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    Abstract 

    One special case of the quantum particle with the effective mass which depends  

on the coordinate has been considered. The coordinate dependence of the particle 



mass is expressed in terms of trigonometric functions, namely, inverse square of the 

cosine. The model we have chosen has the following main features: (1) position 

dependent mass is periodic function of the coordinate; (2) the coordinate dependence 

has singular points of inverse squares type which can be classified as the centres of 

falling; (3) the eigenfunctions in their explicit exact  form can be established.  

     Having determined the eigenfunctions  by applying procedure of regulazation 

proposed in the given article and Flock’s theorem the equation for eigenvalues has 

been found. Its approximate solution allows to find and analyse the law of dispersion 

that, as it turned out, is continuous in function of wave number and  forms a 

continuous spectrum. 

     Key words: position dependent mass, eigenfunctions, law of dispersion. 

    Анотація 

   Тут розглянуто один спеціальний випадок квантової частинки з ефективною 

масою, яка залежить від координат. Координатна залежність маси частинки 

виражена у термінах тригонометричних функцій обернено пропорційність 

квадрату косинуса. Розглянута тут модель відзначається такими основними 

особливостями: 1) координатна залежність маси виражена періодичною 

функцією; 2) цій функції властива наявність сингулярних точок, які можна 

кваліфікувати як центри падіння; (3) модель допускає можливість встановити 

власні функції  у їх точній і явній формі. 

     Застосуванням процедури регуляризації, запропонованої в даній роботі, і 

теореми Флоке одержано рівняння на власні значення, наближене розвʹязання 

якого показує, що закон дисперсії, як функція хвильового числа, формує 

неперервний спектр. 

     Ключові слова : координатно залежна маса, власні функції, закон дисперсії. 

     PACS numbers: 03.65.Ca, 03.65.Fd, 03.65.Ge 

Introduction 

     Quantum mechanics of a particle with an effective mass dependent on coordinates. 

for a long time yet is a subject of considerable number of studies. This fact is due to 

some nearly obvious circumstances. Let's note, among them, one of the most 



important and closely related to the fundamental quantum mechanics problem of 

accordance among dynamic variables such as kinetic energy and momentum linear 

from the one side and their quantum counterpart, from the another. In due time the  

creators of quantum theory which was elaborated and developed for particles with the  

position independent mass, dedicated their attention to this problem of the canonical 

variables quantization. In case of a mass dependent on coordinates when the particle 

motion can be treated as the movement of particle with variable mass in uniform 

space or can be interpreted as Hamilton’s system, moving in curvilinear space whose 

metrics depends on coordinates, in arrangement of the particle mass and the operator 

of momentum linear a certain ambiguity appears. 

      This, in turn, leads to ambiguity in ordering of non-commuting operators of 

momentum and kinetic energy when the Hamilton’s operator has to be written in its 

explicit form. Although the problem of ordering non-commutating operators in 

quantization of dynamic systems was thoroughly investigated by the creators of 

quantum physics, such as Bourne, Jordan, Weil, von Neumann, it is still far from 

being solved completely and exhaustively [1]. 

       Another circumstance that has revived interest for studying the dynamics of a 

quantum particle with coordinate-dependent mass transfers the problem from a purely 

academic area on a practical plane. This concerns the study of quantum regularities 

associated with the coordinate dependence of effective mass of charge carriers, which 

is significantly stimulated by the creation and wide applications   of gradient doped 

semiconductors, delta profiled layers, as well as advances in the heterojunctions 

synthesis. 

       Once more notable factor is the intensive development of nanotechnology, 

especially such its branches as the energy zones engineering, quantum dots, quantum 

wires fabrication that is a prerequisite for the creation of materials with demanded 

and predicted properties, which often are determined by the effective mass, in 

particular, the density of states, the coefficient of optical absorption, mobility and 

other mass-sensible kinetic coefficients. 



