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Abstract
One special case of the quantum particle with the effective mass which depends

on the coordinate has been considered. The coordinate dependence of the particle



mass is expressed in terms of trigonometric functions, namely, inverse square of the
cosine. The model we have chosen has the following main features: (1) position
dependent mass is periodic function of the coordinate; (2) the coordinate dependence
has singular points of inverse squares type which can be classified as the centres of
falling; (3) the eigenfunctions in their explicit exact form can be established.

Having determined the eigenfunctions by applying procedure of regulazation
proposed in the given article and Flock’s theorem the equation for eigenvalues has
been found. Its approximate solution allows to find and analyse the law of dispersion
that, as it turned out, is continuous in function of wave number and forms a
continuous spectrum.
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AHoOTALA

TyT po3TIssHYTO OJWH CHeliadbHUN BHIAJ0K KBAHTOBOI YAaCTUHKH 3 €()EKTUBHOIO
Macoro, siKa 3aJeXHUTh Bil KoopauHaT. KoopauHaTHa 3al€XKHICTh MAacH YaCTHHKU
BUpaX€Ha y TepMiHaX TPUTOHOMETPUYHHMX (QYHKIIH OOEpHEHO MPOMOPLIHHICTD
KBaJpaTy KOcHHYyca. Po3risiHyTa TyT MOJeNb BiI3HAYAETHCS TAKUMU OCHOBHUMU
0CcOONMMBOCTAMM: 1) KOOpPAMHATHA 3aJIEKHICTh Macu BHUPAXKEHAa MEPIOIUYHOI0
dbyHKIiero; 2) miit ¢GyHKIIT BlacTUBa HASBHICTh CHHTYJSIPHUX TOYOK, SIKI MOYKHA
KBamiiKyBaTH SK HEHTPU NafiHHA; (3) MOJENIb JAOMYCKAa€ MOXKJIUBICTh BCTAHOBHUTH
BiacHi PyHKIIIT y iX TOUHIH 1 ABHIKM dopmi.

3acTocyBaHHSIM TPOIEAYPU PETyNsipu3allii, 3alpormoHOBaHoi B AaHiil poOoTi, 1
teopemu Droke ofep:kaHO PIBHAHHS Ha BIIACHI 3HAYCHHS, HAOIIKEHE PO3B'sI3aHHS
SAKOTO TIOKa3ye, IO 3aKOH Jucriepcii, K (YHKIIS XBHJIBOBOTO 4YHCIA, (POpMye
HENEPEPBHUM CIIEKTP.

Kuro4oBi c10Ba : KOOpIMHATHO 3ajIe)KHA Maca, BIIACHI (QYHKIII1, 3aKOH JUCTIEPCii.

PACS numbers: 03.65.Ca, 03.65.Fd, 03.65.Ge

Introduction

Quantum mechanics of a particle with an effective mass dependent on coordinates.

for a long time yet is a subject of considerable number of studies. This fact is due to

some nearly obvious circumstances. Let's note, among them, one of the most



important and closely related to the fundamental quantum mechanics problem of
accordance among dynamic variables such as kinetic energy and momentum linear
from the one side and their quantum counterpart, from the another. In due time the
creators of quantum theory which was elaborated and developed for particles with the
position independent mass, dedicated their attention to this problem of the canonical
variables quantization. In case of a mass dependent on coordinates when the particle
motion can be treated as the movement of particle with variable mass in uniform
space or can be interpreted as Hamilton’s system, moving in curvilinear space whose
metrics depends on coordinates, in arrangement of the particle mass and the operator
of momentum linear a certain ambiguity appears.

This, in turn, leads to ambiguity in ordering of non-commuting operators of
momentum and kinetic energy when the Hamilton’s operator has to be written in its
explicit form. Although the problem of ordering non-commutating operators in
quantization of dynamic systems was thoroughly investigated by the creators of
quantum physics, such as Bourne, Jordan, Weil, von Neumann, it is still far from
being solved completely and exhaustively [1].

Another circumstance that has revived interest for studying the dynamics of a
quantum particle with coordinate-dependent mass transfers the problem from a purely
academic area on a practical plane. This concerns the study of quantum regularities
associated with the coordinate dependence of effective mass of charge carriers, which
is significantly stimulated by the creation and wide applications of gradient doped
semiconductors, delta profiled layers, as well as advances in the heterojunctions
synthesis.

