МАТЕМАТИЧНА МОДЕЛЬ КОЛИВАНЬ КОНІЧНОГО ГІСТЕРЕЗИСНОГО РОТОРА В ГАЗОМАГНІТНІЙ ОПОРІ

Вінницький національний технічний університет, e-mail: kucheruk@mail.ru

В роботі розроблено математичну модель радіальних та крутильних коливань конічного гістерезисного ротора в газомагнітній опорі. Досліджено диференційні рівняння руху ротора. При розв'язанні диференційний рівнянь руху отримано рівняння радіальних та крутильних коливань.

Ключові слова: гістерезисний ротор, радіальні коливання, крутильні коливання, газомагнітна опора, диференційні рівняння.

Вступ

Підприємствами Ізраїлю, США, Німеччини, деякими підприємствами хімічної та електротехнічної промисловості України випускаються синхронні гістерезисні електричні машини з газомагнітним підвісом, які мають дисковий та конічний ротор. Вони часто використовуються у текстильній промисловості (веретена, прядильні машини), хімічній промисловості (розпилювачі), медицині (апарати для створення штучної атмосфери соляних печер) західних держав та держав СНД. Найбільш розповсюдженими з них є електричні машини з конічним ротором. Це обумовлене високою стійкістю конічного ротору як в осьовому так і в радіальному напрямку. Виходячи з цього, актуальним завданням є розробка математичної моделі радіальних та крутильних коливань конічного ротору синхронної гістерезисної електричної машини у газомагнітному підвісі, дослідження та вирішення системи диференційних рівнянь, що описують обертальний рух ротору, отримання аналітичних виразів, що описують радіальні та крутильні коливання ротору.

Аналіз досліджень та публікацій

Розробкою та дослідженням синхронних гістерезисних електричних машин займалися Сокол В.М., Шнайдер А.Г., Поджаренко В.О. та інші українські та зарубіжні вчені. У роботах [1-3, 5] розроблено математичні моделі конічного та циліндричного ротора синхронної гістерезисної електричної машини з газомагнітним підвісом, а також розглянуто їх радіальні та крутильні коливання у певних випадках.

Основна частина

Диференційні рівняння руху конічного гістерезисного ротора в безконтактній газомагнітній опорі (1) витікають з динамічної моделі системи [1, 2] і мають вигляд:

де m - маса ротора, J_{Gx} , J_{Gy} та J_{Gz} - моменти інерції ротора відносно осей η , ζ , ξ , $F_{ei\eta}$ та $F_{ei\zeta}$ радіальні складові сили інерції $F_i = m\epsilon\omega^2$, N_η та N_ζ - радіальні складові підйомної сили газового шару, F_η та F_ζ - радіальні складові сили електромагнітного тяжіння між ротором і статором, N_ξ та F_ξ - осьові складові підйомної сили газового шару та сили електромагнітного тяжіння між ротором і статором, N_{ξ} по сьові складові підйомної сили газового шару та сили електромагнітного тяжіння між ротором і статором, $M_{\Gamma\eta}$ та $M_{\Gamma\zeta}$ - відновлюючі моменти газового шару відносно осей η , ζ , M_D - обертаючий момент, ω_x , ω_y , ω_z - складові вектора кутової швидкості ω відносно осей η , ζ , ξ , α та β - кути прецесії та нутації, $\phi = \omega t$ - кут повороту ротора відносно осі обертання, $\delta_{c\eta}$, $\delta_{c\zeta}$, $\delta_{c\xi}$ - коефіцієнти демпфування радіальних коливань, δ_x , δ_y - коефіцієнти демпфування крутильних коливань, ε - ексцентриситет маси ротора.

Враховуючи досить малу величину зазора між ротором і конічною розточкою статора порівняно з радіусами та довжиною ротора, а також велику жорсткість газомагнітної опори [3], і нехтуючи в зв'язку з цим вельми малими кутовими перекосами осі обертання ротора, будемо вважати, що ротор обертається тільки навколо осі ξ , яка співпадає за напрямком з віссю симетрії статора і має вертикальний напрямок, і може рухатись прямолінійно за координатами ζ , η , ξ .