       Along with the above mentioned fundamental problem of ordering non-

commuting operators, a number of studies, focused on solving the Schrödinger 

equation for some special model assumptions about the mass coordinate dependence,  

has been recently intensified. In this context two peculiarities can be pointed out. The 

first, presented by the extensive bibliography [2-5], concerns the development of 

algorithms for selecting models and model potentials that would admit existing of  

exact solutions. Equally important is the second peculiarity, which has also 

accumulated considerable bibliography [6-10] and is dedicated precisely to the search 

for these exact solutions. Searching of exact eigenfunctions and eigenvalues of 

energy is interesting not in itself but is also important for the development of various 

methods of perturbation theory. One of such models, which, as it turns out, allows to 

find exact and explicit solutions, is the object of study in this paper. 

1. Model 

      Here we consider one-dimensional motion of a particle with a mass that depends 

on the coordinate accordingly to the general formula: 

                                                             0( )
( )

mm x
f x

                                                  (1) 

The model is specified in two stages. First of all, it is necessary to write down  

explicitly the function ( )f x that will be done in the following text. Beside it in the 

connection with the above-mentioned problem of non-commutability of the 

momentum linear ˆx xp i operator and mass ( )m x , there is a need for an 

unambiguous choice of ordering these dynamic variables in order to the kinetic 

energy operator can be determined in its acceptable form. Putting attention to the 

researches represented by various authors [2-9] in this paper we will prefer the 

approach proposed by von Roos [11,12] and applied   by a number of research 

groups. The Hamilton von Roos is as follows 

                1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
4c x x x xH m x p m x p m x m x p m x p m x  

where the parameters  ,  ,  must satisfy to the condition 1 . In this 

paper, we accept the following values 1 , 0 , 0 [13]. Such a choice not 



only considerable simplifies analytic form of Hamilton’s operator but also shows its 

efficiency confirmed by a lot of authors, for example [4, 6-8,14] and references 

represented there. It makes sense to point out that with this set of parameters 

Hamiltonian retains its hermitian form. Regarding the Schrödinger's equation it due 

to the formula (1) assumes the form: 

                                            
2

0
( )

2 x xf E
m

                                                 (2) 

To choice a function ( )f x , we use the method of variable change  proposed in [9]. 

So, let's pass to the new variable by the formula 

                                                            ( )y y x                                                         (3) 

:we come up to the equation  

                                                  2 0y yf k
y x y x

                                    (4) 

where k is  the wave number determined in the standard way, that is                          

                                                          2 2
02k m E                                                  (5) 

Wave equation (4) assumes the most simple but non trivial structure if, as it is done in 

the model under study, we choose a function ( )f x and a new variable y so that the 

condition: 

                                                                 yf C
x

                                                    (6) 

could be satisfied. Here C  is so far an arbitrary constant that only renormalizes the 

effective mass, and which will be set later. With the replacement of the variable 

proposed by formula (6), the wave equation is as follows: 

                                                          
2

2
2 0yC k

xy
                                        (7) 

Now, finally, we choose the new variable y as the solution of the equation 

                                                            21 ( 1)xy y
a

                                               (8) 

where a is the characteristic length that sets the scale of the significant mass change 

with the coordinate. By integrating equation (8), we obtain: 



                                                             xy tg
a

                                                     (9) 

Joint consideration of equations (6) and (9) allows us to find ( )f x and  write the mass 

as explicit function of the coordinate. Thus, one of the basic assumptions of this 

work, given by the formula (1), can be specified as follows: 

                                                     2
0( ) xm x m Cos

a
                                          (10) 

here for the constant C , we assumed the value 1C a . Summarizing the discussion 

of the model considered in this paper, we point out its main features: first, the kinetic 

energy operator is chosen as was proposed in [13]; second, the mass of a particle 

changes with the coordinate in accordance with formula (10). 

