the all abovementioned attack vectors.

Design patterns analysis shows, that the most part of well-known patterns could be used during block-

chain-based application development.

REFERENCES

1. G.Wood Ethereum: A Secure Decentralised Generalised Transaction Ledger, 32 p. URL:

http://gavwood.com/paper.pdf (accessed 10.03.2019)

2. Solidity: Language Documentation. URL:

https://solidity.readthedocs.io/en/v0.5.5/index.html#language-documentation (accessed 10.03.2019)

3. web3.js - Ethereum JavaScript API. URL: https://web3js.readthedocs.io/en/1.0/ (accessed 10.03.2019)

4. K. Halunen, V. Vallivaara, A. Karinsalo. On the Similarities Between Blockchains and Merkle-

Damgård Hash Functions // Proceedings of IEEE 18th International Conference on Software Quality,

Reliability, and Security Companion, 2018, p. 129-134.

5. Баришев Ю. В. Аналіз стійкості технології блокчейн на прикладі реалізацій Bitcoin та Ethereum

// XLVII Науково-технічна конференція підрозділів Вінницького національного технічного

університету, Вінниця, 2018, 3 с. URL:

http://ir.lib.vntu.edu.ua/bitstream/handle/123456789/20535/4351.pdf?sequence=3 (дата звернення

10.03.2019).

6. J. J. Hoch, A. Shamir. Breaking the ICE – Finding Multicollisions in Iterative Concatenated and Ex-

panded (ICE) Hash Functions // International Workshop on Fast Software Encryption, 2006, p. 179-194.

URL: https://link.springer.com/content/pdf/10.1007%2F11799313_12.pdf (accessed 10.03.2019).

7. V. Luzhetskyi, Y. Baryshev. Methods of generic attacks infeasibility increasing for hash functions //

Proceedings IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing

Systems (IDAACS), Berlin, 2013, p. 661-664.

8. O. Voitovych, Y. Baryshev, E. Kolibabchuk, L. Kupershtein. Investigation of simple Denial-of-Service

attacks // Problems of Infocommunications Science and Technology (PIC S&T), Kharkiv, 2016. p. 145-148.

9. O. Voitovych, L. Kupershtein, V. Lukichov, I. Mikityuk. Multilayer Access for Database Protection //

International Scientific-Practical Conference Problems of Infocommunications. Science and Technology

(PIC S&T), Kharkiv, 2018, p. 474-478.

10. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented

Software. Toronto: Addison-Wesley, 1995, 397 p.

11. A. Kamran et al. Design Patterns for Humans! https://github.com/kamranahmedse/design-patterns-

for-humans/blob/master/README.md (accessed 10.03.2019)

Баришев Юрій Володимирович — канд. техн. наук, докторант кафедри захисту інформації, факультет інфо-

рмаційних технологій та комп’ютерної інженерії, Вінницький національний технічний університет, Вінниця, e-

mail: yuriy.baryshev@gmail.com

Baryshev Yurii V. — PhD. (Eng), Post-doctoral Student of Information Protection Department, Faculty of Informa-

tion Technologies and Computer Engineering, Vinnytsia National Technical University, Vinnytsia, email : yu-

riy.baryshev@gmail.com

