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Abstract

In this chapter, the authors consider the need and relevance of cryptographic transformation of images and video files that are
transmitted from unmanned aircraft, airborne robots. The authors propose and consider new multifunctional matrix-algebraic models of
cryptographic image transformations, the variety of matrix models, including block parametrical and matrix affine permutation ciphers.
The authors show the advantages of the cryptographic models, such as adaptability to various formats, multi-functionality, ease of
implementation on matrix parallel structures, interchangeability of iterative procedures and matrix exponentiation madulo, ease of
selection, and control of cryptographic transformation parameters. The simulation results of the proposed algorithms and procedures
for the direct and inverse transformation of images with the aim of masking them during transmission are demonstrated and discussed
in this chapter. The authors evaluate the effectiveness and implementation reliability of matrix-algebraic models of cryptographic image
transformations.
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Introduction

In various types of industrial activity of a person, as well as in his daily life, photo, static and dynamic images of various formats, video
information about various surrounding objects are widely used today. A characteristic feature of modern digital video surveillance
systems that are used in unmanned aircraft, when analyzing the traffic situation, remote monitoring and demonstration of emergency
or other situations, in security activities, recording events in places of public events, is their distribution. Video information transmitted in
such systems, although it is not always secret and has a small period of actuality, is often undesirable for mass distribution and use. In
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Introduction

In various types of industrial activity of a person, as well as in his daily life, photo, static and dynamic images of various
formats, video information about various surrounding objects are widely used today. A characteristic feature of modern
digital video surveillance systems that are used in unmanned aircraft, when analyzing the fraffic situation, remote monitoring
and demonsiration of emergency or other situations, in security activities. recording events in places of public events, is their

Available In

Advances in Computational
Inteligence and Robotics

InfoSci-Books

distribution. Video information transmitted in such systems. although it is not always secret and has a small period of
actuality, is often undesirable for mass distribution and use. In the above-mentioned video systems, especially, such as
security, telemedicine and special-purpose systems, in intelligent robotic complexes, not only the tasks of perception,
accumulation and transmission of digital video images, but also their protection from unauthorized access, problems of
distortion, substitution of information and verification of the integrity of video files are actual tasks. Transmission of video
information over open communication channels, IP-networks, and widespread use of wireless technologies for these video
systems makes it possible to access information to unauthorized users. The above-mentioned tasks are of particular
relevance for mobile robotic and distributed systems implemented on the basis of embedded-lass IP modules, for which
there are limitations on the computation speed and free computational resource. The specificity of the above systems is that
in most cases the transmitted video information is relevant for a short period of time and the use of complex well-studied and
widely used cryptographic methods of protection, and especially those requiring significant computational resources. is not
required. The analysis showed that in embedded class systems. which include IP-modules of distributed or airmobile video
systems, standard cryptographic algorithms are limited, and more often, simpler cryptographic primitives and masking
methods are used. The masking information is meant the process of converting digital visual information to a noise-like view
in order to protect against unauthorized access, and unmasking is the process of reversely converting masked visual
information into restored (outgoing) by applying operations that are inverse to the direct masking procedures. Masking
fransformations are one of the alternatives to cryptographic methods of photo and video information protection. In the
authors' opinion, masking is a special case of some transformations. which are not always cryptographic standard ones
Besides. It is necessary to distinguish matrix masking, as transformation processes using matrixes and matrix procedures
follow only when matrices and operations on them appear in the corresponding models. In some cases, by cryptographic
masking. authors imply direct and inverse image transformations in which elements of cryptographic methods are used. and
the result of masking is the destruction of images to a form that is visually perceived as noise. We stand on the view that
reliable and cryptographic protection requires cryptographic procedures and matrix models that transform the original video
image into not only noise, but also to provide some important enfropy characteristics. A feature of entropy, as a generalized
concept of measurement of the uncertainty of processes, Is the fact that it reduces to some numerical values, which can be
operated as a relative value, and to characierize with it the quality of cryptographic transformations or masking. The entropy
of the uniform distribution law (white noise) is an idealization that is maximized and has the greatest disinformation action.
The use of masking as a method of protecting video information with a short time of relevance Is associated with solving the
problems of generating masked data structures. their presentation. exchange between the receiver and the transmitter. and
storing and unmasking information. Often, masking takes into account the specific structure of video frames (photos),
algorithms for their compression and transmission protecols. It is known that frames are represented as matrix arrays of
pixels, the values (intensities) of elements of which are displayed by digital codes, and therefore the matrix apparatus and
the operations for converting them are natural. The main types of images that need to be perceived, cryptographically
transformed and transmitted in intellectual robolic video surveillance subsystems are half-ione, binary and full-color images.
although many more and more hyper-spectral images are being used. The main format of digital images, which directly
stores the values of pixel intensities of images obtained from the video-matrix is a Bitmap Picture (BMP). providing storage of
images of various sizes and depths. Malrix operations and the matrices themselves are widely used for mathematical
modeling of various processes and systems. Matrices are the basic apparatus for most engineering and scientific
calculations. Computations over matrices. although laborious. are focused on parallel computing. on sianificant increases in
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ABSTRACT

In this chapter, the authors consider the need and relevance of cryptographic
transformation of images and video files that are transmitted from unmanned aircraft,
airborne robots. The authors propose and consider new multifunctional matrix-algebraic
models of cryptographic image transformations, the variety of matrix models, including
block parametrical and matrix affine permutation ciphers. The authors show the
advantages of the cryptographic models, such as adaptability to various formats, multi-
functionality, ease of implementation on matrix parallel structures, interchangeability
of iterative procedures and matrix exponentiation modulo, ease of selection, and control
of cryptographic transformation parameters. The simulation results of the proposed
algorithms and procedures for the direct and inverse transformation of images with
the aim of masking them during transmission are demonstrated and discussed in
this chapter. The authors evaluate the effectiveness and implementation reliability of
matrix-algebraic models of cryptographic image transformations.
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Matrix Models of Cryptographic Transformations of Video Images From Robotic Systems
INTRODUCTION