2. The wave equation and its solution 

       After substituting (8) into (7) and taking in account the choice of constant 

1C a  , the wave equation can be represented by to below given  expression: 

                                                    
2

2 2
2( 1) ( ) 0y ka

y
                                  (11) 

To transform the equation (11) to one of the standard and well-described in a number 

of sources form, it is convenient to introduce an imaginary variable, namely y i , 

and a new unknown function  , expressing it by the relation: 

                                                                 2( 1)                                          (12) 

For the above introduced function, we have the equation 

                                2 2 2( 1) 4 [( ) 2) 0ka                              (13) 

The fundamental solutions of equation (13) accordingly to the books [15,16] can be 

expressed in terms of  the associated Legendre functions of the first 1( )P  and the 

second  1( )Q  kind by the formulas 

                                                   2 1/2 1
1 ( ) ( 1) ( )P                                    (14) 

                                                   2 1/2 1
2 ( ) ( 1) ( )Q                                    (15) 



where the degree  of Legendre functions is equal to one of the solutions of the 

equation 

                                                     2( 1) ( ) 2ka  

that is 

                                               2
1,2 1 / 2 1 / 4 ( )ka                                     (16) 

Considering the definitions (12), relations (14) and (15), we write the general solution 

of the wave equation in the form of a linear combination: 

                                     1 1
1 2( )[ ( ) ( )]w AP BQ A B                     (17) 

3. Main results: eigenvalues of the Schrödinger equation 

     The “potential” of a wave equation is a periodic function with a main period equal 

to a . Therefore, the wave function must satisfy Floke's conditions [17] (Bloch's 

theorem).Before writing down these conditions, it should be noted that the singular 

nature of "potential" requires a certain regularization procedure. Here we perform the 

regularization according to the following scheme: we choose two infinitely close 

points symmetrically located at distances a  on each side of the singular point  

2sx a and write the Flock’s boundary conditions. These conditions conduct to 

appearing of equations for unknown coefficients  A  and B . The dispersion equation 

is then obtained in a standard manner. The regularization procedure will be ended by 

the performing of limit transition 0 . 

      It is convenient to use, depending on the context, notation    

                                                  0(0 ) [ ( )] ( )
sx x a

f f x f                               (18)   

which permit to represent the further calculations  more compact form.                 

Returning to the above mentioned boundary conditions, we write 

                     
1 2 1 2

1 2
0 0

1 2
0 0

(0 ) (0 ) [ (0 ) (0 )]

1
(0 )

1
(0 )

iqa

iqa

A B e A B

A B
m x x

e A B
m x x

                       (19) 



Non-trivial solutions of a homogeneous system of equations (19) exist if its 

determinant is equal to zero. The pointed out condition leads to the equation: 

              
1 1 2 2

0 0

2 2 1 1
0 0

[ (0 ) (0 )]

[ (0 ) (0 )] 0

iqa iqa

iqa iqa

e e
x x

e e
x x

         (20)                            

Writing the equation (20), we took in account that the singular factors 

(0 )m and (0 )m in the second equation of the system (19) which are equal 

to 2
0 /m S in , in the regularization scheme applied here can be reduced. Equation 

(20) contains another singular factor, namely the derivative / x . Because of the 

relation ( / )i tg x a for the derivative / x  results 

                                                   2( / )i Cos x a
x a

                                             (21) 

By substituting here the values  sx x a we obtain 

                                                             2

0

i S in
x a

                                     (22) 

Each of the equation (20) terms contains the same factor (22). Therefore we omit 

these sources of singularity. Than equation (20) assumes the following form: 

 

                         

2 1
1 2

0 0

2 1
1 2

0 0

2 2
1 1

0 0

1 1
2 2

0 0

(0 ) (0 )

(0 ) (0 )

(0 ) (0 )

(0 ) (0 )

iqa

iqa

e

e
                            (22) 

The further transformations of the secular equation (22) which represented in 

Appendices B are based on the well-known [16,18 ] properties and asymptotics of  

the joined LeGendre's functions. 