Зобразимо узагальнену силу Q у вигляді

$$Q = C_q \tag{2}$$

де q - узагальнена координата, а

$$C_q = \frac{\partial Q}{\partial q} \tag{3}$$

є узагальнена жорсткість.

З урахуванням прийнятих припущень із системи диференційних рівнянь (1) визначимо рівняння радіального переміщення

$$\ddot{\eta} + 2\delta_{\eta}\dot{\eta} + \frac{C_{e}}{m}\eta = e\omega^{2}\cos\omega t, \qquad (4)$$

$$\ddot{\zeta} + 2\delta_{\zeta}\dot{\zeta} + \frac{C_e}{m}\zeta = e\omega^2\sin\omega t\,,\tag{5}$$

де власна частота коливань системи за радіальною координатою η визначається виразом :

$$\Omega_{\eta} = \sqrt{\frac{C_{\eta}}{m}} = \sqrt{\frac{C_{N_{\eta}} + C_{F_{\eta}}}{m}} = \sqrt{m^{-1} \left(\frac{\partial N_{\eta}}{\partial \eta} + \frac{\partial F_{\eta}}{\partial \eta}\right)}$$
(6)

З системі диференційних рівнянь (1) визначимо також (з урахуванням прийнятих припущень) рівняння обертання ротора

$$\dot{\omega} = \frac{\varepsilon}{J_{Gz}} \left[\left(N_{\eta} + F_{\eta} \right) \cos \varphi - \left(N_{\zeta} + F_{\zeta} \right) \sin \varphi \right] + \frac{M_D}{J_{Cz}}, \tag{7}$$

де, згідно [4], обертальний момент визначається співвідношенням

$$M_{D} = \frac{1}{8} B_{m} H_{c} p_{e} L \left[\frac{h_{R}}{\cos \chi} (R_{0} + R_{1}) - \left(\frac{h_{R}}{\cos \chi} \right)^{2} \right], \qquad (8)$$

 H_c - коерцитивна сила матеріалу ротора, яка для гістерезисних сплавів типу «вікалой» становить 200 -300 А/м, p_e - кількість пар полюсів, h_R - товщина активного шару ротора, R_0 та R_1 - радіуси відповідно більшої та меншої основ конуса ротора, L - довжина ротора, χ - кут конусності ротора, а

$$B_m = \frac{\sqrt{2\mu_0 m_\phi k_{o\delta} w_{o\delta} I_\phi}}{\pi p_e h_M},\tag{9}$$

де $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м, m_{φ} - кількість фазних обмоток статора, k_{ob} - обмотувальний коефіцієнт, w_{ob} - кількість витків обмотки статора, I_{φ} - фазний струм, h_M - величина магнітного зазору між ротором і статором.

Рівняння (7) з урахуванням виразів (8) і (9) являє собою математичний вираз залежності кутового прискорення ротора від кута повороту та струму статора

Величина е радіального зміщення ротора в диференційних рівняннях (4) і (5) може бути визначена через ексцентриситет маси є [5]:

$$e = \frac{\varepsilon \Omega_e^2}{\Omega_e^2 - \omega^2} \tag{10}$$

Враховуючи початкові умови $\eta_0 = \dot{\eta}_0 = 0$ та $\zeta_0 = \dot{\zeta}_0 = 0$ та вираз (10), вимушені коливання ротора в радіальному напрямку знайдемо з розв'язку диференційних рівнянь (4) і (5) у вигляді:

$$\eta = \frac{\varepsilon \omega^2 \Omega_e^2}{\left(\Omega_e^2 - \omega^2\right) \sqrt{\left(\Omega_e^2 - \omega^2\right) + 4\delta_\eta^2 \omega^2}} \cos(\omega t + \Theta_2);$$
(11)

$$\zeta = \frac{\varepsilon \omega^2 \Omega_e^2}{\left(\Omega_e^2 - \omega^2\right) \sqrt{\left(\Omega_e^2 - \omega^2\right) + 4\delta_{\xi}^2 \omega^2}} \sin(\omega t + \Theta_2).$$
(12)

З урахуванням ідентичності коефіцієнтів демпфування у радіальних напрямках порівняння виразів (11) та (12) показує, що вони відрізняються за фазою на кут $\pi/2$ і збігаються за іншими параметрами (амплітуда та частота коливань), тому в подальшому будемо аналізувати лише один з цих виразів.

