UDC 543.318.3+515.124

V. V. ROMANUKE

ON OPTIMIZING WLF EQUATION OVER EXPERIMENTAL VISCOSITY MEASUREMENTS BY FINITE SET OF FIXED TEMPERATURES WITH RUNNING \mathbb{L}_w METRIC

Khmelnytskyy National University Instytutska street, 11, Khmelnytskyy, Ukraine

Abstract. There has been suggested a criterion of selecting the most appropriate WLF equation within the finite set of such equations, which are obtained by the finite number of viscosity measurements. The suggested criterion is based on minimizing the space $\mathbb{L}_{w}[T_{i}; \tau]$ distance with $\tau \in (T_{1}; T_{N}]$ between a WLF equation and the (N-1)-linked pattern polyline, linking N viscosity measurement points. Also there has been developed and represented the MATLAB function for computing and saving all the direct and oblique

рагатется of the determined optimal WLF equation. **Анотація.** Запропоновано критерій вибору найбільш адекватного ВЛФ-рівняння у скінченній множині таких рівнянь, які отримуються скінченною кількістю вимірювань в'язкості. Запропонований критерій заснований на мінімізації відстані у просторі $\mathbb{L}_{\mathbf{u}}[T_i; \mathbf{t}]$ з $\tau \in (T_i; T_N]$ між ВЛФ-рівнянням та (N-1)-ланковою ламаною-зразком, що з'єднує N точок вимірів в'язкості. Також розроблено і представлено МАТLAB-функцію для обчислення та збереження прямих та

також розроолено т представлено матьма функцию для оочислення та зоереження прямих та непрямих параметрів визначеного оптимального ВЛФ-рівняння.

Аннотация. Предложено критерий выбора наиболее подходящего ВЛФ-уравнения в конечном множестве таких уравнений, которые получаются при конечном количестве измерений вязкости. Предложенный критерий основан на минимизации расстояния в пространстве $\mathbb{L}_{w}[T_{i}; \tau]$ с $\tau \in (T_{i}; T_{N}]$ между ВЛФ-уравнением и (N-1) -звеньевой ломаной-образцом, соединяющей N точек измерений вязкости. Также разработано и представлено МАТLAB-функцию для вычисления и сохранения прямых и косвенных параметров определённого оптимального ВЛФ-уравнения.

Key words: polymer, polyethylene terephthalate, recycling, viscosity, temperature dependence, glass transition temperature, WLF equation, functional space, minimal distance, running metric, MATLAB.

INTRODUCTION TO PROBLEM OF EVALUATING THE POLYMER MATERIALS VISCOSITY TEMPERATURE DEPENDENCE

Polymer waste recycling to prevent or reduce environmental pollution is a high importance problem of now days. By recycling the molten polymer wastes it is significant to know the temperature dependence of its viscosity [1 - 4], as this fixes the regime of polymer processing and some requirements to control-measuring apparatus [5 - 8]. Moreover, the molten polymer viscosity temperature dependence essentially influences on technological and viscous-sticky properties, which are conditioned by nature characteristics and polymer composition [2, 4, 8 - 13]. The Williams — Landel — Ferry equation (WLF equation) is an unsophisticated and at the same time is exact enough formula for temperature dependence of polymer materials viscosity η [7, 14]. Actually, WLF equation is valid within the temperature segment $[T_g; T_g + 100]$ by the glass transition temperature T_g in Kelvin degrees [15], determined for the fixed polymer system [7]. Commonly, WLF equation is

$$\eta(T) = \eta_g \cdot 10^{\frac{C_1(T-T_g)}{C_2 + T - T_g}}$$
(1)

for $T \in [T_g; T_g + 100]$ with the viscosity η_g measured by the temperature T_g , where C_1 and C_2 are

[©] V. V. ROMANUKE, 2011

constants. To speak generally, those constants are functions of T_g . Obviously, that for obtaining them it is sufficient to carry out the two viscosity measurements by the known T_g and η_g , what will give the system of two equations (1) with respect to the unknown C_1 and C_2 . However, even if the glass transition temperature is fixed and learned, it is very uneasy or just impossible to measure the polymer viscosity at T_g [7, 16, 17]. Besides, this temperature may vary even for the same type of polymer waste material, depending on its vitrification speed and other operation factors. That is why generally there is need to carry out N polymer viscosity measurements

$$\left\{ \eta_{i} \right\}_{i=1}^{N} = \left\{ \eta(T_{i}) \right\}_{i=1}^{N} = \left\{ \eta_{g} \cdot 10^{\frac{C_{i}(T_{i} - T_{g})}{C_{2} + T_{i} - T_{g}}} \right\}_{i=1}^{N},$$

$$T_{i} \in \left(T_{g}; T_{g} + 100 \right) \quad \forall \ i = \overline{1, N}, \ T_{i} < T_{i+1} \quad \forall \ i = \overline{1, N - 1},$$
(2)

taking N = 4 for obtaining the constants C_1 and C_2 with also unknown T_g and η_g . But as WLF equation (1) is still just an approximately rough model of real existing and unknown temperature dependence $\eta(T)$, then for its as detailed as possible learning there is need to carry out more than four measurements. And those N measurements will give possibility to obtain $\frac{N!}{(N-4)! \cdot 4!}$ groups

$$\left\{\left\{\left\{C_{1}\left(T_{h}, T_{j}, T_{k}, T_{l}\right), C_{2}\left(T_{h}, T_{j}, T_{k}, T_{l}\right), T_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right), \eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)\right\}_{h=4}^{N}\right\}_{j=3}^{h-1}\right\}_{k=2}^{h-1}\right\}_{l=1}^{k-1} (3)$$

of the constants C_1 and C_2 with T_g and η_g , what will allow to have $\frac{N!}{(N-4)! \cdot 4!}$ different WLF equations

$$\left\{ \left\{ \left\{ \left\{ \eta_{hjkl}\left(T\right)\right\}_{h=4}^{N}\right\}_{j=3}^{h-1} \right\}_{k=2}^{j-1} \right\}_{l=1}^{k-1} = \left\{ \left\{ \left\{ \left\{ \eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) \cdot 10^{\frac{C_{l}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)\left[T - T_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)\right]}{C_{2}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) + T - T_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)} \right\}_{h=4}^{N} \right\}_{j=3}^{h-1} \right\}_{k=2}^{k-1}$$

$$\left\{ \left\{ \left\{ \left\{ \eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) \cdot 10^{\frac{C_{l}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) + T - T_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)}{C_{2}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) + T - T_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)} \right\}_{h=4}^{N} \right\}_{j=3}^{h-1} \right\}_{k=2}^{k-1} \right\}_{l=1}^{k-1}$$

$$\left\{ \left\{ \left\{ \left\{ \eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) \cdot 10^{\frac{C_{l}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) + T - T_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right)} \right\}_{h=4}^{N} \right\}_{j=3}^{h-1} \right\}_{k=2}^{k-1} \right\}_{l=1}^{k-1}$$