In various types of industrial activity of a person, as well as in his daily life, photo,
static and dynamic images of various formats, video information about various
surrounding objects are widely used today. A characteristic feature of modern digital
video surveillance systems that are used in unmanned aircraft, when analyzing
the traffic situation, remote monitoring and demonstration of emergency or other
situations, in security activities, recording events in places of public events, is
their distribution. Video information transmitted in such systems, although it is
not always secret and has a small period of actuality, is often undesirable for mass
distribution and use. In the above-mentioned video systems, especially, such as
security, telemedicine and special-purpose systems, in intelligent robotic complexes,
not only the tasks of perception, accumulation and transmission of digital video
images, but also their protection from unauthorized access, problems of distortion,
substitution of information and verification of the integrity of video files are actual
tasks. Transmission of video information over open communication channels, IP-
networks, and widespread use of wireless technologies for these video systems makes
it possible to access information to unauthorized users. The above-mentioned tasks
are of particular relevance for mobile robotic and distributed systems implemented
on the basis of embedded-class IP modules, for which there are limitations on the
computation speed and free computational resource. The specificity of the above
systems is that in most cases the transmitted video information is relevant for a short
period of time and the use of complex well-studied and widely used cryptographic
methods of protection, and especially those requiring significant computational
resources, is not required. The analysis showed that in embedded class systems,
which include IP-modules of distributed or airmobile video systems, standard
cryptographic algorithms are limited, and more often, simpler cryptographic primitives
and masking methods are used. The masking information is meant the process of
converting digital visual information to a noise-like view in order to protect against
unauthorized access, and unmasking is the process of reversely converting masked
visual information into restored (outgoing) by applying operations that are inverse to
the direct masking procedures. Masking transformations are one of the alternatives
to cryptographic methods of photo and video information protection. In the authors’
opinion, masking is a special case of some transformations, which are not always
cryptographic standard ones. Besides, it is necessary to distinguish matrix masking,
as transformation processes using matrixes and matrix procedures follow only when
matrices and operations on them appear in the corresponding models. In some cases,
by cryptographic masking, authors imply direct and inverse image transformations in
which elements of cryptographic methods are used, and the result of masking is the
destruction of images to a form that is visually perceived as noise. We stand on the
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view that reliable and cryptographic protection requires cryptographic procedures
and matrix models that transform the original video image into not only noise, but
also to provide some important entropy characteristics. A feature of entropy, as a
generalized concept of measurement of the uncertainty of processes, is the fact that
it reduces to some numerical values, which can be operated as a relative value, and
to characterize with it the quality of cryptographic transformations or masking.
The entropy of the uniform distribution law (white noise) is an idealization that
is maximized and has the greatest disinformation action. The use of masking as a
method of protecting video information with a short time of relevance is associated
with solving the problems of generating masked data structures, their presentation,
exchange between the receiver and the transmitter, and storing and unmasking
information. Often, masking takes into account the specific structure of video frames
(photos), algorithms for their compression and transmission protocols. Itis known that
frames are represented as matrix arrays of pixels, the values (intensities) of elements
of which are displayed by digital codes, and therefore the matrix apparatus and the
operations for converting them are natural. The main types of images that need to
be perceived, cryptographically transformed and transmitted in intellectual robotic
video surveillance subsystems are half-tone, binary and full-color images, although
many more and more hyper-spectral images are being used. The main format of
digital images, which directly stores the values of pixel intensities of images obtained
from the video-matrix is a Bitmap Picture (BMP), providing storage of images of
various sizes and depths. Matrix operations and the matrices themselves are widely
used for mathematical modeling of various processes and systems. Matrices are
the basic apparatus for most engineering and scientific calculations. Computations
over matrices, although laborious, are focused on parallel computing, on significant
increases in computational performance, and are a classic example and direction for
the further development of more intelligent computer architectures of parallel action.
The emerged multi-core processors, graphics accelerators, digital signal processing
(DSP) processors, structures on the FPGA, essentially support vector and matrix
calculations and increase the speed and performance of the latters. Therefore, it is
precisely for more modern hardware implementations that matrix models are ideally
suited for implementations of cryptographic or similar methods for transforming and
masking information objects in order to protect them during transmission. Matrix
algebra and its operations are well studied, they are structured, regular, and easily
mapped to hardware matrix structures that provide parallelization of computations,
increasing computational performance and efficiency. In addition, such structures
are more efficiently implemented using DSP or FPGA, which is important for
systems of embedded classes, especially small and mobile ones. The actual task
is to create such cryptographic procedures for direct and inverse transformation of
video information, which use fully matrix models and procedures that are easily
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mapped to the corresponding matrix equipment. At the same time ensuring their
simplicity, meeting the requirements of speed and computation performance while
ensuring the best entropy characteristics .

Review and Analysis of Publications and
Formulation of Problems and Challenges

The necessity of solving theoretical and practical tasks of information security
and achieving the necessary level of information protection for state, military,
commercial and private content caused the corresponding accelerated development
of cryptography and related new scientific disciplines. In the era of electronic
communications, the need to process and transmit specific text and graphic documents
(TGDs) in the form of digital, table data, drawings, charts, diagrams, signatures,
visas, resolutions, etc., has essentially increased, and the data are essentially 2D
arrays (images) of significant dimension. In addition, the sharing of new tasks in
which cryptographic transformations over multidimensional signals is required,
among which a variety of semi-tones, color multispectral images, 2-D, 3-D, and even
4-D arrays (Yemets, 2003; Khoroshko, 2003; Korkishko, 2003; Kovalchuk, 2009;
Rashkevich, 2009; Deergha, 2011; Han Shuihua, 2005; Chin-Chen, 2001) occupy
an important place. In recognition, identification, biometric, navigation monitoring
systems, robotics, intelligent management, when deciding, it is necessary to process
and transmit a large number of various images in encrypted form, for example,
fingerprints, photographs of persons, images of moving objects, iris eye retina, etc.
Expansion of the spectral range that is perceived by modern multisensory remote
sensing and monitoring systems has necessitated the processing of large arrays of
large-scale multi-spectral images. Since this information is often confidential, there
is an urgent need for cryptographic transformations to protect against unauthorized
access. Many TGDs contain restricted access information that should be reported
to tax and other government agencies, in a timely manner and in encrypted form,
transmitting over communication channels and providing only authorized access,
to certify their digital signatures. Authorized access many information resources
such as library, archival and book funds, scientific publications, patent documents,
which are formed in the process of activities of information actors, can be provided
with appropriate technologies of cryptography and measures with the issuance of
permits, certificates and access keys.

For such information security purposes, methods and tools for cryptographic
transformations (CTs) of information arrays or images (Yemets, 2003; Khoroshko,
2003; Korkishko, 2003; Kovalchuk, 2009; Rashkevich, 2009; Deergha, 2011; Han
Shuihua, 2005; Chin-Chen, 2001; Krasilenko, 2004; Krasilenko, 2006), procedures
and protocols for the formation of keys and their exchange ( Yemets, 2003; Krasilenko,
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2012; Krasilenko, 2008) are used. Among their great variety (Yemets, 2003;
Khoroshko, 2003; Korkishko, 2003; Kovalchuk, 2009; Rashkevich, 2009; Deergha,
2011; Han Shuihua, 2005; Chin-Chen, 2001; Krasilenko, 2004; Krasilenko, 2006)
most of them focused on sequential scalar processing of TGD blocks transformed
into digital formats, and only a small part is devoted to methods and algorithms
oriented on matrix models (Krasilenko, 2012; Krasilenko, 2012; Krasilenko, 2011;
Krasilenko,2009; Krasilenko, 2012; Krasilenko, 2013; Krasilenko, 2013; Krasilenko,
2014; Krasilenko, 2010) and matrix specialized algorithms and tools. At the same
time, the emergence of parallel algorithms, and especially matrix multiprocessor,
matrix linear-algebraic, specialized multi-core, parallel and matrix (image-type)
processors (Korkishko, 2003; Krasilenko, 2004) contributed to the reorientation
in the study of image CTs on these new tools and the creation and corresponding
models of matrix type (MT) (Krasilenko, 2012; Krasilenko, 2012; Krasilenko,
2011; Krasilenko, 2009). In addition, the urgency of the problem of creating new
high-performance models, algorithms, protocols for processing and cryptographic
transformations of images is confirmed by the significant increase in the number
of works devoted to encryption and decoding of images in recent years (Kovalchuk,
2009; Rashkevich, 2009; Deergha, 2011; Han Shuihua, 2005; Chin-Chen Chang,
2001; Krasilenko, 2012; Krasilenko, 2009; Krasilenko, 2012; Krasilenko, 2013;
Krasilenko, 2013; Krasilenko, 2014; Krasilenko, 2010; Krasilenko, 2016; Krasilenko,
2016; Krasilenko, 2016). That is why the search and research of new matrix models
(MM) of CT, improvement of existing matrix ciphers and means for their realization
are an actual strategic task.