3 рівнянь (11) і (12) випливає, що амплітуда вимушених коливань ротора дорівнює:

$$A = \frac{\varepsilon \omega^2 \Omega_e^2}{\left(\Omega_e^2 - \omega^2\right) \sqrt{\left(\Omega_e^2 - \omega^2\right)^2 + 4\delta_e^2 \omega^2}}.$$
(13)

Не враховуючи сили опору при обертанні ротора, відмітимо рівність амплітуд радіальних складових газової сили ($N_{\eta} = N_{\zeta} = N_e$) та електромагнітної сили ($F_{\eta} = F_{\zeta} = F_e$) і визначимо циклічну частоту коливань ω (кутову швидкість) в (11) і (13) з розв'язку диференційного рівняння (7) у вигляді:

$$\omega = \frac{\sqrt{2}\mu_0 m_{\phi} k_{o\delta} W_{o\delta} H_c h_R (R_0^2 - R_1^2)}{8\pi h_M J_{Gz}} I_{\phi} t + \frac{\varepsilon (N_e + F_e)}{2\omega J_{Gz}} \sin 2\varphi$$
(14)

Перший доданок в правій частині трансцендентного рівняння (14) характеризує синхронну кутову швидкість конічного гістерезисного ротора без урахування впливу на неї сил опору:

$$\omega_{c} = \frac{\sqrt{2}\mu_{0}m_{\phi}k_{o\delta}w_{o\delta}H_{c}h_{R}\left(R_{0}^{2} - R_{1}^{2}\right)}{8\pi h_{M}J_{Gz}}I_{\phi}t_{p}$$
(15)

де $t_{\mathsf{p}}\,$ - час розгону ротора до синхронної кутової швидкості.

Графоаналітичний розв'язок рівняння (15) у вигляді залежності синхронної кутової швидкості від струму статора та часу розгона ротора знайдено з використанням обчислювального математичного пакету прикладних програм «Maple V for Windows» [6]. Залежність кутової швидкості ротора від струму статора та часу розгону ротора у вигляді графоаналітичного розв'язку рівняння (15) наведено на рис.1.

Рис. 1. Залежність кутової швидкості від струму статора та часу розгону ротора

Підставляючи (15) у вираз (13), знайдемо з останнього залежність амплітуди радіальних коливань ротора від його кутової швидкості та струму статора. Таку амплітудно-частотну характеристику системи у вигляді графоаналітичного розв'язку рівняння (13) з урахуванням (15), одержаного з допомогою пакету прикладних програм «Maple V for Windows», наведено на рис. 2.

Рис.2. Амплітудно-частотні характеристики системи та їх залежність від струму статора

Аналіз амплітудно-частотної характеристики системи показує, що зона резонансних частот зміщується в сторону більших частот при зростанні струму статора. Це пояснюється тим, що із зростанням струму зростають сила електромагнітного тяжіння між ротором і статором та жорсткість газомагнітної опори.

Значне зростання амплітуди резонансу при зростанні струму статора також пояснюється зростанням жорсткості та зниженням демпфуючих властивостей газомагнітної опори при зростанні струму статора.

З рівняння (15) випливає, що у відсутності сил опору синхронна кутова швидкість не залежить від кута ф повороту ротора і лінійно зростає із зростанням часу розгону та/або струму статора. Проте, на величину кутової швидкості значний вплив має другий доданок правої частини рівняння (14), що має вигляд:

$$\omega_{k} = \frac{\varepsilon (N_{e} + F_{e})}{2\omega J_{Gz}} \sin 2\omega t$$
(16)

Очевидно, що рівняння (16) описує коливальній процес з амплітудою, яка зростає із збільшенням ексцентриситету маси ротора і зменшується при збільшенні кутової швидкості ω обертання ротора, та циклічною частотою, що вдвічі перебільшує циклічну частоту обертання ротора. Це означає, що складова ω_k частоти обертання з періодом, вдвічі меншим за період обертання, збільшує і зменшує синхронну кутову швидкість ротора, спричиняючи його крутильні коливання.