Once more notable factor is the intensive development of nanotechnology,
especially such its branches as the energy zones engineering, quantum dots, quantum
wires fabrication that is a prerequisite for the creation of materials with demanded
and predicted properties, which often are determined by the effective mass, in
particular, the density of states, the coefficient of optical absorption, mobility and

other mass-sensible kinetic coefficients.



Along with the above mentioned fundamental problem of ordering non-
commuting operators, a number of studies, focused on solving the Schrodinger
equation for some special model assumptions about the mass coordinate dependence,
has been recently intensified. In this context two peculiarities can be pointed out. The
first, presented by the extensive bibliography [2-5], concerns the development of
algorithms for selecting models and model potentials that would admit existing of
exact solutions. Equally important is the second peculiarity, which has also
accumulated considerable bibliography [6-10] and is dedicated precisely to the search
for these exact solutions. Searching of exact eigenfunctions and eigenvalues of
energy is interesting not in itself but is also important for the development of various
methods of perturbation theory. One of such models, which, as it turns out, allows to
find exact and explicit solutions, is the object of study in this paper.

1. Model
Here we consider one-dimensional motion of a particle with a mass that depends

on the coordinate accordingly to the general formula:

m(x)= Mo

f(x)

The model is specified in two stages. First of all, it is necessary to write down

(1)

explicitly the function f(x)that will be done in the following text. Beside it in the
connection with the above-mentioned problem of non-commutability of the
momentum linear p_=—if0_operator and mass m(x), there is a need for an
unambiguous choice of ordering these dynamic variables in order to the kinetic
energy operator can be determined in its acceptable form. Putting attention to the
researches represented by various authors [2-9] in this paper we will prefer the
approach proposed by von Roos [11,12] and applied by a number of research

groups. The Hamilton von Roos is as follows
1, = [ pm*0pm(6) 4m P o)p (), m ()]

where the parameters ¢ , o, 77 must satisfy to the condition & + p+7 =—1. In this

paper, we accept the following valuese =—1, p=0, 7=0[13]. Such a choice not



only considerable simplifies analytic form of Hamilton’s operator but also shows its
efficiency confirmed by a lot of authors, for example [4, 6-8,14] and references
represented there. It makes sense to point out that with this set of parameters
Hamiltonian retains its hermitian form. Regarding the Schrodinger's equation it due
to the formula (1) assumes the form:

72

m,

0,(f0,¥)=E¥ @)

To choice a function f(x), we use the method of variable change proposed in [9].

So, let's pass to the new variable by the formula

y=y(x) 3)
:we come up to the equation
g fﬁ_yﬁ_‘l’ D ke =0 4)
oy\" Ox oy )ox

where k —is the wave number determined in the standard way, that is
2 2
k> =2mE [h (5)
Wave equation (4) assumes the most simple but non trivial structure if, as it is done in
the model under study, we choose a function f(x)and a new variable y so that the
condition:

Y _c

for= (©)

could be satisfied. Here C — is so far an arbitrary constant that only renormalizes the
effective mass, and which will be set later. With the replacement of the variable
proposed by formula (6), the wave equation is as follows:

2
‘Zy‘fcgﬂmquzo (7)
X

Now, finally, we choose the new variable y as the solution of the equation

vo=Lor e ®)
a

where a —is the characteristic length that sets the scale of the significant mass change

with the coordinate. By integrating equation (8), we obtain:



y=tg (2) ©)

Joint consideration of equations (6) and (9) allows us to find f(x)and write the mass

as explicit function of the coordinate. Thus, one of the basic assumptions of this

work, given by the formula (1), can be specified as follows:
o X
m(x)=m,Cos (—j (10)
a

here for the constant C , we assumed the value C =1/a. Summarizing the discussion

of the model considered in this paper, we point out its main features: first, the kinetic
energy operator is chosen as was proposed in [13]; second, the mass of a particle
changes with the coordinate in accordance with formula (10).
2. The wave equation and its solution
After substituting (8) into (7) and taking in account the choice of constant

C =1/a , the wave equation can be represented by to below given expression:

(y2+1)g:f+(ka)2\1'=0 (11)