of the type (1). The stated problem core is how to select the most appropriate WLF equation

$$\eta_{g}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right) \cdot 10^{\frac{C_{1}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right)\left[T - T_{g}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right)\right]}{C_{2}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right) + T - T_{g}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right)\right]}} = \eta_{g}^{*} \cdot 10^{\frac{C_{1}^{*}\left(T - T_{g}^{*}\right)}{C_{2}^{*} + T - T_{g}^{*}}}} = \eta^{*}\left(T\right) \in \left\{\left\{\left\{\left\{\eta_{hjkl}\left(T\right)\right\}_{h=4}^{N}\right\}_{j=3}^{h-1}\right\}_{k=2}^{j-1}\right\}_{l=1}^{k-1}\right\}_{l=1}^{k-1}}$$
(5)

from that $\frac{N!}{(N-4)! \cdot 4!}$ WLF equations multiplicity, orienting to the (N-1)-linked polyline $\eta_0(T)$, that in

order links the points $\begin{bmatrix} T_i & \eta_i \end{bmatrix}$ and $\begin{bmatrix} T_{i+1} & \eta_{i+1} \end{bmatrix} \forall i = \overline{1, N-1}$ from measurements (2).

ANALYSIS OF RESEARCHES ON TEMPERATURE DEPENDENCE OF POLYMER MATERIALS VISCOSITY

Viscosity is a measure of the resistance of a polymer system, which is being deformed by either shear stress or tensional stress [1, 5, 7, 16]. Polymer viscosity describes its internal resistance to flow and may be thought of as a measure of molten polymer friction. The temperature dependence of polymer materials viscosity is the phenomenon by which polymer viscosity tends to decrease (as it usually happens) when the surrounding temperature increases [18]. Such dependence is contemporarily expressed by one of the several existing models, where WLF equation is usually used for polymer melts or other fluids that have a glass transition temperature [7, 18]. Investigation of the polymer viscosity temperature dependence $\eta(T)$ is very smart to learn the mechanism of its flow and to comprehend the macromolecular behavior by deformations. Polymer viscosity temperature dependence influences strongly on the regime of the polymer recycling process, defining the quality and certain properties of the recycled polymer ware. There are many investigators of polymer viscosity temperature dependence in WLF equation form, where, except M. L. Williams, R. F. Landel, J. D. Ferry, it ought to be underlined G. S. Fulcher, G. Tammann, W. Hesse, A. Kovacs, G. Gee, S. Ishihara, A. A. Miller, M. H. Cohen, D. Turnbull, F. Bueche, P. B. Macedo, T. A. Litovitz, R. B. Boyer, R. N. Haward, H. Breuer, G. Rehage, A. V.

unconfined space conception [7, 14, 18] and it was grounded under that, though (1) is rather not the ideal model for polymer viscosity temperature dependence when the temperature is out of the segment $[T_{\rho}; T_{\rho} + 100]$.

Tobolskiy, R. Simha, S. Krause, G. V. Vinogradov, A. Y. Malkin. The WLF equation (1) is connected with

Being not restricted in measuring the viscosity within the interval $(T_g; T_g + 100)$ for only four times, there is

the unsolved question of how to select the optimal WLF equation from $\frac{N!}{(N-4)! \cdot 4!}$ WLF equations (4),

obtained after having measured the viscosity for N times by different temperatures $\{T_i\}_{i=1}^N$ for the better visualization of experimental polyline data, where $N \in \mathbb{N} \setminus \{1, 2, 3\}$.

PAPER PURPOSE AND ASSIGNMENTS

Suppose, that within the interval $(T_g; T_g + 100)$ we have carried out the N polymer viscosity measurements (2), where $N \in \mathbb{N} \setminus \{1, 2, 3\}$. Then here is the purpose to select the most appropriate WLF equation (5) amongst $\frac{N!}{(N-4)! \cdot 4!}$ different WLF equations (4), obtained by the corresponding $\frac{N!}{(N-4)! \cdot 4!}$ groups of four parameters (3). For accomplishing this, there should be applied the minimal functional distance criterion between each element of the set (4) and (N-1)-linked polyline $\eta_0(T)$, that in order links the points $[T_i \quad \eta_i]$ and $[T_{i+1} \quad \eta_{i+1}] \forall i = \overline{1, N-1}$. This polyline may be considered as a rough pattern of the being searched temperature dependence of the given polymer material viscosity. The greater number N the lesser roughness is in such pattern. The appropriate functional space is $\mathbb{L}_w[T_1; T_N]$ with its metric, ever letting get the value of distance between two functions, defined on the segment $[T_1; T_N]$. Eventually, procedure of optimizing the model of polymer viscosity temperature dependence in WLF equation form by the said criterion will be developed in the mathematical environment MATLAB.

USING
$$\mathbb{L}_{w}[T_{1}; T_{N}]$$
 METRIC FOR DETERMINING THE OPTIMAL TEMPERATURE
DEPENDENCE AMONGST THE FUNCTIONS (4)

In $\mathbb{L}_{w}[T_{1}; T_{N}]$ the distance $\rho_{\mathbb{L}_{w}[T_{1}; T_{N}]}(\eta_{hjkl}(T), \eta_{0}(T))$ between the polymer viscosity temperature dependence $\eta_{hjkl}(T)$ and pattern polyline $\eta_{0}(T)$ is the norm of their difference $\eta_{hikl}(T) - \eta_{0}(T)$, that is

$$\rho_{\mathbb{L}_{w}[T_{i}; T_{N}]}(\eta_{hjkl}(T), \eta_{0}(T)) = \left(\int_{T_{i}}^{T_{N}} |\eta_{hjkl}(T) - \eta_{0}(T)|^{w} dT\right)^{\frac{1}{w}},$$

$$h = \overline{4, N}, \ j = \overline{3, h-1}, \ k = \overline{2, j-1}, \ l = \overline{1, k-1}.$$
 (6)

