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Abstract

An algorithm is proposed for numerically solving the Lorentz mathematical model in the form of a
nonlinear autonomous system of ordinary third-order differential equations. This algorithm made it
possible to describe chaotic processes in the behavior of nonlinear dynamical systems based on a
compact subset of the phase space of a dynamical system in the form of an attractor.

AHoTAanisa

3anpononosano ancopumm uuUcenbHO2O pO36’A3KY Mamemamuuroi modeni Jlopenya, y euensoi
HeNIHIIHOI a8MOHOMHOI cucmemu 368UMAHUX OughepeHyianbHUX pieHAHb Mpemboeo NopsAoKy. Hanuil
aneopumm 003801UE ONUCAMU XAOMUYHI Npoyecu 6 NOBeOiHyi HeNHIUHUX OUHAMIYHUX CUCmeMax Ha
OCHOBI KOMRAKMHOI NIOMHONCUHU (hA308020 NPOCMOPY OUHAMIYHOT cucmeMu y 6ueisdl ampakmopa.

Introduction

A number of such dynamic systems as oscillations of a dissipative harmonic oscillator
with inertial nonlinearity [1], convective processes in a toroidal chamber [2], rotation of a water
wheel [3], etc., are quite accurately described by the well-known Lorenz mathematical model of
[4, 5] a third-order autonomous system of ordinary differential equations (ODE). This nonlinear
mathematical model is unstable (sensitive) to initial conditions and parameters, which leads to
the emergence of deterministic chaos [6], which complicates the forecast of future states of a
dynamic system. Due to the lack of accurate methods of solving nonlinear general-purpose
differential equations, the development of algorithms for their numerical solution becomes
relevant. It will allow us to analyze the behavior of dynamic systems in the form of
identification of compact subsets of phase space (attractors) [5, 6].

Research results
Dynamic systems that exhibit chaotic dynamics [6, 7], whose trajectories cannot be
described in terms of analytic functions, are described by the Lorentz mathematical model in the

form of a third-order ODE system. [8] for X = (X, %,,%;) € R*:
X =0(X—-%);
Xp = RX =X, = XX, @
Xg = X4X, —bX;,

where, for example, the model of convective processes in the toroidal chamber, the parameters:
X, — is an analog of the velocity component of the fluid flow; x,, x3 — distribution of liquid
temperature horizontally and vertically; R — the Rayleigh normalization number [9]; o0 — the
Prandtl number [10]; b — geometric parameters of the convective computation cell [11].

The solution of the ODE system (1) cannot be found analytically, but there is a
mathematical proof of its sole existence by imposing some conditions on the right-hand side,
such as the Picard-Lindeloff theorem, which requires that the function be Lipshitz-continuous
[7]. Under this condition and the existence of a single solution - as is the case with all practical
problems - it can be applied to find a numerical approximation of this solution using the
following algorithm implemented in the C ++ programming language [11].
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For this purpose, the type of system state is determined, the right part of the Lorentz ODE
system (1) is implemented and the Runge-Kut modular algorithm is used 4th order [8]:

typedef std::vector<double> state_type;
typedef runge_kuttad<state type> rk4_type;

struct lorenz {
const double sigma, R, b;
lorenz (const double sigma, const double R, const double b)
: sigma (sigma) , R(R), b(b) {}

void operator () (const state_type& X, state_type& dxdt, double t)

dxdt[0] = sigma *(x[1] -x[0]);
dxdt[l] = R*x[0] - x[I] - x[0] *x[2];
dxdt[2] = -b*x[2] + x[0] *X[l];

}

Implementation of the ODE system solution (1):

int main () {
const int steps = 5000;
const double dt = 0.01;

rk4_type stepper;

lorenz system (10.0, 28.0, 8.0/3.0);

state_type x (3, 1.0);

x[0] =10.0; // [louyaTkoBa ymoBa

for (size_t n =0; n < steps; ++n) {
stepper.do_step(system, x, n*dt, dt) ;
std: :cout << n*dt <<'’;
std::cout << x[0] << ' <<x[l] <<’

<< X[2] << std: :endl;
¥

1.

The figure shows a diagram of changing the parameters x;, X,, X3 for typical parameter
values 0=10, R=28 i b=10/3. For these values, the system exhibits a chaotic attractor.

According to Birkhoff's theorem [8], the Lorenz attractor contains recurrent trajectories,
and each recurrent motion is Poisson-stable [8]. This means that there will be any large values
of moments of time that the point of the system trajectory is found in any vicinity of its initial
position. Such a recurrent motion can be a cycle, but we cannot make a conclusion based on the
found trajectory return to some vicinity of the initial conditions.

As the calculations showed (see Fig. 1), by the Lorenz system, the dynamics of the
solutions' behavior at the attractor are quite complex - the recurrent trajectories contained in it
can, for example, be described by almost periodic solutions or have a more complex structure.
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Figure 1 — Diagram of changes in the parameters of a nonlinear dynamic system

Conclusions

For any solution of the Lorentz system, there is a point in time when the corresponding
phase trajectory is permanently immersed in the sphere of a fixed radius. Therefore, there is a
boundary set - the Lorentz attractor, which attract all the trajectories of the dynamical system
when t — oo Thus, the attractor determines the behavior of the solutions of system (1) over
large intervals of time.
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