Рівняння крутильних коливань ротора знайдемо, інтегруючи (16) в межах від 0 до t:

$$\varphi_{k} = \frac{\varepsilon \left(N_{e} + F_{e}\right)}{2\omega J_{G_{z}}} \int_{0}^{t} \sin 2\omega t dt = -\frac{\varepsilon \left(N_{e} + F_{e}\right)}{4\omega^{2} J_{G_{z}}} \cos 2\omega t \tag{17}$$

В роботі [5] доведено, що вимірювання амплітуди крутильних коливань і миттєвого значення кутової швидкості ротора дозволяє визначити безконтактним методом приведений момент інерції ротора з рівняння

$$J_{Cz} = \frac{me^2\omega^2}{\varphi_k \sqrt{\left(\Omega_e^2 - \omega^2\right)^2 + 4\delta_e^2\omega^2}}$$
(18)

Таким чином, досліджена математична модель коливань конічного гістерезисного ротора в безконтактній газомагнітній опорі може бути визначена як база для системи вимірювання динамічних параметрів роторної системи.

Висновки

Отже, із розв'язку системи диференційних рівнянь руху конічного ротору синхронної гістерезисної електричної машини у газомагнітному підвісі отримано математичну модель його радіальних та крутильних коливань.

Список літературних джерел

1. Сокол В.М., Шнайдер А.Г., Толкачев Э.А. Газомагнитный подвес ротора моторподшипников как саморегулирующаяся система // Техническая электродинамика. - 1992. - № 5. - С. 48 -55.

2. Сокол В.М. Динамическая модель высокоскоростного ротора с учетом его неуравновешенности // Автоматизация и современные технологии. - 1996. - № 6. - С. 23 - 26.

3. Шнайдер А.Г., Сокол В.М. Демпфирование колебаний ротора мотор-подшипников // Вестник машиностроения. - 1991. - № 10. - С. 28 - 31.

4. Делекторский Б.А., Тарасов В.Н. Управляемый гистерезисный привод. - М.: Энергоатомиздат, 1983. - 128 с.

5. Сокол В.М. Определение момента инерции ротора в процессе его балансировки // Автоматизация и современные технологии. - 1995. - № 7. - С. 22 - 24.

6. Поджаренко В.О., Сокол В.М., Селезньова Р.В. Математичні обчислення в Maple for Windows. - Вінниця: Континент-ПРИМ, 1997. - 106 с.

Математическая модель колебаний конического гистерезисного ротора в газомагнитном подвесе / Бурячок М.А., Кулаков П.И., Кучерук В.Ю. // Вестник Инженерной академии Украины. – 2012.

В работе разработана математическая модель радиальных и крутильных колебаний конического ротора в газомагнитном подвесе. Исследованы дифференциальные уравнения движения ротора. При решении дифференциальных уравнений движения получены уравнения радиальных и крутильных колебаний.

Ключевые слова: гистерезисный ротор, радиальные колебания, крутильне колебания, газомагнитный подвес, дифференциальные уравнения.

Mathematical model of fluctuations in the conical gas-magnetic hysteresis rotor suspension/

Buriachok M., Kulakov P., Kucheruk V. // Bulletin of Engineering Academy of Ukraine. - 2012.

In work the mathematical model of radial and rotating oscillations of a conic curl in gas-magnetic hanger is developed. The differential equations of driving of a curl are investigated. At a solution of the differential equations of driving the equations of radial and rotating oscillations are obtained.

Keywords: the hysteresis curl, the radial oscillations, the rotating oscillations, the gas-magnetic hanger, the differential equations.