2.00

The temperature function $\eta_{hjkl}(T)$ in (6) is substituted with the corresponding element from the set (4). The pattern polyline $\eta_0(T)$ in (6) is

$$\eta_0(T) = \alpha_{i+1,i} + \beta_{i+1,i}T \quad \text{by} \quad T \in [T_i; T_{i+1}] \quad \forall \ i = \overline{1, N-1},$$

$$(7)$$

where

$$\alpha_{i+1,i} = \eta_i - T_i \frac{\eta_i - \eta_{i+1}}{T_i - T_{i+1}} \quad \forall \ i = \overline{1, N-1}$$
(8)

and

$$\beta_{i+1,i} = \frac{\eta_i - \eta_{i+1}}{T_i - T_{i+1}} \quad \forall \ i = \overline{1, N-1} .$$

$$\tag{9}$$

Hence, taking (4) and (7) — (9) explicitly, the distance (6) between $\{h, j, k, l\}$ -dependence $\eta_{hikl}(T)$ and pattern polyline $\eta_0(T)$ is

$$\rho_{\mathbb{L}_{w}[T_{i};T_{k}]}\left(\eta_{hjkl}\left(T\right),\eta_{0}\left(T\right)\right) = \left(\sum_{l=1}^{N-1} \int_{T_{i}}^{T_{i+1}} \left|\eta_{hjkl}\left(T\right) - \eta_{0}\left(T\right)\right|^{w} dT\right)^{\frac{1}{w}} = \\
= \left(\sum_{i=1}^{N-1} \int_{T_{i}}^{T_{i+1}} \left|\eta_{g}\left(T_{h},T_{j},T_{k},T_{l}\right) \cdot 10^{\frac{C_{i}(T_{h},T_{j},T_{k},T_{l})\left[T-T_{g}\left(T_{h},T_{j},T_{k},T_{l}\right)\right]}{C_{2}\left(T_{h},T_{j},T_{k},T_{l}\right)+T-T_{g}\left(T_{h},T_{j},T_{k},T_{l}\right)}} - \eta_{i} + T_{i}\frac{\eta_{i} - \eta_{i+1}}{T_{i} - T_{i+1}} - \frac{\eta_{i} - \eta_{i+1}}{T_{i} - T_{i+1}}T\right|^{w} dT\right)^{\frac{1}{w}} = \\
= \left(\sum_{i=1}^{N-1} \int_{T_{i}}^{T_{i+1}} \left|\eta_{g}\left(T_{h},T_{j},T_{k},T_{l}\right) \cdot 10^{\frac{C_{i}(T_{h},T_{j},T_{k},T_{l})\left[T-T_{g}\left(T_{h},T_{j},T_{k},T_{l}\right)\right]}{C_{2}\left(T_{h},T_{j},T_{k},T_{l}\right)+T-T_{g}\left(T_{h},T_{j},T_{k},T_{l}\right)}} + \frac{\eta_{i} - \eta_{i+1}}{T_{i} - T_{i+1}}\left(T_{i} - T\right) - \eta_{i}\right|^{w} dT\right)^{\frac{1}{w}}, \\
= \left(\sum_{i=1}^{N-1} \int_{T_{i}}^{T_{i+1}} \left|\eta_{g}\left(T_{h},T_{j},T_{k},T_{l}\right) \cdot 10^{\frac{C_{i}(T_{h},T_{j},T_{k},T_{l})\left[T-T_{g}\left(T_{h},T_{j},T_{k},T_{l}\right)\right]}} + \frac{\eta_{i} - \eta_{i+1}}{T_{i} - T_{i+1}}\left(T_{i} - T\right) - \eta_{i}\right|^{w} dT\right)^{\frac{1}{w}}, \\
= \left(\sum_{i=1}^{N-1} \int_{T_{i}}^{T_{i}} \left|\eta_{g}\left(T_{h},T_{j},T_{k},T_{l}\right) \cdot 10^{\frac{C_{i}(T_{h},T_{j},T_{k},T_{l})\left[T-T_{g}\left(T_{h},T_{j},T_{k},T_{l}\right)\right]}} + \frac{\eta_{i} - \eta_{i+1}}{T_{i} - T_{i+1}}\left(T_{i} - T\right) - \eta_{i}\right|^{w} dT\right)^{\frac{1}{w}},$$

$$(10)$$

Surely, that for determining the optimal temperature dependence amongst the functions (4) now it is sufficient to find that dependence from (4), for which the distance (10) is minimal. However, the consumer of such optimal WLF model not necessarily intends to apply it over the whole range $[T_g; T_g + 100]$ or even $[T_1; T_N]$. This means that there is some part $[T_{\min}; T_{\max}]$ of the segment $[T_1; T_N] \supset [T_{\min}; T_{\max}]$ which is

going to be used anyway, and the rest part $[T_1; T_N] \setminus [T_{\min}; T_{\max}]$ of this segment is not needed or just ignored.

SWITCHING TO $\mathbb{L}_{w}[T_{i}; T_{N}]$ RUNNING METRIC FOR CONTINUAL DETERMINATION OF THE OPTIMAL TEMPERATURE DEPENDENCE AMONGST THE FUNCTIONS (4)

If the temperature range of applying the being searched optimal WLF model of polymer viscosity temperature dependence $\eta^*(T)$ is narrower than $[T_{\min}; T_{\max}]$, say, may it be from $T = T_1$ up to $T = T_{N-1}$, then we will be interested only in minimal functional distance between the shortened pattern polyline

$$\eta_0(T) = \alpha_{i+1,i} + \beta_{i+1,i}T = \eta_i - T_i \frac{\eta_i - \eta_{i+1}}{T_i - T_{i+1}} + \frac{\eta_i - \eta_{i+1}}{T_i - T_{i+1}}T \quad \text{by} \quad T \in [T_i; T_{i+1}] \quad \forall \ i = \overline{1, N-2}, \quad (11)$$

and the elements of the set (4), defined on the subsegment $[T_1; T_{N-1}] \subset [T_1; T_N]$. Therefore instead of the distance (10) in the space $\mathbb{L}_w[T_1; T_N]$ it is essential to define the running distance

$$\begin{split} \rho_{\mathbb{L}_{w}[T_{1};\tau]}\left(\eta_{hjkl}\left(T\right),\eta_{0}\left(T\right)\right) &= \left(\int_{T_{1}}^{\tau} \left|\eta_{hjkl}\left(T\right) - \eta_{0}\left(T\right)\right|^{w} dT\right)^{\frac{1}{w}} = \\ &= \left(\sum_{m=1}^{M-1} \int_{T_{m}}^{T_{m+1}} \left|\eta_{hjkl}\left(T\right) - \eta_{0}\left(T\right)\right|^{w} dT + \int_{T_{M}}^{\tau} \left|\eta_{hjkl}\left(T\right) - \eta_{0}\left(T\right)\right|^{w} dT\right)^{\frac{1}{w}} = \\ &= \left(\sum_{m=1}^{M-1} \int_{T_{m}}^{T_{m+1}} \left|\eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) \cdot 10^{\frac{C_{1}(T_{h}, T_{j}, T_{k}, T_{l})[T - T_{g}(T_{h}, T_{j}, T_{k}, T_{l})]}{\frac{C_{1}(T_{h}, T_{j}, T_{k}, T_{l}) + T - T_{g}(T_{h}, T_{j}, T_{k}, T_{l})}{\frac{1}{w}} + \frac{\eta_{m} - \eta_{m+1}}{T_{m} - T_{m+1}} (T_{m} - T) - \eta_{m}\right|^{w} dT + \\ &= \left(\sum_{m=1}^{\tau} \int_{T_{m}}^{T_{m}} \left|\eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) \cdot 10^{\frac{C_{1}(T_{h}, T_{j}, T_{k}, T_{l}) + T - T_{g}(T_{h}, T_{j}, T_{k}, T_{l})}}\right| + \frac{\eta_{m} - \eta_{m+1}}{T_{m} - T_{m+1}} (T_{m} - T) - \eta_{m}\right|^{w} dT + \\ &= \left(\sum_{m=1}^{\tau} \int_{T_{m}}^{T_{m}} \left|\eta_{g}\left(T_{h}, T_{j}, T_{k}, T_{l}\right) \cdot 10^{\frac{C_{1}(T_{h}, T_{j}, T_{k}, T_{l}) + T - T_{g}(T_{h}, T_{j}, T_{k}, T_{l})}}\right| + \frac{U_{1}(T_{m}) - U_{1}(T_{m}) + U_{2}(T_{m}) - U_{1}(T_{m}) - U_{1}(T_{m}) + U_{1}(T_{m}) - U_{1}(T_{m}) - U_{1}(T_{m}) + U_{1}(T_{m}) - U_{1}(T_{m})$$