Analysis of recent research and publications. The results of modeling the
processes of cryptographic transformations of images on the basis of the proposed
work by V.G. Krasilenko and the investigated matrix algorithms and models of
cryptographic protection show their advantages. For example in (Krasilenko, 2006;
Krasilenko, 2006) matrix algorithms and the implementation on the Delphi language
in CryptoFax program were considered. Ithas been shown that the developed methods
of permutations are resistant to the effects of disturbances and various distortions.
The disadvantage of the CryptoFax program was that the transformations did not
change the histogram of converted ciphered images. Therefore, in order to eliminate
this disadvantage and improve the stability of the algorithms of cryptographic
transformations of images, generalization of affine ciphers and their expansion
into matrix cases (Krasilenko, 2009) were proposed. Experiments in the MathCad
environment partially demonstrated the possibilities and advantages for practical
applications of matrix algorithms for cryptographic protection on the basis of more
generalized matrix affinity ciphers (MACs). In Krasilenko (2012) and Krasilenko
(2011) more generalized matrix algorithms for cryptographic transformations of
images and so-called matrix affine-permutation algorithms (MAPA) (Krasilenko,

174



Matrix Models of Cryptographic Transformations of Video Images From Robotic Systems

2012) based on modifications of known affine ciphers were proposed and modified.
The results of simulation (Krasilenko, 2012; Krasilenko, 2012; Krasilenko, 2011;
Krasilenko, 2009) of processes of cryptographic transformations of multi-gradation
and color images (Krasilenko, 2010) on the basis of such models and algorithms have
shown their significant advantages over traditional scalar affine asymmetric ciphers
such as: greater stability, increase in speed, the possibility of parallel computing
procedures and processes and implement them using parallel problem-specific tools,
matrix processors. In work (Krasilenko, 2011) on the basis of MACs the algorithm
and the procedure for creating adigital blind signature (DBS) is proposed on the TGD,
and the results of simulation of a developed and practically verified program for the
formation and verification of such DBS are presented. Such matrix cryptographic
models, algorithms and cryptographic systems based on them are better and more
effectively based on completely parallel matrix computing devices, since they are
described purely by mathematical matrix models, which significantly increase the
processing efficiency during transformations and reduces the time for their execution.

The results of modeling algorithms for creating a 2D key are also known
(Krasilenko, 2012; Krasilenko, 2008), the essence of which is the synthesis of known
protocols for creating and generating keys on the matrix case, and the formation
and description of these protocols using matrix models. Paper (Krasilenko, 2012)
is devoted to creation of DBS on TGD, but on the basis of other models of matrix
type. One of the main components of the most generalized matrix affine-permutation
ciphers or MAPA, proposed and investigated in paper (Krasilenko, 2012), is matrix
permutation model (MM_P), which has obvious simplicity. Further application and
improvement of matrix-type ciphers based on such MM_P is highlighted in papers
(Krasilenko, 2013; Krasilenko, 2013; Krasilenko, 2014; Krasilenko, 2016; Krasilenko,
2016). However, as shown in papers (Krasilenko, 2013; Krasilenko, 2014), the CPs
on their basis, without additional operations, do not modify histograms of images
or TGDs, and the proposed modified MM_Ps with decomposition of bit sections
eliminate this defect, although in some cases they require two vector keys (VK) in
addition to two matrix keys (MK). At the same time, for most of the above-mentioned
works, there is a common significant disadvantage, especially for work related to
MAC (Krasilenko, 2009; Krasilenko, 2010), MAPA (Krasilenko, 2009) and the
like (Krasilenko, 2012; Krasilenko, 2012; Krasilenko, 2011; Krasilenko, 2014;
Krasilenko, 2016; Krasilenko, 2016; Krasilenko, 2016), which requires the use of
at least two MK, if implemented in models MAC, MAPA, MT and multiplicative
and additive matrix components. But the kind of MK that is used is of two types:
in the form of random images (basically black and white 8-bit) for MAC and square
matrix of permutations for the implementation of MM_P and algorithms on them
(Krasilenko, 2013; Krasilenko, 2013; Krasilenko, 2014). The first kind is less
investigated. Therefore, the search for ways to improve the MAC and especially the
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multi-step MAC, MAPA (Krasilenko, 2012) in order to reduce the number of MKs
to one, while maintaining stability and other characteristics of the matrix models
(MM), their experimental verification on various images is a necessary task and
which is justified by the above survey of publications.

Formulation of the problem. It is necessary to further modify and improve
the well-known MACs with spectral decomposition for the CT over color images
in order to simplify, improve and to study the models that implement MAC in
different environments, to identify their specific features of specific applications
and expansion their functional capabilities. Testing the created models, carrying
out experiments with real images of different formats and dimensionalities allow
assessing their adequacy, characteristics, indicators and features.

Therefore, the purpose of this work is to study and modify such modifications and
enhancements of the MACs in the Mathcad software environment for the purpose
of their use in the CT over black-and-white and color images, including large-
scale and multi-spectral, in which the number of necessary matrix keys for these
transformations would be reduced to one, so-called main or basic, while retaining
the same functionality. One of the sub-tasks is an experimental verification of the
correctness and quality of the work of such MAC in their work with different types
and formats, image sizes to study their impact on indicators, characteristics of
ciphers, models and algorithms for their implementation.

PRESENTATION OF THE MAIN MATERIAL
AND RESEARCH RESULTS

Theoretical Foundations of Matrix Affine Ciphers

Let’s recall some of the simplest theoretical foundations of the matrix affine
ciphers (MAC). The encryption and decryption processes on the basis of the MAC
for the message of an arbitrary form and size of the matrix M and for the created
corresponding cryptogram C using cryptographic transformations (CT) described
by the matrix model (MM), which are expressed by the following matrix formulas
(Krasilenko, 2009):

C:(M®A+S); M =(C®AD+SD);
N N N N

where A and S — two keys (multiplicative and additive components) for encryption
in the form of matrices, AD and SD — decryption keys, moreover, AD —respectively,
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the multiplicative component of the matrix affine cipher, and SD —additive component
of the matrix affine cipher, N — matrix, all elements of which are equal to n (simple
large number), and components of all matrices are selected from the range 1+(n-1),
in addition, symbols % and -]t denote element-wise matrix multiplication and

matrix addition by modulo N.
To reduce the number of matrix keys, you can use the following formulas for
one-key MAC:

C =(M®A+AD); M = (C® AD+(-AD® AD));
N N N N N

in this case S= AD, SD= (-AD®AD).
Simulation Results of Matrix Affine Ciphers

Let’s consider the essence of MAC algorithms on the MM with spectral decomposition
basis. The offered modification of the MM MAC is essentially one matrix key
(MK) for the corresponding both multiplicative and additive direct and inverse
transformations that are components of one or multi-step MAC and implement
cryptographic procedures for black and white or for all spectral components of color
images. The idea is that the secret MK, which is selected or generated by known
methods in the form of pseudo-random black and white or multi-level image with
dimensions equal to the size of the input image. There is always, under the fulfillment
of some simple additional conditions, the inverse matrix key that we denote as MK,
and its elements are reversed by the corresponding modulo to the MK elements.
This idea and its explanation were proposed by Krasilenko V.G. and are covered
in our previous works (Krasilenko, 2009; Krasilenko, 2012), so here we note only
the fact that when using a simple number 257 as the modulo, the entire range of
0-255 graduations of the 8-bit image which are displaced in the range 1-256, will
have unambiguous inverse values in the same range of 1-256, and hence with their
inverse shift and in the range of 0-255, that is, have a similar 8-bit representation.
Before moving to some the new suggestions and improvements, let’s consider the
simulation results of the simplest MAC with only one multiplicative component,
which is a generalization of the scalar linear cipher to the matrix case. In the first
of a series MAC simulation experiments conducted with the Mathcad software, we
recreated the direct and inverse cryptographic processes over two different images
(C) (256x256) using the MK Key_GC and its associated inverse MKi Key_GD.
The Experimental results are shown in Fig. 1 and testify the correct and adequate
work of the models. The formulas used for transformations are shown in Fig. 1,
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especially in the scalar form, and those used for verification in the matrix form
(left in the 1** and 2™ rows - cryptograms, in the center are decoded images, they
are initial, in the right there are differences (zero) matrix). The inscriptions in the
Figure 1 are fuzzy and blurry.

Our second idea is to use the inverse MKi for the second step, namely the
additive component, for the direct transformation of the MAC, since the use of the
direct MK is primitive. Since the matrix SD is a matrix, all elements of which are
equal to (-1). And since, in essence, the MK and MK are secret and interconnected,
this leads to the need for the two parties to coordinate or formally create only one
MK in the process of creating and transmitting encrypted data. At the same time,
it is not desirable to apply the same MK when applying MAC for cryptographic
transformations of color images. Let’s move on to the application of the second idea
and its verification by encrypting and deciphering a color image, using each of its
components R, G, B of its MK, that is three random R, G, B components, equivalent

Figure 1. The simulation results of the processes of direct and inverse cryptographic
transformations over two images by the matrix affinity cipher: the formulas used
for the multiplicative component of the MAC, encrypted, decrypted and difference
matrixes
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to one MK in color format. Figure 2 shows one of the windows with the formulas
that were used to generate keys, direct and inverse to them in modulo 257, encrypt
and decrypt each R, G, B_pic component of C (600 x 549), three MK Key_C_ (R,
G, B) and Key_D_ (R, G, B) respectively.

Fig. 3 shows theresults of a MAC-based CT with only one MK for each component:
a color output image, MK (1 row, right), a cryptogram (2 rows, left) and a decoded
image. They testify to the correct operation of models for such modification of MAC.
We note here that the components of the CT are executed in elementary matrix
procedures of multiplication and addition, respectively, by modulo 257 and 256,
using practically one corresponding MK, since the inverse key MKi is essentially
an additive component of the MAC.

Figure 2. The Mathcad window with formulas for the CT over color image MAC
when using spectral components, but only one MK, which performs a multiplicative
direct transformation, and the inverse MKi - multiplicative, direct and inverse
additive transformations.
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Figure 3. Simulation results (fragment of interface window from Mathcad) of
processes of direct and inverse cryptographic transformations by matrix affinity
cipher: encryption image, matrix key (three-key set), crypto graph and decoded
image in color formats.
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Our third suggestion is that it is possible to create matrix keys from one main or
basic key for other or all spectral components, not even for color, but for multispectral
images or 3-D arrays. The use of scalar keys and procedures of elemental powering by
modulo each MK (even one agreed key!) gives the realization of one and multi-step
MAC (Krasilenko, 2011; Krasilenko, 2009; Krasilenko, 2012) with only one secret
MK, from which other MK are formed. Thus, our third experiment was to develop
models and create a procedure for generating a series of MKs, as derivatives from
one base in accordance with an agreed sequence of the numerical values that will be
taken as degrees in elemental powering by modulo and in an attempt to implement
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them on the basis of MAC images of different formats. The vector of scalar keys
with the dimension equal to the required number of matrix keys taking into account
the number of spectral components. This model experiment was performed on the
basis of formulas in a matrix form, some of which for sufficient understanding and
with allowance for restrictions are shown in Fig. 4. It shows a copy of the fragment
of the Mathcad window with formulas, procedures for forming a number of auxiliary
lines and matrix keys turned to them, and formulas for the multiplicative and additive
components of direct and inverse cryptographic transformations. As can be seen
from Fig. 4 a), the keys Key_Cw_Rz (w) are created by a recursive procedure of
elemental powering according to the modulus of the previous MK, starting from the
base, and the degree of these MK and their corresponding matrix of values depend
on the parameter w. If w = 0, then the matrix Key_Cw_Rz (0) is formed that equal
to matrix R_C2, all elements of which is “1”.

Some copies of the Mathcad windows of these MKs with dimensions of 600x549
corresponding to the sizes of one of a series of images for the CT are shown in Fig.
5 in digital format and correspond exactly to those MKs having the value w such
as 1, 2, 7. The agreed secret key is marked as Key_C_R. To display the MK in the
format of 8-bitimages, the displacement of the values of matrices MK by subtracting
from them the matrix R_C2. Note that the check shows the correctness of getting
all values of the elements of all matrix keys to the required range. The results of
this experiment using the prevailing and shown in Fig. 5 keys at the CT of the color
image and its spectral components with such an improved MAC are shown in Fig.
6, 7, 8, 9. They testify to the qualitative correct operation of MAC models when
using the correct keys and the impossibility of deciphering without the knowledge
of keys and the base (not shown for the wrong keys!).

We have also created and experimentally tested the subroutine, which allows in
accordance with the automatically determined sizes of input arrays or images, to
form the basis of the Diffie-Helman protocol, generalized on the matrix case, as
agreed upon by the parties of the secured data transmission MK (MKi), made on
the basis of the results considered in papers (Krasilenko, 2012; Krasilenko, 2008),
to verify them and generate keys derived from it. The Created keys are shown in
Fig. 10, and the results of the direct and inverse CT of these MKs of a specific color
image of the natural scene with fragments of the same intensity values using the
improved MAC are shown in Fig. 11, 12. Similar studies performed in (Krasilenko,
2012; Krasilenko, 2009; Krasilenko, 2012; Krasilenko, 2014) histogram and entropy
analyzes also showed good indexes of formed cryptograms and increase their entropy
to almost 90-95% of the maximum possible. In more detail, we discuss these issues
below and show some histograms.
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Figure 4. A fragment of Mathcad window with formulas, procedures of forming a
number of auxiliary direct and inverse matrix keys and formulas for the multiplicative
and additive components of direct and inverse cryptographic transformations: a)
the R-spectral component and b) the B-spectral component of the color image
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To test the influence of sizes, number of spectral components, statistical
characteristics, structural and texture peculiarities of images subject to cryptographic
transformations on some of the performance indicators of the proposed improved
MAUC, and especially on the histogram-entropy and visual characteristics of the
obtained cryptograms, we have performed a group of other experiments. The results
of these model experiments with other images, including video streams, large-scale
(640x1024) multispectral (100 spectral channels) images and their constituents,
text documents in color format, etc., are shown in Fig. 13-17 and also confirm
the correct functioning of the MAC with a reduced number of keys. They showed
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Figure 5. Results (Mathcad window interface) of the the base MK formation and
its elemental powers modulus as auxiliary keys with scalar keys
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that the duration of CT procedures does not exceed a few seconds, even for large-
scale (640x1024) color images when they are modeled in the Mathcad and the use
of medium-class PCs. Of course, the total duration of the required procedures is
influenced by both the number of spectral channels, the way of writing software
modules when emulating models, and the use of vector parallel computing, and
therefore making more detailed estimates inappropriate, and here we note only the
fact that our matrix models MAC with decomposition, have internal parallelism,
are more easily structurally reflected on hardware matrix means.