As the result we came up to the equation for eigen values of the following form 

                                           
2 1

i i
iqa iqa e ee e                                               (23) 

deduced in Appendices B. 

Now we consider two cases 

1) First of them corresponds to the energy segment 2 2
00 (8 )sE E m a .For 

such energy values the parameter ,which we define  by relation 21 4 ( )ka , 

is real and satisfies  to the conditions 20 1 4 ( ) 1 / 2ka . However paying 

attention to the equation (16) we can modify it to the form 1,2 1 / 2 . By 

combining the last expression with the equation (23) we find the secular equation in 

unexpectedly simple form, namely: 

                                                   iqa iqa S ine e                                              (24) 

Now we assume a complex form for a wave number that is: 

                                                                    q u iv                                              (25) 

The representation of the wave vector in a complex form is a standard approach to the 

study of wave phenomena and description the decaying or increasing modes in 

waveguide theory [19]. In addition, it is also a common way to pass to a complex 

zone structure in order to study the spectrum of elementary excitations in solids. In 

due time expanding the dispersion law on complex values of wave vector some type 

of surface states (Tamm’s states) [20] with energy localized inside of a forbidden 

zone have been interpreted. The imaginary part of wave number assumes 

responsibility for wave function exponential decreasing with a distance from the 

crystal surface. It should be noted that in the passing to a complex zone structure with 

using of representation (25), the problem is reduced to expressing the imaginary part 

of a quasi-wave vector in terms of model parameters. As for our problem. after 

separating the real and imaginary parts in equation (24), we come to the equations 



                                                     
0

2

S inua S hva
S inChva Cosua

                                   (26) 

The solutions of the first equation are u n a  either 0v . By substituting of the 

first of them into the second equation of the system we obtain 

                                                    ( 1)
2

n S inChva                                            (27) 

Since the parameter  varies from 0 to1 / 2 , the right-hand side of equation (27) 

changes between  / 2  and 1 , and therefore for all even values of n the solutions 

exists and it can be given in the following  implicit form 

                                     
2

1 ln 1
2 2

S in S inv
a

                                  (28) 

Putting 0v   in the second equation of system (26), we get the equation: 

                                                         
2

S in Cosua         

which has only solution  2u n a  if 1 / 2  that corresponds to the energy equal 

to zero and is absorbed by the relation (28). 

2) The second case corresponds to energy eigenvalues  belonging  to the interval: 

sE E .  For this case, both values of are complex and can be written 

as: 1,2 1 / 2 i   where we use the notice 2( ) 1 4 0ka . The equation 

(24) is equivalent to the system: 

                                               
0

2

S inua S hva
S hChva Cosua

                                           (29) 

Considerations similar to those, used in the analysis of the above described first case, 

give us the dispersive law 

                              
2

1 ln 1    ,     
2 2

S h S hv u n a
a

             (30) 



which covers both of the possible values of . 

       The dispersion law given by expressions (28) and (30) as the results of numerical 

calculations which determinate undimensional energy in function of wave number va  

is represented by Fig.1. The interval [0 1)va  corresponds to Eq(28) while the 

segment (1 )va refers to Eq(30). The same Fig.1 also includes for comparing the 

dispersion law for free particle with mass equal to 0m . There is clearly visible 

significant difference between two graphics for the same values of wave number. 

 

Fig. 1. Graphic of the 

undimensional dispersion law in 

function of wave number. 

 

 

 

 

 

 

Appendices A 

      The nontrivial peculiarity of the model under study, as it can be seen from 

formula (10), follows from the fact that the mass of a particle shows the singularity of 

the inverse squares type, at points 

                                         (2 1)
2s
ax s , where s .                                 (A1) 

 Some conclusion of Classical dynamics of the particle is established by Hamilton 

equations 

                                                    

2

22 ( )

( )

pp m
m x
px

m x

                                                  (A2)                                                      

associated with the Hamiltonian 



                                                           
2

2 ( )
pH

m x
                                                  (A3)  

Accordingly to the second equation of the system (A2) the linear momentum has to 

be given as ( )p m x x . Then the first of these equations after simple rearrangement 

can be reduced to the form: 

                                                 21 ( ) [ln ( )] 0
2

x x m x                                        (A4) 

which admits exact integration.   