$$+\int_{T_{M}}^{\tau} \left| \eta_{g} \left(T_{h}, T_{j}, T_{k}, T_{l} \right) \cdot 10^{\frac{C_{1}(T_{h}, T_{j}, T_{k}, T_{l}) \left[T - T_{g}(T_{h}, T_{j}, T_{k}, T_{l}) \right]}{C_{2}(T_{h}, T_{j}, T_{k}, T_{l}) + T - T_{g}(T_{h}, T_{j}, T_{k}, T_{l})} + \frac{\eta_{M} - \eta_{M+1}}{T_{M} - T_{M+1}} \left(T_{M} - T \right) - \eta_{M} \right|^{m} dT \right|^{m}$$

by $\tau \in [T_M; T_{M+1}], M \in \{\upsilon\}_{\upsilon=1}^{N-1}, h = \overline{4, N}, j = \overline{3, h-1}, k = \overline{2, j-1}, l = \overline{1, k-1}, w \ge 1.$ (12)

Properly speaking, the distance (12) corresponds to the space $\mathbb{L}_{w}[T_{1}; \tau]$ that is the subspace of $\mathbb{L}_{w}[T_{1}; T_{N}]$. From this it follows that in the point $T = \tau$ by $\tau \in [T_{M}; T_{M+1}]$ with $M \in \{\upsilon\}_{\upsilon=1}^{N-1}$ the optimal WLF equation amongst the $\frac{N!}{(N-4)! \cdot 4!}$ different WLF equations (4) is determined as

$$\eta^{*}(\tau) \in \arg\min_{\substack{\eta_{qd}(\tau)\\ h=4,n,\\ r=1\\ l=1,k-1}} \rho_{\mathbb{L}_{w}[T_{i};\tau]} \left(\eta_{hjkl}(T), \eta_{0}(T) \right) =$$

$$= \min_{\substack{\eta_{qd}(\tau)\\ h=4,N\\ r=1\\ l=1,k-1}} \left\{ \left(\sum_{m=1}^{M-1} \int_{T_{m}}^{T_{m+1}} \left| \eta_{g}(T_{h}, T_{j}, T_{k}, T_{l}) \cdot 10^{\frac{C_{i}(T_{h}, T_{j}, T_{k}, T_{l})[T-T_{g}(T_{h}, T_{j}, T_{k}, T_{l})]}{C_{2}(T_{h}, T_{j}, T_{k}, T_{l})^{+T-T_{g}(T_{h}, T_{j}, T_{k}, T_{l})}} + \frac{\eta_{m} - \eta_{m+1}}{T_{m} - T_{m+1}} (T_{m} - T) - \eta_{m} \right|^{w} dT +$$

$$+ \int_{T_{M}}^{\tau} \left| \eta_{g}(T_{h}, T_{j}, T_{k}, T_{l}) \cdot 10^{\frac{C_{i}(T_{h}, T_{j}, T_{k}, T_{l})[T-T_{g}(T_{h}, T_{j}, T_{k}, T_{l})]}{C_{2}(T_{h}, T_{j}, T_{k}, T_{l})^{+T-T_{g}(T_{h}, T_{j}, T_{k}, T_{l})}} +$$

$$+ \frac{\eta_{M} - \eta_{M+1}}{T_{M} - T_{M+1}} (T_{M} - T) - \eta_{M} \right|^{w} dT \right)^{\frac{1}{w}} \left\{ \forall \tau \in (T_{1}; T_{N}].$$

$$(13)$$

Certainly, that in the point $\tau = T_N$ the distance (12) coincides with (10).

FINDING PARAMETERS (3) WITH MATLAB SOLVER OF SYSTEMS OF NONLINEAR EQUATIONS OF SEVERAL VARIABLES

For finding the optimal WLF dependence $\eta^*(T)$ that may consist of different WLF equations, it is preferable to use the technical computing environment MATLAB. Firstly there should be solved each of the $\frac{N!}{(N-4)! \cdot 4!}$ systems of the four nonlinear equations

$$\eta_{\lambda} - \eta_{g} \cdot 10^{\frac{C_{l}(T_{\lambda} - T_{g})}{C_{2} + T_{\lambda} - T_{g}}} = 0, \ \lambda \in \{h, j, k, l\}, \ h = \overline{4, N}, \ j = \overline{3, h - 1}, \ k = \overline{2, j - 1}, \ l = \overline{1, k - 1}, \ (14)$$

with respect to the four unknown parameters

$$C_1(T_h, T_j, T_k, T_l), C_2(T_h, T_j, T_k, T_l), T_g(T_h, T_j, T_k, T_l) \text{ and } \eta_g(T_h, T_j, T_k, T_l)$$

where the *s*-th system is solved by the fixed $h \in \left\{\overline{4, N}\right\}$, $j \in \left\{\overline{3, h-1}\right\}$, $k \in \left\{\overline{2, j-1}\right\}$ and $l \in \left\{\overline{1, k-1}\right\}$,

s = 1, $\frac{N!}{(N-4)! \cdot 4!}$. The system (14) may be numerically solved, using the remarkable MATLAB solver of

systems of nonlinear equations of several variables, whose help screenshot is on figures 1 - 8.

Hereinafter there will be an example with N = 5 viscosity measurements, so on figure 9 the corresponding MATLAB solver of the system (14) for finding the five groups of parameters (3) is screenshot. Note, that this solver routine may be run by one of the three ways: from the MATLAB Command Window line, typing "wlf_eval"; from within any script or MATLAB function, launching them; just pressing F5 key when the "wlf_eval" code window is active. This code uses beforehand saved mat-file "viscosity01", containing the measurements (2). Also there is used the subfunction "four_wlf_eq", which role is clear from the screenshot on figure 6.