The visual analysis of the obtained cryptograms in the simulation and shown
in Fig. 13 - 17 shows the qualitative encryption and the correct operation of the
MM of direct and inverse cryptographic transformations on the basis of MAC in
all cases. For a more accurate analysis, we determined the entropy of images, keys
and cryptogram and their histograms were constructed using the Mathcad tools.
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Figure 6. The results of the direct and inverse CT MAC of R component of color
image with using the multiplicative and additive components of the MAC with only
one MK Key_Cw_R (2).
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Figure 7. The results of the direct and inverse CT MAC of G component of color
image with using the multiplicative and additive components of the MAC with only
one MK Key_Cw_R (7).
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Figure 8. The results of the direct and inverse CT MAC of B component of color
image with using the multiplicative and additive components of the MAC with only
one MK Key_Cw_R (5).
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They are shown in Fig. 18-19. From the drawings it can be seen that despite the
very specific histograms of the composite images, the histograms of the components
of the cryptogram have changed significantly, and do not allow them to guess, as
they are, to recognize the possible appearance of the image or read the message or
understand the TGD.

Toevaluate the quality of encrypted images or documents, we also used, developed
and covered in paper (Krasilenko, 2011) a subroutine in MathCad, which allows to
calculate the average entropy by 1 pixel of specific images. As shown in Fig. 18-19
and with histogram distributions R, G, B components of explicit color image and
confirmed by the definition of entropy, the entropy of the initial explicitimage, namely
its 8-bit components, is within 3-4 bits per pixel, and the entropy of the cryptogram
(its components) for various experiments fluctuated within 7.5-7.8 bits per pixel,
which is very close to the maximum possible value of 8. Similar values of entropy
also have 8-bit components of MK, see Fig. 18. Note, that the comparison (from
Figure 19) of histograms and entropy of the components of cryptograms obtained
after multiplicative and multiplicative with subsequent additive transformations,
allows us to conclude that they are insignificant. We also found that the multichannel
MAC-based CT practically improves the histogram-entropy characteristics if the base
agreed key is correctly selected or generated, meets the necessary requirements, and is
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Figure 9. Results of the direct and inverse CT MAC of color image with using the
multiplicative and additive components of the cipher for spectral components
transformation with only derivatives from the base MK and parametric scalar keys
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also close to the maximum possible entropy. The greater the entropy of cryptograms,
the greater the degree of uncertainty of the corresponding image and the more
difficult it is to attack this algorithm. The modeling established by the fact that all
derivative keys have the required histogram distribution, which is practically close
to the uniform distribution, and therefore they are close to the maximum entropy.
This allows even by the visual appearance of the histogram to evaluate the quality
of both keys and cryptogram.

We note that the use of spectral decomposition and recursive procedures for
forming a set of MK, the consistency between the sizes of matrices, displacements of
the ranges of values of matrix elements make possible to use for the CT on the basis
of the improved MAC single secret matrix key, which can be easily represented as
image. And having only one such MK it is possible to implement all the necessary
procedures for specific applications and for different types of data, reliable CT
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Figure 10. View of one of the basic matrix keys (Key_OC), the inverse MKi
(Key_OD), auxiliary (Key_Cw_R (5)) with parameter 5 and the verifying matrix
(Ver_O_CD) formed in accordance with the selected parameters and the dimension
of the encrypted images.

Key OC Key OD

Ver_O0_CD-

[ 3]
wn

5-0.8 Key Co_R(5)

procedures of MAC. All the experiments performed and the results presented here
have confirmed the correct work of the proposed models and their modifications,
the convenience of their adaptation to the size of the images or their fragments-
blocks for cryptographic transformations, the convenience and ease of choosing
the necessary keys. Some effective procedures, secret key negotiation protocols
and their exchange, updates, were partly considered in papers (Krasilenko, 2012;
Krasilenko, 2008) for some more general types.

The section conclusions: Based on the review and analysis of publications,
the prospects and necessity of further research and improvement of matrix affine
ciphers and their derivatives have been substantiated. The ways of perfection are
proposed and the results of the simulation of the matrix affine advanced ciphers for
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Figure 11. Colored cryptograms obtained after multiplicative (left upper row),
multiplicative and additive (right in the upper row) of direct (encryption) and
inverse transformations (decoding): additive (on the left in the bottom row) and
multiplicative (decoded on the right in bottom row).

R_pic_ CoM,G_pic CoM,B_pic CoM  R_pic COMA ,G_pic CoMA B_pic CoMA

R_pic_DoA G_pic_ DoA B_pic_ DoA R_pic_D®AM ,G_pic_ DoAM ,B_pic_DoAN

cryptographic transformations of black-and-white and color images with a reduced
number of matrix keys are given. Modified models and algorithmic procedures of
keys formation, direct and inverse cryptographic transformations, reduced to matrix-
matrix elemental operations by modulo, are developed. It was shown that the use of
decomposition of color and multispectral images on their black and white components
allowed unifying the transformation procedures, using only one agreed matrix key
and expanding the types, data formats and the range of the cipher applications. It
is suggested and confirmed experimentally that as an auxiliary derivative key you
can use the power of the master key by modulo. Based on a series of experiments in
Mathcad with different multi-gradation and colorimages to encrypt and decrypt them
with proposed models, it is shown that the proposed improvements to such ciphers
are correct, adequate, easy to use, have advantages and even allow to increase their
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Figure 12. A fragment of the interface window that shows the process of direct and
inverse cryptographic transformations of one, namely G, of the spectral component
of the color image
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functionality. The histogram-entropy characteristics of the cryptograms obtained
with MAC are determined and evaluated, which also testify to their cryptographic
properties and stability.

Multi-Functional Parametric Matrix-Algebraic Models
(MAM) of Cryptographic Transformations (CT) with
Operations by Modulo and Their Modeling

Modifications of the above mentioned models allow the CT to check the integrity of
the cryptogram and their distortions, as shown in paper (Krasilenko, 2016; Krasilenko,
2016), for both black and white and color images. However, as experiments have
shown, some specific TGDs, for example scanned documents, have a sizeable area
of almost the same intensity of pixels, a small number of graduations and very
characteristic histograms, which requires their CT to increase cryptostability by
seeking improvements to MAM, including and by expanding their functionality while
maintaining unified matrix operations and procedures ((Krasilenko, 2016). Thus,
the purpose of this section is development and further modification, universalization
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Figure 13. A fragment of a window with cryptograms and decoded images
demonstrating the process of direct and inverse cryptographic transformations of
components of a large-scale multispectral image obtained from a remote monitoring
aircraft and used for model experiments

R_pic_CoM ,G_pic_CoM B_pic CoM  R_pic_ C@MA  G_pic_CoMA B_pic_CoMA G_pic

R_pic_ DoA,G_pic DoA B_pic_ DoA R_pic_DeAM ,G_pic_ D@AM . B_pic_DeAM G_pic_DoA

rows(G_pic) = 610 cols(G_pic) = 340

and generalization of MAM for the CT in order to improve their characteristics,
sustainability, simulation and testing the created models on real information objects
(IO) that will allow evaluating their parameters, possibilities and application features.