Due to relation (10) the Eq (A4) assumes the following explicit form 

                                                                           
2( ) 0x xx tg

a a
                                      (A5) 

which is accompanied with the initial conditions  
0t

x sa  and 0xp p const . 

It is convenient to introduce non dimensional variable  using for it the definition: 

                                                                           a x                                                               (A6) 

In term of he new variable the equation (A5) becomes as 

                                                            2( ) 0Cos S in                                 (A7) 

The Eq (A7) has integrating factor 21 / Cos . Hence the first integral of (A7) is 

                                                                             C
Cos

                                              (A8) 

where accordingly to the initial conditions the constant 0 /C v a . Being integrated 

the Eq (A8) conducts to the formula: 

                                                        0( 2) 1ln
( 2) 1

v ttg
tg a

                                        (A9)                      

Inverting the Eq (A9) allows to find the following final result: 

                                         0

0
( ) 2 p tx t sa a arctg th

am
.                        (A10) 

Beginning from the initial point at the moment 0t the particle moves to the 

singular point achieving it when the time tends to infinity. The forces as well as 

acceleration at this point become equal to zero. Hence the classical motion of the 



particle with position dependent singular mass can be interpreted as falling into the 

center.  

Appendices B 

       The factors in the square brackets of Eq(22) are nothing but  a Wronskian 

( )W x of the differential equation (2) determined to the right and left of the singular 

point. Given (8), we obtain 

         
1 1

1 1 1 1

( ) ( )
[ ( )]

( ) [ ( )] ( ) [ ( )]

wP wQ
W x

P w w P Q w w Q
                (B1) 

The calculation of the Wronski determinant (B1) leads us to the expression: 

             
1 1

2 1 1
1 1

( ) ( )
[ ( )] [ ( ), ( )]

[ ( )] [ ( )]

wP wQ
W x w W P Q

w P w Q
                  (B2) 

where 1 1[ ( ), ( )]W P Q is the Wronskian  built on associated Legendre functions 

for which there is the following relation [16]; 

                      
2

2

2 1
2 2 2[ ( ), ( )]

2 1(1 )
2 2

ieW P Q                (B3) 

Here  is the order of the associated Legendre functions and ( )x is the Euler’s 

gamma function. Substituting in (B3) of the value 1 conducts us to the result: 

             
2

1 1
2 2

1
2 ( 1) ( 1)2 2[ ( ), ( )]

12 2( 1) ( 1)
2 2

W P Q              (B4) 

Thus, the Wronskian ( )W x is independent of the coordinate and can be expressed by 

the relation: 

                                                      ( ) ( 1)W x                                                  (B5) 

Consequently, the left-hand side (LHS) of the equation (22) assumes the form 



        

2 1
1 2

0 0

2 1
1 2

0 0

          (0 ) (0 )

(0 ) (0 ) ( 1)

iqa

iqa iqa iqa

e

e e e

         (B6) 

As for the right-hand side (RHS) of the equation (22), by substituting the wave 

functions and their derivatives, we obtain: 

2 2 1 1
1 1 2 2

0 0 0 0

1 1

1 1

(0 ) (0 ) (0 ) (0 )

( 1) (0 ) ( ) ( ) ( ) ( )

              (0 ) ( ) ( ) ( ) ( )

w P ictg Q ictg Q ictg P ictg

w P ictg Q ictg Q ictg P ictg

  (B7) 

Further simplifications are carried out on the basis of passing from negative to 

positive values of the Legendre function argument. The corresponding relationships 

are given by the following well-known [16] formulas, namely: 

                         1 1 12( ) ( ) ( )i S inP ictg e P ictg Q ictg                        (B8) 