	- 🗆 ×	J. MATLAB	- 🗆 🗵
Ele Edit Debug Desktop Window Help		Ele Edit Debug Desktop Window Help	
🗅 😅 🐇 ங 🛍 🕫 🖙 🗍 🦉 👔 E:MATLAB7p0p1tworktAG Theory DoctoralDiss and Support] 🛄 🗈	🗅 🗃 👗 ங 🋍 🕫 🖙 🎁 🎁 😭 💡 📔 E:'MATLAB7p0p1'work'AG Theory DoctoraDiss and Support	🗈
To get started, select <u>NATLAB Help</u> or <u>Demos</u> from the Help menu. >> help fsolve FSOLVE solves systems of nonlinear equations of several variables.	1	second output argument J that is the Jacobian matrix at the point X. If FUN returns a vector F of m components when X has length n, then J is an m-by-n matrix where $J(i, j)$ is the partial derivative of F(i) with respect to $\chi(j)$. [Note that the Jacobian J is the transpose of the gradient of F.)	A
FSOLVE attempts to solve equations of the form:		[X,FVAL] = FSOLVE(FUN, X0,) returns the value of the equations FUN at X.	
F(X)=0 where F and X may be vectors or matrices.		[X,FVAL,EXITFLAG]=FSOLVE(FUN,X0,) returns an EXITFLAG that describes the exit condition of FSOLVE. Possible values of EXITFLAG and the corresponding exit conditions are	
equations in FUM. FUM accepts input X and returns a vector (matrix) of equation values F evaluated at X.		1 FSOLVE converged to a solution X. 2 Change in X smaller than the specified tolerance.	
X-FSOLVE(FUN, X0, OPTIONS) minimizes with the default optimization parameters replaced by values in the structure OPTIONS, an argument created with the OPTINEST function. See OPTINEST for details. Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, FunValCheck, Jacobian, JacobHult, JacobPattern, LineSearchType, NonlEquilgorithm, MarVinEvals, MaxIter, OutpuFen, DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG, TypicalX. Use the Jacobian option to specify that FUN also returns a		 3 Change in the residual smaller than the specified tolerance. 4 Magnitude of search direction smaller than the specified tolerance. 0 Maximum number of function evaluations or iterations reached. -1 Algorithm terminated by the output function. -2 Algorithm seems to be converging to a point that is not a root. -3 Trust region radius became too small. -4 Line search cannot sufficiently decrease the residual along the current search direction. 	
♠ <u>s</u> tart		start	//

Fig. 2. End of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Command Window)

Fig. 3. First part of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Help Window)

Fig. 4. Second part of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Help Window)

- Help			121
Elle Edit View Go Favorites Desktop Wind	Kim Help		-
Help Navigator X	+ + C @ A		
Contents Index Search Demos	Tille toplve (Optimization To	elect)	•
Begin Here A Release Notes	Medium Scale and L	arge-Scale Algorithms. These options are used by both the medium-scale and large-scale algorithms.	
a 🥪 Installation	DerivativeCheck	Compare user-supplied derivatives (Jacobian) to finite-differencing derivatives.	
Contract Link	Diagnostics	Display diagnostic information about the function to be minimized	
ATLAS Builder for COM	DiffRaxChange	Maximum change in variables for finite differencing	
MATLAB Builder for Excel	DistillinChange	Minimum ensens is unreduce for finite difference in	
MATLAB Compiler	e suites	special and a second	
B MATLAB Web Saver	prabrah	Level of display. Yoxx, displays no output, Trex, aisblays output at each iteration, "Exwel, (default) displays just the hear output.	
Bieinformatics Toolbox Communications Toolbox	FunValCheck	Check whether objective function values are valid. 'on' displays a warning when the objective function returns a value that is complex, Tht, or NaN, 'off' (the default) displays no warning.	
Control System Toolbox	Jacobian	If 'on', foolve uses a user-defined Jacobian (defined in <u>tun)</u> , or Jacobian information (when using Jacobitult), for the objective function, if 'off', factive approximates the Jacobian using finite differences.	
B Data Acquisition Toolbox	BaxFunEvals	Maximum number of function evaluations allowed	
Database Toolbox	BaxIter	Maximum number of detations allowed	
Ellips Decision Toolbox	2000		
Filter Design HDL Coder	Tollan) etmination tolerance on the function value	
🖲 🥩 Financial Toolbox	TolX	Termination tolerance on x	
	TypicalZ	Typical x values	
Fixed Income Toolbox	Large-Scale Algorith	m Only. These options are used only by the large-scale algorithm	
GARCH Teclbox GARCH Teclbox Genetic Algorithm and Direct Sea	JacubBult	Function handle for Jacobian multiply function. For large-scale structured problems, this function computes the Jacobian matrix product J+Y, J+Y, or J + (J+Y) without actually forming J. The function is of the form. H = gatter (J stor 5, Y, E day, P.J., PZ,)	1
P Image Acquisition Toolbox P Instrument Control Toolbox P Instrument Control Toolbox P Link for Code Composer Studio(tr P Link for ModelSim/B		where d_{1n} for and the additional parameters p_1, p_2, \ldots contain the matrices used to compute $d \neq v(p_1 d + v(p_1 d + \gamma))$. The first argument d_{2n} for must be the same as the second argument returned by the objective function d_{2n} , for example by $\{V, J, d_{2n}\}$ and $\{V, J, d_{2n}\}$.	
Mapping Toolbox		Y is a matrix that has the same number of rows as there are dimensions in the problem. 21ag determines which product to compute.	
Model-Based Calibration Toolbox		• # flag == 0 then W = 3' * (3*¥)	
. Veural Network Toolbox		-Wileg > Othen W = J=Y	
CIPC Toolbox		+¥flag < Othen W = a : ۲۷	
Optimization Toolbox Getting Started Examples		In each case, 3 is not formed explicitly zoolve uses 3 into to compute the preconditioner. The optional guaranters p1, p2, can be any additional parameters needed by justum. See <u>Auculana Global Vanistice via Annorrows and Mented Functions</u> for information on how to aupply values for these parameters.	
Tutonal Standard Algorithms		Note "Jacobian" must be not to 'on' for JinZo to be passed from fun to Jarfun	
E-C Functions - Categorical List		See Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints for a similar example.	
Minimization Equation Solving —Least Squams (Curve Fitting) —Unity —Unity	JacobPattern	Sparsity pattern of the Jacobian for finite differences of it is not convenient to compute the Jacobian matrix J in 2000, <u>Lagopp110</u> can approximate J na sparse finite differences provided the structure of J = ca, locations of the nonzeros - ns supplied as the value for JacobiPacters. In the worst case, if the structure is unknown, you can set JacobiPacters to be sidenes matrix and a tal finite-difference approximation is computed in each detailing this is the default if JacobiPacters is not set). This can be very expensive for large problems, no it is usually worth the defort to determine the spanity structure.	
-cremition of carge-scale method	MaxPCGIter	Maximum number of PCG (preconditioned conjugate gradient) iterational (see Algorithm).	
	11	and the substantial free substantial free substantials	-

Fig. 5. Third part of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Help Window)

Fig. 6. Fourth part of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Help Window)

Fig. 7. Fifth part of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Help Window)