The essence of the proposed MAM for CT is to apply matrix multiplication
procedures to the corresponding 8-bit MK of the same dimension (KLC256, KLD256)
for matrix size NxN, as sets of bytes or 8-bit images (PIC_S, PIC_Doc, see Fig.
20) using multiplication and add operations by modulo. As can be seen from Fig.
20 - 24, the simulation results of the processes of direct and inverse CT TGD with
a dimension of 256x256 confirmed the correct operation of models when applying
the correct (Fig. 23) and wrong (Fig. 24) keys. MK had a hierarchical structure,
the dimension of 256x256 consisted of a block matrix of 16x16 units with each
unit size of 16x16, and each of the blocks (KLC16, KLLD16) had 4 sub-blocks of
4x4 elements. Using matrices of permutations P of types K, KP16V1, KP16V2,
allow arbitrary permutations of blocks and sub-blocks, as shown in Fig. 20. Blocks
KLC, KLD and full keys are mutually inverse matrices when multiplying them by
the corresponding modulo.

190



Matrix Models of Cryptographic Transformations of Video Images From Robotic Systems

Figure 14. A fragment of the window with cryptograms and decoded images (all color!)
that demonstrates the process of direct and inverse cryptographic transformations
based on the improved MAC of a large-scale image (640x1024 elements) that was
used for experiments
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The essential difference between the proposed MKs is that both the blocks
themselves in the entire matrix and sub-blocks, and elements in them can be mixed,
and their structures are similar to the permutations matrix. Thus, the cryptographic
block processing is accompanied by simultaneous mixing blocks and sub-blocks,
as well as their elements (Fig. 21 - 23). But the analysis of entropy, histograms of
TGD and their cryptogram (Fig. 20) shows that for TGD, in contrast to an image
of a person, even several iterative multiplications of the data matrix (DM) by the
MK may not be sufficient, more when applying the same MK.
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Figure 15.A Fragment of the interface window, which shows the details of the
processes of direct and inverse cryptographic transformations and their verification
of one, namely G, of the spectral component of the color image shown in Fig. 14 and
was used to simulate the improved MAC with a reduced number (one base!) of MK
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G_pic G_pic_CoM G_pic_COMA

G_pic_ DA G_pic_D®AM Ver_Ge_pic 235

Therefore, we proposed two new multifunctional parametric MAM CTs, the main
conceptual idea of which is based on the use of additional scalar or vector keys (VK)
as parameters influencing the power of matrices of MD and MK by modulus in
their matrix multiplication models and the degree and form of permutation matrices
blocks or elements. At each iterative step, depending on the VK, different MKs are
formed. Fragments of the simulation of the processes of formation of matrices P,
cyclic MK and their components, as well as the MAM formula for direct and inverse
CT and verification using parametric MK are shown in Fig. 21. Fig. 22 shows
the appearance of some parametric MK, and Fig. 23 and 24 show the results of
modeling the CT TGD on the basis of parametric MAM and MK for cases of correct
and accordingly, incorrect MK. The appearance of the initial histograms and after
the CT confirms that even for the selected TGD-specific histogram, the proposed
models give better results. The power of the set of possible keys has increased by
an order of magnitude (more than 10°*), and as the estimates show, only the power
of a plurality of mini-blocks (8x8 8-bit) is of the order of more than 10'*". Thus, the
stability of the models has increased significantly.
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Figure 16. Mathcad interface window (fully) with tools and a text-graphical document
(TGD) displayed in its window that was used to simulate advanced MACs
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Without the knowledge of keys, it is impossible to restore MD and, as shown
in papers (Krasilenko, 2011; Krasilenko, 2012), even with the dimension of MK,
equal to 32x32, the stability of models is ensured and we have the keys of 256x256
8-bit elements, which gives a substantial strength!

The section conclusions: New models with modular operations for MD,
including images, are proposed and considered. The results of their simulation
are presented on the example of direct and inverse CT over images, which testify
to their correct work, convenience (only 1 matrix procedure and one in essence
MAKY!), adaptability to formats, multi-functionality (combination of operations of
matrix block replacements with permutations, interchangeability of cyclic iterations
procedures and matrix substitutions in modulus with convenient choice of parameters
and management of transformations and key shapes) and efficiency (orientation to
matrix processors). The aspects of matrix algebraic procedures and operations by
modulo and creation of MK are considered. The results of simulation of direct and
inverse CT, their verification confirmed the adequacy of parametric generalized
MAM, their convenience, multi-functionality, efficiency for use. They both are
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Figure 17. A Fragment of the window with fragments of cryptogram and decoded
images of TGD from Fig. 16 (both colored in the center and left, and black and
white corresponding spectral components!), which demonstrates the correctness
of the processes of direct and inverse cryptographic transformations of TGD with
the improved MAC
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implemented programmatically and with matrix processors, have high speed and
stability of transformations and adapt to the CT over image of different formats.

Models of Block Matrix Affine-Permutation Ciphers (MAPCs)
for Cryptographic Transformations and Their Research

The emergence of parallel algorithms and especially the matrices of multiprocessor
means, requires the creation of appropriate matrix-algebraic models (MAM), matrix-
type systems (MT) for CT. Advantages of the TGD, black and white, color images
by generalized matrix affine and affine-permutation ciphers (MAPCs), including
the creation of blind digital signatures, were demonstrated in works (Krasilenko,
2011; Krasilenko, 2009; Krasilenko, 2012) . Their basic operations are elemental
multiplication, matrix addition and matrix permutation models (MM_P) with
multiplication matrices. But the disadvantage of these works is the large size of
the matrix keys (MK) and the lack of demonstration of their effective work with
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Figure 18. Histograms of three formed from the main matrix keys (left) and
corresponding R, G, B spectral components (right) of the color image over which
the CT based on the MAC which is shown in Fig. 9 on the right in the bottom row

H_Key_Co_R5 = hist(int , Key Co_R5) H_R_pic D@AM = hist(int R_pic D@AM)
1500 T T 3000 T
2000 — -
H_Key_Co_RS5yg1000 - — H_R_pic_DoAMpg
1000 - -
500 I | o I |
o 100 200 300 0 100 200 300
intmg intyg
H_Key_Co_RI1 = hist(int ,Key_Co_R1) H_G_pic_ D@AM = hist(int ,G_pic D@AM)