                            2( ) ( ) ( )i S inP ictg e P ictg Q ictg                      (B9) 

                                            1 1( ) ( )iQ ictg e Q ictg                                     (B10) 

                                            ( ) ( )iQ ictg e Q ictg                                     (B11) 

Substitution of formulas (B8) - (B11) in (B7) gives: 

1 1

1

- 1

( 1)

2         (0 ) ( ) ( ) ( )

           (0 ) ( ) ( )

2           (0 ) ( ) ( ) ( )

i

i

i

RHS

w e P ictg S in Q ictg Q ictg

w e Q ictg P ictg

w e P ictg S in Q ictg Q ictg

1           (0 ) ( ) ( )                                                    (B12)          iw e Q ictg P ictg

The right-hand side of the secular equation, as well as the determinant of Wronski, 

contain expressions  1 1( ) ( ) ( 1) ( ) ( )nP Q P Q  , in which for Wronskian it is 



necessary to put 1n , and for relation (B12) - 0n .   To calculate these 

expressions, we use the Legendre function definitions in terms of Gaussian hyper 

geometric functions[16], namely 

                                   

1 1/2 1

2 /2

2

1/2

2 /2

2

2 ( 1 / 2 )( )
( 1) ( )

1 / 2 / 2 / 2,1 / 2 / 2; 3 / 2;

2 (1 / 2 )          
( 1) (1 )

/ 2 / 2,1 / 2 / 2 / 2;1 / 2 ;

P

F

F

   (B13) 

and  

                             

1 1/2 1
2 /2

2

2 ( 1)( ) ( 1)
( 3 / 2)

1 / 2 / 2,1 / 2 / 2 / 2; 3 / 2;

iQ e

F
         (B14) 

Considering the limit , we get 

     
1 1/2 1/2 1

1
2 1/2 2 1/2

2 ( 1 / 2 ) 2 (1 / 2 )( )
( 1) ( 1) ( 1) ( )

P                        (B15)      

       
1 1/2 1 1/22 ( 1 / 2 ) 2 (1 / 2 )( )

( ) (1 )
P                      (B16) 

                            
1 1/2 2

1 2 1/22 ( 2)( ) ( 1)
( 3 / 2)

Q                             (B17) 

                                   
1 1/2 12 ( 1)( )

( 3 / 2)
Q                                          (B18)             

By substituting the above given asymptotes in the recently written expression we find 

the result: 



                   

1 1

1 1/2 1/2 1

2 1/2 2 1/2

1 1/2 1

1 1/2

( ) ( ) ( 1) ( ) ( )

2 ( 1 / 2 ) 2 (1 / 2 )
( 1) ( 1) ( 1) ( )

2 (1 )                                            
( 3 / 2)

2  ( 1)

n

n

P Q P Q

1 1/2

1 1/2 2

2 1/2

( 1 / 2 ) 2 (1 / 2 )
( ) (1 )

2 (2 )                                                          ×
( 1) ( 3 / 2)

(B19)      

After opening the brackets and regrouping the terms we obtain the following relation 

 

1 1

2( 1) 2 1 2( 1) 2 3

2 1/2 2 1/2

2 1/2

( ) ( ) ( 1) ( ) ( )

2 ( 1 / 2 ) (1 ) 2 ( 1 / 2 ) (2 )( 1)
( 1) ( 1) ( 3 / 2) ( )( 1) ( 3 / 2)

(1 / 2 ) (1 ) (1 / 2 ) ( 2)(( 1)
2( 1) ( ) ( 3 / 2)

n

n

n

P Q P Q

2 1/2 21)         (B20)
2 (1 ) ( 3 / 2)

                  

Some obvious simplifications give us: 

       

1 1

2( 1) 2 1
2 1/2 2 3

2 1/2

2 1/2 2

2 1/2

( ) ( ) ( 1) ( ) ( )

2 ( 1 / 2 ) (1 ) ( 1) ( 1)
( 1) ( 3 / 2) ( 1)

( 1)( 1)( 1)
(2 1)( 1) (2 1)

n

n

n

P Q P Q

      (B21) 

For  1n in the main order relative to the inverse powers of the variable  , we get 

the result 

                      1 1 2 2
2 1/2

1( ) ( ) ( ) ( ) ( )
( 1)

P Q P Q                       (B22) 

which in an independent way allows us to confirm the known [16] relation (17). 