Fig. 8. Sixth part of help on MATLAB solver of systems of nonlinear equations of several variables (taken from MATLAB Help Window)

E (MAT	LAB7p0p1\work\AG Theory DoctoralDiss and Support\wll_eval.m
<u>File E</u> dit	Text Cell Tools Debug Desktop Window Help 🛪
🗅 😅 🛛	■ ※ № 18 ∽ ~ ❷ 桷 f_ 图 和 個 物 即 归 细 Stock Ba ▼
1 1	unction [x_star] = wlf_eval
2 - f	for $k4=4:5$ % Note, that here N = 5
3 -	for k3=3:k4-1
4 -	for k2=2:k3-1
5 -	for k1=1:k2-1
6 -	save wlf_4points_k k1 k2 k3 k4
7 -	xO = [-5; 100; 10000; 360]; 🚯 Make a starting guess at the solution
8 -	options = optimset('MaxFunEvals', 9000, 'MaxIter', 2500); % Option to display output
9 -	[k1 k2 k3 k4]
10 -	[x_star, fval] = fsolve(@four_wlf_eq, x0, options) % Call optimizer
11 -	$eval(['Cl=' num2str(x_star(1))'])$
12 -	eval('CZ=' num2str(x_star(2)) ''])
13 -	eval('eta_g=' num2str(x_star(3)) ''))
14 -	$eval([:1]^{-n} num_str(x_star(4)) \cdot])$
16 -	eval([.save all_abolits], num2str(k1) num2str(k2) num2str(k3) num2str(k4), ci cz sta ² d [d.]) 4 saving solution of eduation (14)
17 -	
18 -	
19	ena
20	
21 f	unction F = four wif eq(x)
22 - 1	or ad viscositv01 & load the experimental viscositv (five) measurements
23 - t	pemperature = temperature + 273.15;
24 - 1	oad wif 4points k
25 - F	$ = [viscosity(k1) - x(3)*10^{(x(1)*(temperature(k1) - x(4))/(x(2) + temperature(k1) - x(4))); $
26	$viscosity(k2) - x(3)*10^(x(1)*(temperature(k2) - x(4))/(x(2) + temperature(k2) - x(4)));$
27	$viscosity(k3) = x(3)*10^{(x(1)*(temperature(k3) - x(4))/(x(2) + temperature(k3) - x(4)));$
28	$viscosity(k4) = x(3)*10^{(x(1)*(temperature(k4) = x(4))/(x(2) + temperature(k4) = x(4)))];$
	wif_eval Ln 1 Col 1 OVR

Fig. 9. The system (14) solver code for N = 5

Also may it be noted, that a starting guess at the solution, typed in the line 7 of "wlf_eval", has been based on the generalized notion of that $C_1 < 0$ and $C_2 > 0$, and the glass transition temperature of the polymer

material to be submitted is about 60 — 90 Celsius degrees [7, 19, 20]. And when the $\frac{N!}{(N-4)! \cdot 4!}$ systems (14)

are solved, parameters

$$C_{1}^{*} = C_{1}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right), C_{2}^{*} = C_{2}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right), T_{g}^{*} = T_{g}\left(T_{h^{*}}, T_{j^{*}}, T_{k^{*}}, T_{l^{*}}\right)$$

and

$$\eta_g^* = \eta_g \left(T_{h^*}, T_{j^*}, T_{k^*}, T_{l^*} \right)$$

of the function $\eta^*(T)$ in (5) should be considered as the most appropriate for the given polymer material viscosity measurements; besides, the temperatures T_{h^*} , T_{j^*} , T_{k^*} and T_{l^*} should be regarded as the basic points for measuring the given polymer class viscosity within the segment $[T_1; T_N]$. After having run and accomplished the code of "wlf_eval", there are saved $\frac{N!}{(N-4)! \cdot 4!}$ mat-files with the found numerically unknown parameters in (3).

DETERMINING THE OPTIMAL WLF EQUATION BY (13) IN MATLAB

For computing (13), where integrals will be taken numerically also, there is the developed MATLAB function "opt_wlf2", been screenshot into figures 10 and 11. This function accepts those mat-files, saved in the line 15 of the system (14) solver code, and processes each of them.

Fig. 10. MATLAB function "opt_wlf2" code (first part) for completing the optimal WLF equation determination by (13)

Fig. 11. MATLAB function "opt_wlf2" code (second part) for completing the optimal WLF equation determination by (13)

There is MATLAB subfunction "line2points" inside "opt_wlf2", which is applied for obtaining the line (7) constants (8) and (9). This subfunction code is in figure 12.

Fig. 12. MATLAB subfunction "line2points" code for obtaining the constants (8) and (9) of the line (7)

The return from "opt_wlf2" into MATLAB Workspace is parameters C_1^* , C_2^* , T_g^* , η_g^* , temperatures

 $T_{h^*}, T_{j^*}, T_{k^*}, T_{l^*}$, numbers h^*, j^*, k^*, l^* , the digitized temperature halfinterval $(T_1; T_N]$, the family of functions

$$\left\{\left\{\left\{\left\{\rho_{\mathbb{L}_{w}[T_{i};\tau]}\left(\eta_{hjkl}\left(T\right),\eta_{0}\left(T\right)\right)\right\}_{h=4}^{N}\right\}_{j=3}^{h-1}\right\}_{k=2}^{j-1}\right\}_{k=2}^{k-1} \quad \forall \ \tau \in \left(T_{1};T_{N}\right]$$
(15)

and their lower envelope, determining $\eta^*(\tau)$ by (13); ultimately, the optimal WLF dependence $\eta^*(T)$ is returned in digitized form, though it may be reconstructed continuously with already known parameters C_1^* , C_2^* , T_g^* and η_g^* . Totally, those returns are saved into a mat-file (line 69 on figure 11).

CONSIDERING AN EXAMPLE WITH MEASUREMENTS ON THE POLYETHYLENE TEREPHTHALATE RECYCLABILITY SAMPLE

There were carried out the five viscosity measurements

$$\{\eta_i\}_{i=1}^5 = \{133.8, 69.9, 37.5, 21.3, 12.9\}$$
(16)

of the polyethylene terephthalate (Dacron) [19, 20] by the temperatures

$$\left\{T_i\right\}_{i=1}^5 = \left\{403.05, \,412.15, \,422.15, \,432.05, \,442.05\right\} \tag{17}$$

with the Brookfield viscometer CAP2000+ (figure 13). As it is known, the polyethylene terephthalate is a product of polycondensation of terephthalic acid

$$(OH) - (CO) - C_6H_4 - (CO) - (OH)$$

and monoethyleneglycol [20]

$$(OH) - C_2H_4 - (OH)$$

giving the linear macromolecule

$$\cdots [-O - (CH_2)_2 - O - (CO) - C_6H_4 - (CO) -]\cdots$$

of polyethylene terephthalate. Its glass transition temperature lies between 67 and 81 Celsius degrees, where accordingly the amorphous polyethylene terephthalate has $T_g \approx 340.15$ K, and crystalline polyethylene terephthalate has $T_g \approx 354.15$ K. Then, theoretically, temperatures $\{T_i\}_{i=1}^4$ from (17) belong to the segment $\left[T_g; T_g + 100\right]$ by $T_g \in [340.15; 354.15]$. Moreover, if, before processing to recycle, the being recycled polymer has been crumbled up as it actually comes, the glass transition temperature of such deformed polymer becomes lower [15]. Nevertheless, the stated above polyethylene terephthalate glass transition temperatures are just averaged evaluations, which may vary broadly, depending on the being recycled polymer stage of deformation [20, 21]. Hence the temperature set (17) here may be considered as the practical example for demonstrating the developed MATLAB software in building the optimal WLF dependence $\eta^*(T)$ by (13).