1500 . . 4000 . ;
ITIRTIPPRW | RTTRPPOQY TTRU TR A

H_Key_Co_Rlpg1000 — H_G_pic_D@AMpg2000 - —
500 | 1 0 | I
0 100 200 300 0 100 200 300
intyg intyg
H_Key_Co_R7 ‘= hist(int ,Key_Co_R7) H_B_pic_DoAM := hist(int,B_pic_DoAM)
1500 T T 6000 T
4000 - -
H_Key_Co_R7pg1000 - — H_B_pic_DoAMpg
2000 — -
500 ! L 0 |
o 100 200 300 0 100 200 300
intyg intyg

blocks in the form of matrices, which split multi-page data. Some MAMs based on
MM_P require decomposition of bit-sections and in addition to the 2 MKs, there
are two vector keys (VK) for increasing entropy and the change of histograms with
the CT (Krasilenko, 2014; Krasilenko, 2010; Krasilenko, 2016). The promise of
the MAM and its modifications for the CT is evidenced by the ability to check the
integrity of the cryptogram of the images and the presence of distortions in them,
see papers (Krasilenko, 2016; Krasilenko, 2016), increasing the crypto-stability
and expanding their functionality while maintaining unified matrix operations,
procedures, even for very specific characteristic histograms) of scanned TGDs, as
experimentally shown in paper (Krasilenko, 2016). The generalization of the AM to
a matrix-block view is necessary in terms of the versatility of block algorithms and
independence on data volumes. Therefore, the improvement of the MAPCs, aimed at
reducing the number of MK while maintaining the stability and other characteristics
of the matrix models (MMs), their experimental testing on various images is also
an urgent task. Thus, the actual purpose of this section is the development of block
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Figure 19. Histograms of three R, G, B spectral components (left) of the received
cryptogram after the multiplicative CT and the corresponding spectral components
R, G, B of the obtained cryptogram after the second additive CT over the color image
with the CT based on the MAC which is shown in Fig. 9 on the right in the bottom row
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modifications of the MAPCs with aminimum length of 2048 bits, with the possibility
of choosing its parameters and cyclic or block keys of similar length, their simulation
on real information objects (I0) and demonstration, evaluation of their advantages,
characteristics and durability, application possibilities.

Presentation of section material and research results. The proposed CT
algorithm for encryption consists of the following steps: 1) the partition of 10 into
blocks in the form of matrices with a dimension 2™x2™, where m =4, 5, 6, ... and with
element-bytes in a digital format that m = 4 is equivalent to the length of the block
256x8 = 2024 bits; 2) the permutation of the bytes of each current block using the
current key, which is formed synchronously as the power of the main according to the
parametric model, the argument of which is index block, 3) matrix affine or affine-
permutation transformations (MAPTSs) of matrix of bytes of current keys, the same
as on stage 2 or similar, but according to another parametric model, 4) concatenation
of the received blocks for the formation of cryptogram of IO. The decryption process
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Figure 20. Fragments of Mathcad windows with the results of MK formation and
simulation of MAM CT
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has the following steps: 1) decomposing the cryptograms on blocks, 2) reversing
the MAPT blocks based on the reversed current keys; 3) reversing bytes of blocks
by current keys (vectors); 4) concatenating the transformed blocks into the restored
I10. Blocking MAPS modeling was done with Mathcad using black and white and
color images of different dimensions for visual demonstration. Mathcad windows
with formulas for modeling the CT of the image by the algorithm of block MAPTSs
for two black and white images (256x256 elements) with the M-key M_V are shown
in Fig. 25. Fig. 26 shows the results of the CT and the form of keys, blocks before
and after the CT, the difference verification matrix blocks. Fragments of Mathcad
windows with modules for the MK formation and the CT formulas are shown in
Fig. 27, 28. Results of these CT are shown in Fig. 29.

The random bitmap KPX (256x256x1) of permutations formed in any way is used
for permutations of bytes in each kp-th block (256 component vector VID (C_VID)
or matrix C_M_V (16x16) with 8-bit numbers). It can be uniquely represented in
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Figure 21. Fragments of modeling of the processes of forming matrices P, cyclic
parametric MK, their constituents, as well as MAM formulas for encryption,
decryption and verification
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Figure 22. The appearance of some parametric MKs, their component hierarchical
blocks, and the unity- matrix (at checking) in different formats (2D, 3D, and digital)
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Figure 23. Results of simulation of CT TGD on the basis of parametric MAM and
MK withthe correctkeys (1 experiment)and histogram TGD and cryptograms (right)
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Figure 24. Results of simulation of CT TGD on the basis of parametric MAM and
MK with wrong keys (2 experiments) and TGD histograms and cryptograms (right)
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Figure 25. Fragments of Mathcad windows with formulas for forming (concatenate)
blocks, encrypting, decoding images with block algorithm MAPTs and verification
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the form of a matrix of M_V (16x16) bytes, which is either a parametric (power)
model and is used for MAPTSs in the next stage. The essence of MAPT is to apply
to matrices-B, as a collection of bytes (8-bit images (PIC_S, PIC_Doc, see Fig. 25),
procedures on-element matrix multiplication by the corresponding 8-bit MK (direct
and inverse) of the same dimensions (Key0, Key0_O or Key_C (qa), Key_C (qo),
Key_CN (gs), depending on the parameters and the formation modules of which
are shown in Fig. 27, 28) using the multiplication and modulo operations. As can
be seen from Fig. 29 and 30, the simulation results of the processes of direct and
reverse CT TGDs and images with the dimension of 256x256 elements are confirmed
the correct work of the models.

The cryptographic blocks processing is accompanied by the simultaneous mixing
of their elements and their subsequent replacements of the MAPT, but, as it was
shown by our researches with the entropy analysis, histograms of images, TGDs and
their cryptogram, shown in Figure 29, in contrast to the image of a person, several
iterative multiplications of the data matrix (MD) on the MK to the left or right may
not be sufficient, especially with the application of the same MK. Therefore, in order
to improve the algorithm, we propose to apply different current MKs to the blocks,
as the process of their generation can be reduced to simple parametric models.
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Figure 26. The results of the CT and the form of the current keys and blocks before
and after the CT, the difference verification matrix-blocks: left - for the 1-st image,
right - for the TGD
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Figure 27. Fragments of Mathcad windows with modules of MK formation
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(moats.mp) (moats .mp)
S < \mod(S,ml) S < \mod(S ,ml)
p<p+1 p<p+1
S S
Module of current MK generation Generation of current reversed MK

Figure 28. Fragments of Mathcad windows with modules for the MK formation and
the CT formulas

Key_CN(qs) := |p<« | Mkp = mod(kp ,5) + 3
S KeyON CC_M_VMyg, = [(C_M_Vigy + RK1)-(Key_Cpigp)) |

CC_M Vip := (mod(CC_M VM ,257) ) - Rkl

while p < qs

S
§ < [(S)(KeyON)] Formulas for direct CT with parametric MK

S« (mOd(S’ZS 7)) DC_M_VMyq := [ (CC_M_Vig + Rk1)(Key_C_O{pip))]
p<p+1

DC_M Vp = (mod(DC_M_VM kp,257) ) - Rkl

ER_ My := (|DC_M_Vkp - C_M_Vkp|><255

Module for generating MK with CTX For the inverse CT with parametric MK
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Figure 29. Fragments of Mathcad windows with the results of CT modeling the
block MAPC
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Parametric block MAPC CT, the idea of which is based on the use of dependencies
on the indexes of blocks and additional scalar-vector keys (VK) and as parameters
influencing the power of matrices MD and MK by modulus in models of their matrix
multiplication and the degree and form of permutation matrices. For different blocks
and iterative steps different MKs are taken.