To transform the equation (11) to one of the standard and well-described in a number
of sources form, it is convenient to introduce an imaginary variable, namely y = —i¢&,

and a new unknown function @, expressing it by the relation:
¥ =(&-1)D (12)
For the above introduced function, we have the equation
(& -0 +4E-0,® +[(ka)’ +2)D =0 (13)
The fundamental solutions of equation (13) accordingly to the books [15,16] can be

expressed in terms of the associated Legendre functions of the first PV1 (&) and the

second Qi(é‘) kind by the formulas
D, (&) =(&-1)""P)(&) (14)
D, (&) =(& -1)"20,(&) (15)



where the degree v of Legendre functions is equal to one of the solutions of the

equation
v(v+1)=(ka)* +2

that is

Vi) =—1/2+\1/4 —(ka) (16)

Considering the definitions (12), relations (14) and (15), we write the general solution

of the wave equation in the form of a linear combination:
¥ =w(O[4P,(5)+BO(&)]=AY, +BY, (17)

3. Main results: eigenvalues of the Schrodinger equation
The “potential” of a wave equation is a periodic function with a main period equal
tora . Therefore, the wave function must satisfy Floke's conditions [17] (Bloch's
theorem).Before writing down these conditions, it should be noted that the singular
nature of "potential" requires a certain regularization procedure. Here we perform the
regularization according to the following scheme: we choose two infinitely close

points symmetrically located at distances +a& on each side of the singular point

x, = ma/2 and write the Flock’s boundary conditions. These conditions conduct to

appearing of equations for unknown coefficients A and B . The dispersion equation
is then obtained in a standard manner. The regularization procedure will be ended by
the performing of limit transitionge — 0.

It is convenient to use, depending on the context, notation

f(0F) = f15(x)] =(ox (13)

x=x Ftae
which permit to represent the further calculations  more compact form.

Returning to the above mentioned boundary conditions, we write

AW (0—)+BWY,(0—) = ““[AW,(0+) + BY,(0+)]

1 {A(ixplé_ﬂ oo L. %) }: (19)
m(0-) o0& ox ), o0& ox ),

_ a1 {A[iwlﬁj +B[Q‘P2%j}
m©O+)| " \ag 'ox ), o0& ox ),




Non-trivial solutions of a homogeneous system of equations (19) exist if its

determinant is equal to zero. The pointed out condition leads to the equation:

0- 0+

—{¥,(0-)— P (O+)]|:(8§ lg—fj — e (%‘Pl Z—f) :|=0
0— 0+

Writing the equation (20), we took in account that the singular factors

(20)

m(0—)andm (0+)in the second equation of the system (19) which are equal

tom, /S in’e, in the regularization scheme applied here can be reduced. Equation
(20) contains another singular factor, namely the derivative & / Ox . Because of the

relation& =i -tg(x / a)for the derivative 0& / Ox results

6—gziCos_z(x/a) (21)
a

ox

By substituting here the values x =x_ +a¢ we obtain

(a—éj _lSin7e (22)
0F

Oox a

Each of the equation (20) terms contains the same factor (22). Therefore we omit

these sources of singularity. Than equation (20) assumes the following form:

oY, oY,
e W (0+ -, (0+
|: ( )( §j0+ ( )( 85 \]O+:|+
o w5 e |
0—
:‘{’1(0+)£8;;2j +‘P1(O—)[a;;2j —
0—- 0+
oY,
-, (0+
o022 w0 S|

The further transformations of the secular equation (22) which represented in

(22)

Appendices B are based on the well-known [16,18 ] properties and asymptotics of

the joined LeGendre's functions.



As the result we came up to the equation for eigen values of the following form

inv —inv
i _; e +e
ey =~ (23)
2v+1

deduced in Appendices B.

Now we consider two cases

1) First of them corresponds to the energy segment 0 <E <E_= hz/ (8m0a2 ).For

such energy values the parameter 77,which we define by relation 77 = 4/1 / 4 —(ka)*,

is real and satisfies to the conditions 0 <7 =4/1 / 4 —(ka)* <1/2. However paying
attention to the equation (16) we can modify it to the formv,, =-1/2+n. By

combining the last expression with the equation (23) we find the secular equation in

unexpectedly simple form, namely:

piaa 4 p-iga _ SN 24)
n
Now we assume a complex form for a wave number that is:
q=u-+iv (25)

The representation of the wave vector in a complex form is a standard approach to the
study of wave phenomena and description the decaying or increasing modes in
waveguide theory [19]. In addition, it is also a common way to pass to a complex
zone structure in order to study the spectrum of elementary excitations in solids. In
due time expanding the dispersion law on complex values of wave vector some type
of surface states (Tamm’s states) [20] with energy localized inside of a forbidden
zone have been interpreted. The imaginary part of wave number assumes
responsibility for wave function exponential decreasing with a distance from the
crystal surface. It should be noted that in the passing to a complex zone structure with
using of representation (25), the problem is reduced to expressing the imaginary part
of a quasi-wave vector in terms of model parameters. As for our problem. after

separating the real and imaginary parts in equation (24), we come to the equations