There on figure 14 are shown the evaluated in the line 10 (MATLAB function "wlf_eval" on figure 9) five groups (3), which were saved on the line 15 (the same figure 9). As it is seen from the figure 14 screenshots, by the five viscosity measurements (16) here has been obtained even greater polyethylene terephthalate glass transition temperature, than expected before running the systems (14) solver.

Fig. 13. The applied Brookfield viscometer CAP2000+ and some its characteristics [22]

Fig. 14. Result of having applied the MATLAB function "wlf_eval": five groups (3) of the evaluated parameters C_1 and C_2 with T_g and η_g in WLF equation (1); also on screenshots there are ordinal numbers of the four used temperatures from (17) and residual between left and right members of (1)

Now it is proper phase to run MATLAB function "opt_wlf2" for determining the optimal WLF equation by (13). The screenshot of how to run correctly the MATLAB function "opt_wlf2" is represented in figure 15.

Fig. 15. Launching "opt wlf2"

The screenshot of the function "opt_wlf2" run result is on figure 16, whence instantly the optimized WLF equation (1) by the criterion (13) is

$$\begin{split} \eta^*(T) &= \frac{1 - \operatorname{sign}(T - 403.06)}{2} \times \\ &\times \left(\frac{1 - \operatorname{sign}(T - 403.06)}{2} - \frac{1 + \operatorname{sign}(T - 403.059)}{4} \cdot \operatorname{sign}[T - 403.059] \right) \cdot \eta_{4321}(T) + \\ &+ \frac{1 + \operatorname{sign}(T - 403.059)}{2} \left(\frac{1 + \operatorname{sign}(T - 403.059)}{2} - \frac{1 - \operatorname{sign}(T - 403.06)}{4} \cdot \operatorname{sign}[T - 403.06] \right) \times \\ &\times \frac{1 - \operatorname{sign}(T - 403.065)}{2} \times \\ &\times \left(\frac{1 - \operatorname{sign}(T - 403.065)}{2} - \frac{1 + \operatorname{sign}(T - 403.064)}{4} \cdot \operatorname{sign}[T - 403.064] \right) \cdot \eta_{5321}(T) + \\ &+ \frac{1 + \operatorname{sign}(T - 403.064)}{2} \left(\frac{1 + \operatorname{sign}(T - 403.064)}{2} - \frac{1 - \operatorname{sign}(T - 403.065)}{4} \cdot \operatorname{sign}[T - 403.065] \right) \times \\ &\times \frac{1 - \operatorname{sign}(T - 403.077)}{2} \times \\ &\times \left(\frac{1 - \operatorname{sign}(T - 403.077)}{2} - \frac{1 + \operatorname{sign}(T - 403.076)}{4} \cdot \operatorname{sign}[T - 403.076] \right) \cdot \eta_{5431}(T) + \\ &+ \frac{1 + \operatorname{sign}(T - 403.076)}{2} \left(\frac{1 + \operatorname{sign}(T - 403.076)}{2} - \frac{1 - \operatorname{sign}(T - 403.077)}{4} \cdot \operatorname{sign}[T - 403.077] \right) \times \end{split}$$

МЕТОДИ ТА СИСТЕМИ ОПТИКО-ЕЛЕКТРОННОЇ І ЦИФРОВОЇ ОБРОБКИ ЗОБРАЖЕНЬ ТА СИГНАЛІВ

$\times \frac{1 - \operatorname{sign} \left(T - 403.244 \right)}{2} \times$							
$\times \left(\frac{1 - \operatorname{sign}(T - 403.244)}{2} - \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 \right) \cdot \eta_{5421}(T) + \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 \right) \cdot \eta_{5421}(T) + \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 \right) \cdot \eta_{5421}(T) + \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 \right) \cdot \eta_{5421}(T) + \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 \right) \cdot \eta_{5421}(T) + \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 \right) \cdot \eta_{5421}(T) + \frac{1 + \operatorname{sign}(T - 403.243)}{4} \cdot \operatorname{sign} T - 403.243 $							
MATLAB							
D 😂 🗏 🐘 🕵 🗢 🍽 🦉 😤 Current Directory: EVMATLAB7p0p1\work\AG Theory DoctoralDiss a	and Support 🗾 🖻						
>> tic, [C1_star C2_star Tg_star eta_g_star Temperature_star h_star_j_star_k_s	tar_1_star Temperature_current distance_cont_wlf Lower_Envelope eta_opt]=opt_wlf2						
4 3 2 1							
5 3 2 1							
5 4 2 1							
5. 4 3 1							
ans = 5 4 3 2							
Elapsed time is 23209.203000 seconds,							
4 start	M						
MATLAB							
Ele Edit Debug Desktop Window Help	and Support						
<pre>>> load wif_Spoints_distance_cont_wif >> who</pre>							
Your variables are:							
C1_star Temperature_current distance_cont_wlf C2_star Temperature_star eta_g_star Lower_Envelope Tg_star eta_opt	h_star_j_star_k_star_l_star						
eta_opt = Columns 1 through 15 133.6071 133.7935 133.7834 133.7732 133.7631 133.7529 133.7428 133.7 Columns 16 through 30 133.6674 133.6572 133.6470 133.6369 133.6267 133.6165 133.6064 133.5 Columns 31 through 45 133.5355 133.5254 133.5152 133.5050 133.4948 133.4847 133.4745 133.4 Columns 46 through 60 133.3830 133.3728 133.3626 133.3525 133.3423 133.3321 133.3220 133.3 Columns 61 through 75 133.2306 133.2204 133.2103 133.2001 133.1900 133.1798 133.1697 133.1	326 133.7225 133.7147 133.7045 133.6944 133.6842 133.6741 133.6775 962 133.5861 133.5759 133.5657 133.5763 133.5661 133.5559 133.5457 643 133.4541 133.4440 133.4338 133.4236 133.4135 133.4033 133.3931 118 133.3017 133.2915 133.2813 133.2712 133.2610 133.2509 133.2407 595 133.1494 133.1393 133.1291 133.1190 133.1088 133.0987 133.0885						
D D	A Columns 2 Columns 3 Colum						
5 4 2 1 v 5 4 3 2 v ♦ Start	A Start						