The analysis of histograms before and after the KT confirms that the proposed
models give better results. The entropy of the TGD was 0.738, and the entropy of
the cryptogram of the TGD increased 10.62 times and became equal to 7.837. The
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Figure 30. The form of the parametric current MK (right) and the CT of a color
image (left)
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entropy of the image cryptogram has become almost equal to 8 bits per element:
7,997 (-0.04%!"). Without knowledge of MK it is impossible to restore MD and, as
was shown in (Krasilenko, 2011; Krasilenko, 2012), already with a dimension of
32x32 MK of type P The stability of models is ensured and with keys 16x16 8-bit
elements, gives a substantial strength. The power of the set of possible keys has
increased by an order of magnitude more than 10°® . Therefore, the stability of the
models has increased significantly.

The section conclusions: New parametric matrix-algebraic models (MAMs) of
block MAPC for CT are proposed and modulated. The results of their simulation
are presented on the example of direct and inverse CT over images, which testify
to their correct performance and efficiency. Considered aspects of creating current
MK, models can be implemented with software or hardware matrix processors, and
have high speed and stability of transformations.

Modeling and Study of the Generation Method
of the Matrix Keys Flow and Their Quality

For the MAM there is an urgent need to form a whole range of permutation matrixes
(MPs) from the main MK, which would satisfy a number of requirements. Since in
papers (Krasilenko, 2017; Krasilenko, 2017) only the main MK of the general type,
but not the series (flow) of the MP was considered, the purpose of this section is to
model and study the processes for forming the flow of MP for MAM CT, checking
the statistical and correlation properties of a series of generated MP.
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Presentation of the main material of the section. Consider the situation for
blocks of 256x256 bytes long representing a black-and-white image matrix or 256
bytes (2048 bits) length vector blocks that use MPs with size of 256x256 (Krasilenko,
2012; Krasilenko, 2014; Krasilenko, 2016). Since it is desirable for each block
to have a number of MKs generated from the master key, taking into account the
requirements for the cryptographic and statistical characteristics of MK, the urgent
task of studying the processes of rapid reliable generation of the MK sequence in
the form of MP is established, assuming that their number is also equal to 256. The
results of modeling the processes of generating a series of MPs for such a situation
with the Mathcad formulas and matrices of MP are shown in Fig 31. If the main
MK is a random MP of KPX (Fig. 31), then it is unambiguously represented by a
256-component permutation (vector) of V_KPX and also in the form of an image
or matrix of bytes (MB) of 16X 16 size with the peculiarity that all 256 grades of
intensity are different.

Using the coordinated scalars xa and xm, as KPX degrees, we form two additional
matrices C_MKa, C_MKm, see Fig. 31, and the corresponding vectors V_CMKa,
V_CMKm, which together with the vector V_KPX (vector representation KPX)
are shown in Fig. 32. The histograms of all these vectors are horizontal lines, see
Fig. 33, as well as all vector representations of generated permutations that are
formed from V_KPX, as its i-th cryptograms, using the affine cipher and the pair
of their components of vectors V_CMKa, V_CMKm (additive and multiplicative
components). These cryptograms are i-th current permutations (vectors) of KeyCma,
which can be uniquely represented in the form of bit matrices KeyCmaR dimension
(256x256), for example, KeyCmaP1-254, Fig. 31. Fragments of Mathcad windows
are shown in Fig. 34.

Since the histograms of all MPs (their vectors) are horizontal lines, and their
entropy is 8 bits, then cryptanalysis on their basis is impossible. In addition, the
main and two subsidiary MKs are secret, which allows only the CT parties to create
or have this series of MK (MP). In principle, only the main and aforementioned xa
and xm scalar keys can be secret or negotiated.

To study the quality of MK (MP), their properties were investigated, we
calculated all of their possible correlation and equivalent normalized functions,
which are represented as fragments of Mathcad windows (Fig. 35-37) and confirm
the achievements of surprisingly beautiful properties. We note that the obtained
results and their comparison also show that the mutually-equivalently normalized
functions are better than mutually correlated ones.

For better perception and more efficient transmission of basic MK (MP) and
sequence of created MP, the latter using software modules are converted to colored
or black and white images, shown in Fig. 38 and can go as video stream frames
(colored images corresponds to three basic MK).
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Figure 31. Results of modeling processes for generating an array of MK (MP)

va=7

C_MKm = KPX*™
V_CMKm = C_MKm-N

= ym =35

C_MKa = KPX**
V_CMKa = C_MKa-N

KeyCmyv; := [ (V_KPX + Ro)-V_CMKmn; Ro]

KeyCmj = LAmodI: KeyCmvij + 257-257 .25"‘!__; - Roj

KPX-255

KeyCmavj = (KeyCm; + V_CMKa;-Ro)
f——",
KeyCmaj = LAmodI: KeyCmavj,256) )

C_MKa 255

C_MKm-255

KeyCmP1-255

KeyCmaP1-255

KeyCmaP254.255

As can be seen from Fig. 36-37, for one MP (in the 200-th experiment) there is
a similarity to another key, but this is due to the fact that xm is equal to “1”. This
can easily be eliminated if the number of MPs in a sequence decreases from 256 to
255 for the one selected in the simulation and the situation described here.

The section conclusions. A method for generating a series of MK (MP) for
multipage, block, matrix affine-permutation algorithms and MAM CT is proposed
and modulated with Mathcad. The properties of a series of MK (MP) with the
mutually equivalent normed functions that are more effective than correlations are
investigated, and the adequacy and stability of the method is confirmed.
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Figure 32. Vector representations of base MK for generating an array of MK (MP)

(V_CMKa), 200

0 50 100 150 200 250

206



Matrix Models of Cryptographic Transformations of Video Images From Robotic Systems

Figure 33. Histograms of vector representations of the base (left) and some (first,
second) generated (right) MK (MP)
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Figure 34. Fragments of Mathcad windows: one of the keys forming procedures (left)
and vector representations of some (zero, first, 255th) generated (right) MK (MP)
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Figure 35. Formulas and the auto-correlation CFa_Cma and mutual-correlation
CFv_Cmafunctions, depending on cyclic shift, displacement of elements of vectors MP
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Figure 36. Formulas and the mutually-equivalent CFv_CmaG functions depending
on the number of MP (i) and cyclic shift, bias of the elements of t vectors MP
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Figure 37. Formulas and appearance (3D) of the mutually-equivalent CFv_CmaG
functions depending on the numbers ofthe MP (i, j) forthe “0” and “1st” displacements
of the elements of the vectors
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Figure 38. Matrix representation of the basic MK and a number of MPs.
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CONCLUSION

In the four sections of the chapter, the authors propose and consider new multifunctional
matrix-algebraic models of cryptographic image transformations, the variety of
matrix models, including matrix affine ciphers, block parametrical and matrix affine
permutation ciphers. The algorithms and protocols for generating the necessary
matrix keys are discussed in the chapter. The authors show the advantages of the
cryptographic models, such as: adaptability to various formats, multi-functionality,
ease of implementation on matrix parallel structures, interchangeability of iterative
procedures and matrix exponentiation modulo, ease of selection and control of
cryptographic transformation parameters. The simulation results of the proposed
algorithms and procedures for the direct and inverse transformation of images, with
the aim of masking them during transmission, are demonstrated and discussed in
this chapter. The authors evaluate the effectiveness and implementation reliability
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of matrix-algebraic models of cryptographic image transformations. The results
of model experiments on encryption and decryption of text-graphic documents,
images and video files using the software products Mathcad and LabVIEW are
shown by the authors.
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