Sinua-Shva=0
Sinnn (26)
2n

Chva -Cosua =

The solutions of the first equation are u = zn/a eitherv =0 . By substituting of the

first of them into the second equation of the system we obtain

(-1)'Chva = Slzrzm] (27)
n

Since the parameter 77 varies from 0tol /2, the right-hand side of equation (27)

changes between /2 and 1, and therefore for all even values of n the solutions

exists and it can be given in the following implicit form

. . 2
v=lln Szn;mlL Sinzn 1 (28)
a 2n 2n
Putting v =0 1n the second equation of system (26), we get the equation:
Sini =Cosua
21

which has only solution u =27zn/a if n=1/2 that corresponds to the energy equal
to zero and is absorbed by the relation (28).
2) The second case corresponds to energy eigenvalues belonging to the interval:

E <FE <oo. For this case, both values of vare complex and can be written

as:vy, =—1/2+in where we use the notice 7= \/(kaz)2 —1/4 > (0. The equation

(24) is equivalent to the system:
Sinua-Shva =0
Shrn (29)
2n

Chva -Cosua =

Considerations similar to those, used in the analysis of the above described first case,

give us the dispersive law

2
v:il—ln Sh72'77+ Shn -1 , wu=nn/a (30)
a 2n 2n




which covers both of the possible values of v .
The dispersion law given by expressions (28) and (30) as the results of numerical
calculations which determinate undimensional energy in function of wave number va

is represented by Fig.1. The interval [0<va <1) corresponds to Eq(28) while the
segment (1 <va <x)refers to Eq(30). The same Fig.1 also includes for comparing the
dispersion law for free particle with mass equal tom,. There is clearly visible

significant difference between two graphics for the same values of wave number.

Fig. 1. Graphic of the
undimensional dispersion law in

function of wave number.

Appendices A
The nontrivial peculiarity of the model under study, as it can be seen from
formula (10), follows from the fact that the mass of a particle shows the singularity of

the inverse squares type, at points

X :7[2—61(2S+1),Where sell. (A1)
Some conclusion of Classical dynamics of the particle is established by Hamilton
equations
2
- p '
pP= N
2m~(x) (A2)
i=—L
m(x)

associated with the Hamiltonian



2

__P
" 2m (x) (43)

Accordingly to the second equation of the system (A2) the linear momentum has to

be given as p =m(x)x. Then the first of these equations after simple rearrangement

can be reduced to the form:
)'é+%-()é)2[lnm(x)]'=0 (A4)

which admits exact integration.

Due to relation (10) the Eq (A4) assumes the following explicit form

N2
X+ @tg (ij =0 (AS)

a a

which is accompanied with the initial conditions xLZO =nsa and p = p, =const.

It is convenient to introduce non dimensional variable & using for it the definition:
al=x (A6)
In term of he new variable the equation (A5) becomes as
ECosE +(E)Siné =0 (A7)

The Eq (A7) has integrating factorl / Cos*& . Hence the first integral of (A7) is

& _
Cosé ¢ (A8)

where accordingly to the initial conditions the constant C =v, / a . Being integrated

the Eq (A8) conducts to the formula:

n8E/D+L vt (A9)
tg(§/2)-1 a
Inverting the Eq (A9) allows to find the following final result:
x(t)=rnsa +2a-arctg l:th Ep—otﬂ (A10)
am,

Beginning from the initial point at the moment ¢ =0 the particle moves to the
singular point achieving it when the time tends to infinity. The forces as well as

acceleration at this point become equal to zero. Hence the classical motion of the



particle with position dependent singular mass can be interpreted as falling into the
center.
Appendices B
The factors in the square brackets of Eq(22) are nothing but a Wronskian
W (x)of the differential equation (2) determined to the right and left of the singular

point. Given (8), we obtain

p! 1
Moo= PO R C @)
P, (50w +w0 [P, (S)] Q,(8)0w +wd,[0,(S)]
The calculation of the Wronski determinant (B1) leads us to the expression:
wPi(&)  wOu&) |,
WIS(x)]= =wW[P,($),0,(5)] B2
o waplen wolole) " =

where W[PV1 (5),Qi(§)]—is the Wronskian built on associated Legendre functions

for which there is the following relation [16];