To 0n  we get: 



                        

1 1

2( 1) 2 1

2 1/2 2

2 1/2 2

( ) ( ) ( ) ( )

2 ( 1 / 2 ) (1 ) 12
( 1) ( 3 / 2) ( 1)

1 1( 1) 1
( 1) (2 1)

P Q P Q

                  (B23) 

Now we pick out from the formula (B12) the following expression 

              1 1 12[ ( ) ( ) ( ) ( )] ( ) ( )Cos P Q Q P S in Q Q             (B24) 

By combining (B24) with the recently specified asymptotics (B17), (B18) and (B23) 

we obtain: 

   

2( 1) 2 1
2 1/2 2 3

2 1/2

2 1/2 2

2 1/2

2( 1)
2 1/2 2 3

2 ( 1 / 2 ) (1 ) ( 1)
( 1) ( 3 / 2) ( 1)

( 1)( 1)
(2 1)( 1) (2 1)

2 2 ( 2) (1 )( 1)
( 3 / 2) ( 3 / 2)

Cos

Cos

S in

    (B25) 

We regroup the terms in (B25) accordingly to the formula: 

2( 1) 2 1
2 1/2 2 3

2 1/2

2 1/2 2 3

2 1/2 2

2 1/2

2 (1 ) ( 1 / 2 ) ( 1)
( 3 / 2) ( 1) ( 1)

2(1 ) (1 ) ( 1)
( 3 / 2)

( 1)( 1)
(2 1)( 1) (2 1)

Cos

S in

Cos

    (B26) 

We rewrite the relation (B26) as follows: 

 



2( 1)

2

2 1
2 1/2 2 3 2 1/2 2 3

2 1/2

2 1/2 2

2 1/2

2 (1 ) ( 1 / 2 ) ( 3 / 2)
( 3 / 2) ( 1)

( 1) 2(1 ) (1 ) ( 1)( 1)
( 1)

( 1)( 1)               
(2 1)( 1) (2 1)

Cos

S in

Cos                         (B27)                 

 

The Euler’s gamma functions products can be simplified with using of the well 

known [16] identities as it is described below, i.e: 

( 1 / 2 ) ( 3 / 2) [1 ( 3 / 2)] ( 3 / 2)

( 3 / 2) [ ( 3 / 2)] ( 3 / 2)
( 3 / 2)S in Cos

               (B28) 

        ( 1 ) (1 )
(1 ) (1 ) (1 )S in S in

                          (B29) 

Then by combining (B28) - (B29) with relation (B27), we obtain 

             

2( 1) 2 1
2 1/2 2 3

2 2 1/2

2 1/2 2

2 1/2

2 (1 ) ( 1)
( 3 / 2) ( 1) ( 1)

( 1)( 1)       
(2 1)( 1) (2 1)

Cos

             (B30) 

The expression in the first line of formula (B30) is in order of 2 4( ) , whereas the 

expression in the second line is proportional to 1 . Thus, keeping the terms of the 

main order we come to the result:     

                                      3
2 1/2 + ( ) 

( 1) (2 1)
Cos                                   (B31) 

Accordingly to the rule of determination of univalue branch of LeGendre functions 

[18] the relation 

                                                2 1/2(0 ) (0 ) ( 1)w w                              (B32) 

takes place. By combining Eqs (B6), (B12), (B31) and (B32) we finally obtain the 

equation (23) 



                                            
2 1

i i
iqa iqa e ee e  

for eigenvalues of energy if particle position  dependent mass is given by expression 

(10). 
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