Fig. 16. The optimized WLF equation (1) and its parameters by the criterion (13); it took the elapsed time that is more than 6.44 hours to have processed the data (16) and (17)

Fig. 17. Five plots of distances (19) by the data (16) and (17) for the investigated polyethylene terephthalate sample viscosity

within the segment $[T_g^*; T_g^* + 100] = [363.2563; 463.2563]$, involving the set (17). The optimal WLF equation (18) has been obtained by the criterion (13) in the space $\mathbb{L}_2[403.05; 442.05]$ and consists of all the five WLF equations $\eta_{4321}(T)$, $\eta_{5321}(T)$, $\eta_{5431}(T)$, $\eta_{5421}(T)$ and $\eta_{5432}(T)$, defined on the segment [403.05; 442.05] on the plane \mathbb{R}^2 . Figure 17 contains plots (five graphs) of the function family

$$\left\{ \rho_{\mathbb{L}_{w}[403.05;\,\tau]} \big(\eta_{4321}(T),\,\eta_{0}(T) \big),\,\rho_{\mathbb{L}_{w}[403.05;\,\tau]} \big(\eta_{5321}(T),\,\eta_{0}(T) \big),\,\rho_{\mathbb{L}_{w}[403.05;\,\tau]} \big(\eta_{5421}(T),\,\eta_{0}(T) \big),\,\rho_{\mathbb{L}_{w}[403.05;\,\tau]} \big(\eta_{5432}(T),\,\eta_{0}(T) \big) \right\}$$

$$\left\{ \rho_{\mathbb{L}_{w}[403.05;\,\tau]} \big(\eta_{5431}(T),\,\eta_{0}(T) \big),\,\rho_{\mathbb{L}_{w}[403.05;\,\tau]} \big(\eta_{5432}(T),\,\eta_{0}(T) \big) \right\}$$

$$(19)$$

and their lower envelope by w = 2, containing each element of the set (19), though predominantly this envelope has coincided with $\rho_{\mathbb{L}_{w}[403.05; \tau]}(\eta_{5432}(T), \eta_{0}(T))$. Finally, figure 18 is the visualized optimal WLF equation (1) as the appropriate temperature dependence of the investigated polyethylene terephthalate sample viscosity by the data (16) and (17), where the four-linked polyline $\eta_{0}(T)$ is on background for comparison.

After all, the obtained optimal WLF equation (18), being not perfect for the given polymer material, becomes more fitting as the temperature runs up to the right end of the segment [403.05; 442.05] (it may be seen as from figure 17, as well as from figure 18, though figure 17 gives more analytical conclusion on it because of becoming stabilized distances).

CONCLUSIONS AND PERSPECTIVE FOR FURTHER WLF INVESTIGATION

The stated optimizing model of WLF equation (1), using the space $\mathbb{L}_{w}[T_{1}; T_{N}]$ running metric (12) for continual determination of the optimal temperature dependence amongst the functions (4), allows to get the optimal WLF equation by the criterion (13), piecing this equation continuously point after point. Theoretically, the optimal WLF equation by the criterion (13) may be constituted from two and more elements of the set (4), and by that the number of transitions from one WLF equation to another may be infinite. Nevertheless, the

exampled polyethylene terephthalate material has the single WLF equation $\eta_{_{5432}}(T)$ in constituting $\eta^*(T)$.

Then it is presumable, that for other similar polymer materials the composite WLF equation $\eta^*(T)$ will be formed with the finite number of transitions from one WLF equation to another. Trustworthy knowing of polymer material viscosity temperature dependence is utterly needful by recycling polymeric wastes, where there is always the problem to melt them, heating up to some temperature, for to fix the liquid melt viscosity.

The developed and represented MATLAB functions work on the stated criterion, computing the distances (15) and their lower envelope to determine $\eta^*(T)$. Those 10 returns, appearing within MATLAB Workspace, are saved into a mat-file (line 69 on figure 11), and may be used in further investigations with the given polymer material.

However, there are some problems, still facing on. Firstly, if number of measurements N is too small, then the temperature segment to survey has to be shortened, though how it should be done is unclear. Secondly, for the given temperature segment to survey there is vagueness in the question on how many viscosity measurements an investigator should do for a polymer within the given temperature range. These items are the subject for further investigation of the temperature dependence of polymer materials viscosity in the WLF equation (1) form.

REFERENCES

- 1. Viscosity [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Viscosity
- 2. Polymer [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Polymer
- 3. Biopolymers [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Biopolymers
- 4. Polyethylene [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Polyethylene
- 5. Smart material [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Smart_materials
- 6. Viscoelasticity [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Viscoelasticity
- 7.Виноградов Г. В. Реология полимеров / Г. В. Виноградов, А. Я. Малкин. М. : Химия, 1977. 440 с.
- Polymer chemistry [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Polymer_ chemistry
- 9. Polymer physics [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Polymer_physics
- 10. Polymer science [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Polymer_ science
- 11. Polymerization [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Polymerization
- 12. Step-growth polymerization [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/ Step-growth_polymerization
- 13. Chain growth polymerisation [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/ Addition_polymerization
- Williams M. L. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids / M. L. Williams, R. F. Landel, J. D. Ferry // J. Am. Chem. Soc. — 1955. — V. 77, N. 14. — P. 3701 — 3707.
- 15. Glass transition [Electronic resource]. Access mode : http://en.wikipedia.org/wiki/Glass_transition temperature
- 16. Малкин А. Я. Диффузия и вязкость полимеров. Методы измерения / А. Я. Малкин, А. Е. Чалых. — М. : Химия, 1979. — 304 с.
- 17. Фогельсон Р. Л. Температурная зависимость вязкости / Р. Л. Фогельсон, Е. Р. Лихачев // Журнал технической физики. 2001. Т. 71, вып. 8. С. 128 131.
- 18. Temperature dependence of liquid viscosity [Electronic resource]. Access mode : http://en. wikipedia.org/wiki/Temperature_dependence_of_liquid_viscosity
- 19. Цены на вторсырье [Электронный ресурс]. Режим доступа : http://www.recyclers. ru/modules/soapbox/
- 20. ПЭТ полиэтилентерефталат [Электронный ресурс]. Режим доступа : http://www. ekoresurs.ru/pet polietilentereftal
- 21. Отходы термопластов Направления использования вторичного сырья Статьи [Электронный ресурс]. Режим доступа : http://www.recyclers.ru/modules/section/category.php? categoryid=17
- 22. Brookfield Viscometers, Rheometers and Texture Analyzers for viscosity measurement and control and texture analysis [Electronic resource]. Access mode : http://www.brookfieldengineering.com

Надійшла до редакції 02.09.2010р.

Romanuke V. V. – candidate of technical science, associate professor of the Applied Mathematics and Social Informatics Department, Khmelnytskyy National University, Khmelnytskyy, Ukraine.