V+u+2 v+u+l
. r r
e ( 2 J ( 2 j

(1—§Z)F(v—,u+2jr(v—,u+lj
2 2

WP (.0, (5] = (B3)

Here u —is the order of the associated Legendre functions and I'(x)—is the Euler’s

gamma function. Substituting in (B3) of the value x =1 conducts us to the result:

(5
27 y(v+1) 2 2) v(v+l1)

(&-1) 2-2 r(vﬂ]r(v]_@z—l)
2 2

WP (£).0,(&)]=

(B4)

Thus, the Wronskian / (x)is independent of the coordinate and can be expressed by
the relation:

Wx)=v(v+1) (BS)
Consequently, the left-hand side (LHS) of the equation (22) assumes the form



oY, oY,
W (0 -, (0+
{ o 5j0+ : )[%J }
{‘P (0 >(8‘I; j (0 )( gj }—v(v+1>(e""“+e’”“)

As for the right-hand side (RHS) of the equation (22), by substituting the wave

(B6)

functions and their derivatives, we obtain:

G e R G R o e
0- 0+ 0-

= v(v + 1){w(0+) [Pj(—icrgg)Qv(ictgg) - Qi(—ictgg)Pv(ictgg)] + (B7)

+w(0-)] P} (ierge)Q, (—ictge) —Qi(ictgg)Pv(—ictgg)]}

Further simplifications are carried out on the basis of passing from negative to
positive values of the Legendre function argument. The corresponding relationships

are given by the following well-known [16] formulas, namely:

P! (<ictgs) = e ™ P (icige) — 2217 0 ierg ) (BS)
P (~icigs) = ™ P (ictge) - 220 (icigs) (BY)
Qi(—z'crge>=—e"”VQi<z‘czge) (B10)

O, (—ictge) = -€™Q, (ictge) (B11)

Substitution of formulas (BS8) - (B11) in (B7) gives:
RHS =v(v+1)x

X {w(O+)KemPy1 (ictge) — %Sin ﬁin(ictgg)ij(ictgg)} +
T
+w(0+) [ei”VQ,l/ (ictge)P, (ictgg)] —
- w(O—)Ke'l”fVPV(ictgg) _25in ﬁVQV(ictge)JQi(ictge)} -
T

—w(0-)[ €™Q, (ictge)P, (ictgg)]} (B12)

The right-hand side of the secular equation, as well as the determinant of Wronski,

contain expressions PV1 ()0, (&) +(-1)" Pv(é)Q‘l/(ﬁ) , in which for Wronskian it is



necessary to put n =1, and for relation (B12) - n =0. To calculate these
expressions, we use the Legendre function definitions in terms of Gaussian hyper

geometric functions[16], namely

p B 27\/71 72_71/21—~(_1 /20— V)gfw-,ufl y
R = v,

XF(L/24v/2=ul2,0+v/2-p)2v+3/2;7 )+

v __-1/2 V+u (B13)
2" 7 Pr /2 4+ et

+
(& =T +v - p)
XF(-v/2=p/2,1/2=v/2=pu/21/2-v;7)

and

2V 7z”21ﬁ(v+,u+1)§_v_’“‘_1 (52 _l)y/Z «
T(v+3/2) (B14)
)XF(L4v /24 1/ 2,0/ 24v /24 p/ 2v 43/ 267

0/(§)=e™

Considering the limit|§| — o0, we get

Pl ~ 27 IR (=1 /2 —v)EY . 2V 77 PO 2 +v)EH (B15)
’ (& -1D"?I(—v-1) (&2 -1)"?I(v)
P(&)~ 27 T PO(=1 /2 —v)ET! .\ 2" T 12 +v)EY (B16)
I'(-v) I'(l+v)
L 277 v+ 2
0,(¢)= rv13/2) (& -1 (B17)
Qv(é) _ 2—1/—1 72_1/21—1(‘/ + 1)5_1/—1 (BIS)

T(v+3/2)

By substituting the above given asymptotes in the recently written expression we find

the result:



PHEO (&) +(=1)"P(£)0L(&) =
N {2“ 7T 2-net 2T 2 4 gt }X

~

(& -1)"T(-v-1) (&2 -1D"?I(v)
5 2—1/—1 72_1/21—~(1 + V)f_v_l ~ (B19)
C(v+3/2)
1y 27V (=1 /2 —v)ETV! s 2" 771 /2 +v)EY y
[(—v) L(1+v)

