
Комп’ютерні Технології та Інтернет в Інформаційному Суспільстві

154

COMPUTER ASSISTED INTERVENTION (CAI) SPECIFIC

INTERFACES

Tinatin Mshvidobadze

Gori State University (Georgia)

Abstract
In this paper is shown development of open source software for computer assisted intervention

systems. Software libraries are written in C++, but are also accessible from Python, which provides a

convenient environment for rapid prototyping and interactive testing. The real-time support includes a

device interface and a task library. This paper describes a set of libraries, the Cisst libraries, developed

at the Johns Hopkins University to address some of the problems encountered when integrating devices

for CAI.

Key words: Cisst Vector, Real Time library, software development, LATEX documents.

Introduction
Software development at the Engineering Research Center for Computer Integrated

Surgical Systems and Technology (CISST ERC) initially focused on a library for Computer-

Integrated Surgery (CIS) application development, a common interface to different tracking

systems (CisTracker) and a library for Modular Robot Control (MRC). This software, now

called the Cisst package, and plan to make it available under an open source license at

www.cisst.org. The redesign effort has focused on portability, maintainability, real-time

compatibility and establishment of a testing framework.

A prime motivation for the development of the Cisst package has been increasing need to

implement novel control algorithms for new interventional systems, such as a robot for

minimally-invasive throat surgery [1]. This was not feasible with the original MRC library

because it relied on intelligent hardware to provide the low-level real-time control.

Cisst Vector (Foundation Library)

The CisstVector design was motivated by the desire for an efficient implementation of

fixed-size vectors, matrices and transformations that is suitable for real time use. Most other

vector libraries use dynamically allocated memory to store the vector elements, which is not

ideal for real-time computing. An even greater number use loops as the underlying

computational engine, which is not efficient for small vectors. Goal in the development of

CisstVector was to achieve high computational efficiency by using stack-allocated storage, and

by replacing loop mechanisms by templated engines, defined using recursive template meta

programming [2]. The templated definition enables us to define vectors of different sizes and

types and to apply the same operations to the vectors in a consistent form. It was identified a

small number of recursive engines that would provide all the operations that we would want to

perform on and between vectors.

A special feature of Cisst Vector is that it allows matrices to be stored in either row-or

column-major order, to accommodate both C-style and Fortran-style two dimensional arrays.

This provides convenience to C/C++ programmers, and at the same time integration with

existing numerical packages based on Fortran, such as C LAPACK. In addition, CisstVector

supports direct operations on subregions (slices) of vectors and matrices.

Cisst Interactive (Foundation Library)

The Cisst Interactive library provides the structure for embedding a Python-based

interactive shell, the Interactive Research Environment (IRE), into our C++ programs. The IRE

uses Windows for Python to provide the GUI features and relies on SWIG to automatically

Комп’ютерні Технології та Інтернет в Інформаційному Суспільстві

155

wrap the C++ libraries for Python (see Fig. 1). It also provides an object registry that enables the

Python and C++ software to share objects. This is especially useful when embedding the Python

interpreter in an application because it allows the user to modify C++ objects from the Python

interpreter.

Figure 1 – Interactive Research Environment (IRE)

Cisst Real Time (Real Time Support)

The Cisst Device Interface library defines the ddiDevice Interface class, which provides

the interface to the hardware.

The cisst Real Time library provides the features needed by software that must interact

with the physical world in a real-time manner. It was used RTAI (Real Time Application

Interface) with Linux as our real-time operating system because it is open source, appears to be

well supported and provides useful features such as sharing of data between real-time and non-

real-time code. It is created a Cisst OS Abstraction library so that our software can be portable

to other operating systems. It was desired a software architecture that allows any control

function to be transparently provided by a real-time software thread or by an external device.

 The ―time‖ indexing provides a snapshot of the history of the real-time system and can be

used for data collection as well as for debugging (i.e., to provide a ―flight data recorder‖

functionality). It also solves the mutual exclusion problem between the real-time and non-real-

time parts of the system (similar to a double-buffering technique).

Development Process
This development process uses the following open source tools .

1. CVS (Concurrent Versions System) [3] for source code and document control.

2.CMake for cross-platform builds. CMake generates the appropriate compilerspecific

makefiles/projects/workspaces/solutions from compiler-independent configuration files.

3. CppUnit and PyUnit to provide a unit testing framework for our C++ and Python

software, respectively.

4. Dart for automated, distributed builds. We routinely use ―Experimental‖ builds and

plan to add multiple ―Nightly‖ builds.

5. Doxygen to automatically extract (specially-formatted) documentation from the source

code and create class diagrams, dependency graphs and other design documentation in HTML

and LATEX formats.

6. SWIG to generate wrappers for interpreted languages such as Python.

7. CVSTrac to manage bug tracking and feature requests.

Комп’ютерні Технології та Інтернет в Інформаційному Суспільстві

156

It was created of requirements documents, high-level design documents and user

guides/tutorials. It was chosen to prepare these documents using LATEX[5] because it is text-

based and therefore more amenable to change control.

Build process includes ―compilation‖ of the LATEX documents into PDF and HTML

formats.

Conclusions

Even though computer assisted intervention systems exist in the research and commercial

communities, progress is hampered by the lack of open source software that can be certified for

clinical use.

This paper presents elements of the Cisst library that facilitate the development of safe

and efficient multitasking (multi-threaded) software, using concepts from component-based

software engineering to achieve loose coupling between tasks. Each task contains one or more

interfaces that are self-describing, in that they can dynamically provide a list of supported

commands and associated parameters. This library can facilitate the development of computer

assisted intervention (CAI) systems, with the ability to dynamically configure the application

software to use available hardware, such as diverse robots and other devices. [4]. The Cisst

software is available under an open source license. Currently, a subset of the software can be

downloaded from www.cisst.org/cisst. Additional elements will become available when the

implementation and documentation are sufficiently mature to support widespread dissemination

References

1. Simaan, N., Taylor, R., Flint, P.: High dexterity snake-like robotic slaves for minimally

invasive telesurgery of the upper airway. In: MICCAI. (2004)

2. Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7 (1995) 36–43

Reprinted in C++ Gems, ed. Stanley Lippman.

3. Fogel, K.: Open Source Development with CVS. Coriolis Open Press (1999).

4. B. Vagvolgyi, S. DiMaio, A. Deguet, P. Kazanzides, R. Kumar, C. Hasser, and R.

Taylor. The Surgical Assistant Workstation: a software framework for telesurgical robotics

research. In MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions,

Insight Journal:http://hdl.handle.net/1926/1466, Sep 2008.