2—V—1 72_1/21—1(2 + V)g—v—2
X
& -D)"rv+3/2)

After opening the brackets and regrouping the terms we obtain the following relation

PI(E)0,(E)+(-1)'P(H)0,(&) =
- 22 T(=1 /2 -vIA +v)ET 22VN(=1 /2 =) LR +v)E .
(& -D)'"*T(—v-DI(v+3/2) L(—v)(E2 -1’ T (v +3/2)
L TA/2+v)0( +v) 1y L(1/2+vV)I(v+2)(&2 —1)2&72
2(& - TWC(v +3/2) 21 +v)I'(v +3/2)

(=)’

(B20)

Some obvious simplifications give us:

PN (&0, (&) +(=1)"P(E)0L(&) =

I(—v-DI'(v+3/2) (&2 -1)
v e D& -y
+(§2—1)l/2(2v+1) =D Qv +1)

For n =1 1in the main order relative to the inverse powers of the variable & , we get

the result

PUEOO PUOOUE = o + o™ ) (B22)

which in an independent way allows us to confirm the known [16] relation (17).

To n =0 we get:



P (&)0,(E)+P,(£)0,(&) ~
221 /2T +v) £ 1),
T T(v-DI(v+3/2) (&2 -1)" &2

(B23)

1 1
+(52—1>“2(2v+1){v_(v+1)(1_é_zj

Now we pick out from the formula (B12) the following expression

A = Cosm[P}(E)0,(8) + O, (§)P, ()]~ 2 sin wv0,(£)0,($) (B24)
T

By combining (B24) with the recently specified asymptotics (B17), (B18) and (B23)

we obtain:

2+ _ —2v-1
A Cosmy 2 T(-1/2 V)F(1+v){ &

I(—v-Dr(v+3/2) | (&*-1)"?
+Cosav 4 ICRRDCotl Vel W (B25)
(& -1 Qv+1) Qv +1)

 2Sinzy 22D (v + 20 +v)
Via Frv+3/2)r(v+3/2)

+ (& _1)1/2521/3} n

(&2 —1) 223

We regroup the terms in (B25) accordingly to the formula:

220D 4) { Cospy LELI2=1) { g

_ + (& _1)1/252\/3]‘_

T(v+3/2) C(-v—-1) | (& -1)
2(1 + V)Slnﬂ'VF(l + V) 2 (/2 g=2v-3
’ I'(v+3/2) (=D }Jr (B26)
+C0sm{ 3 1‘//2 —(V+1)(§2 _1)1/252}
(& -1)y""(2v+1) Qv +1)

We rewrite the relation (B26) as follows:



22 +y)
C*(v+3/2)(-v-1)

{CosmI(=1/2=v)[(v+3/2)x
x{—(;: _21_;1/2 F(E 1) Er } +2(1 4 V)SinmA (1 + VD - D)(E -1 )4

+Cosrv 4 _ D™ D" (B27)
(&2 -1)"?@2v+1) Qv +1)

The Euler’s gamma functions products can be simplified with using of the well
known [16] identities as it is described below, i.e:
I'~1/2-vi(v+3/2)=I1-(v+3/2)[['(v+3/2)=

T __ (B28)
Sinn(v+3/2) Cosnv

=—(v+3/DI[A(v+3/2)(v+3/2)=

Va B Vid
T+v)Sinz(1+v) A+v)Sinxv

Then by combining (B28) - (B29) with relation (B27), we obtain

- 27201 +v) 2 N2 g2v-3 &
~F2(V+3/2)F(—v—1)7{(§ De -z |"

+ Cosrnv d _we 1)(62 _1)1/2 5_2
(& -D'"?@2v+1) Qv +1)

(-1 -v)[d +v)=— (B29)

(B30)

—2v—-4

The expression in the first line of formula (B30) is in order ofo(& ), whereas the

expression in the second line is proportional to &' . Thus, keeping the terms of the
main order we come to the result:

L Cosrnv 3
A= (52_1)1/2(2v+1)+o(§ ) (B31)

Accordingly to the rule of determination of univalue branch of LeGendre functions

[18] the relation

w(0+) =-w(0-) =& —1)"? (B32)
takes place. By combining Eqs (B6), (B12), (B31) and (B32) we finally obtain the
equation (23)



Jaa i _ o 4 i
2v +1
for eigenvalues of energy if particle position dependent mass is given by expression
(10).
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