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ABSTRACT 

This communication has been dedicated to spectral properties of system composing of periodic arrays of layers which 

form superlattice with electron effective mass dependent on coordinate inside of each layer. We considered one 

dimensional model which admits to obtain the exact solution of wave equation. The position dependent mass inside the 

layer was represented by the linear function. We has found wave functions in their explicit and exact forms as well as the 

secular equation for the energy eiguen values. The energy spectrum of electrons as expected manifests properties typical 

for periodic nanostructures. 
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1. INTRODUCTION 

For a long time yet semiconductors superlattices turned out [1] one of the most important functional elements of a lot of 

nanoelectronics devices such as pillar lasers structures or  light emitting diodes et cet. In the last decades considerable 

progress based on molecular beam epitaxy methods or STM and AFM technologies allows to create numerous  

nanosystems, superlattices among them,  with demanded spectral properties. As a rule, electron energetic spectrum 

consists of relatively narrow minibands which are formed due to the periodic modulation of the basic properties of 

supperlattice components such as the conduct band bottom and the valence band top in semiconductor heterojunctions  

or, for example, periodic doping semiconductor layers. Significant advances in nanoscience have opened the way for 

synthesis materials, for example, one-dimensional semiconductotr nanostructures [2], with exceptional properties which 

can allow to construct and produce electronic and optoelectronic devices based on completely new conceptions. Due to 

technology progress, we can’t exclude possibility to create periodic structure like above mentioned examples by space 

modulation of  electron effective mass. That is why a study of spectral properties of system with periodic position-

dependent mass can be really interesting enough. 

The quantum mechanics of a particle with an effective coordinate-dependent mass for a long time has been and continues 

to be the subject of a considerable number of studies. This fact  is motivated by various circumstances. One of them 

involves the fun damental quantum dynamics principles related to the conception of mass. The quantum mechanics was 

created and built up for a particle whose mass as function of generalized coordinates is some constant. When the particle  

mass becomes position dependent the problem of operator ordering appears [3,4]. The fact is that the operator of linear 

moment can be positioned in different places in operator of the kinetic energy conducting to some ambiguity in explicit 

form of Hamiltonian.  Considerable relevance of the problem can be confirmed by the fact that even founders of basics 

quantum conseptions have dedicated their attention and contributed a lot to its resolution. However the ordering 

ambiguity problem has no complete and final treatment yet. That is why researches of position dependent mass particle 

have serious reasons for quantum theory. On the other hand, the intensive development of nanotechnology,  in the first 

place of energy bands engineering,  fabrication of compositionally graded crystals, heterostructures transfer the above 

mentioned problem from a purely scientific plane to the practical one in order to create materials with predetermined and 

predictable properties, which are often determined by the effective mass. Among them we have to point out the density 

of states, coefficient of optical absorption, transport mobility and other mass sensitive parameters. Than in connection 

with the foregoing it will be interesting to study some special models of positon-dependent mass systems which admit 

the exact solution. One of the models is represented in this communication. 
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2. DESCRIPTION OF MODEL. MODIFICATED WAVE EQUATION 

We considered the layered periodic structure with the axis aliened along axis x . Inside of the layer the electron 

spectrum is parabolic with the isotropic effective mass in plane of layer and the mass dependent on coordinate x in the 

direction of superstructure axis. Position dependence of electron effective mass  in its natural form appears  in  

nonuniform  solid state systems, when due to the coordinate dependent  chemical composition  some modification  

requires not only crystal field potential but also the kinetic energy operator. In order to study the effect of mass 

modification only we proceed from the assumption  that  the mass of charge carriers in their one-dimensional motion 

admits to be given by the expression: 

                                                                           (1) 

where is a function whose choice will be specified in the below following text. 

Note that the explicit form of the kinetic energy operator, due to the above mentioned  ambiguity, continues to be 

discussed intensively in the literature, for example, one can refer to works [3,4]. As it is quite well-known nearly the 

extreme points of non degenerated energetic bands accordingly to the Wannier theorem [5] the envelope factor of the 

wave function obeys a Schrödinger-like equation. However, the formal substitution of expression (1) instead the 

effective electron mass in this equation can not be accepted because this change conducts to the non-hermitian form of 

the Hamilton’s operator. Then the above sub lined ambiguity of the operators ordering appears.   

The nature of this ambiguity is quite obvious and lies in the fact the kinetic energy operator no longer commutes with the 

momentum linear operator ˆ
x xp i  h if  the particle’s mass ( )m x becomes position dependent. Consequently, the 

problem of momentum linear operator and particle mass ordering appears and demands its resolution. A natural 

correction of the kinetic energy operator can be reduced to representation [6,7,8] of the kinetic term by the symmetrized 

form, namely: 

2 21 1 1ˆ ˆ ˆ
4 ( ) ( )

c x xH p p
m x m x

 
  

 
     (2) 

but even this choice does not fix the ordering problem. 

That is why the number of alternative forms have been proposed. One of the most commonly used  approach to organize 

the momentum and mass operators has been suggested by von Roos [9,10] and can be given as follows: 

1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
4

c x x x xH m x p m x p m x m x p m x p m x        
  (3) 

where the parameters  ,  ,   must satisfy the condition 1      . Beginning from this expression a lot of 

concrete models have been proposed and explored. Unfortunately, the early written symmetrical and very simple 

Hamiltonian does not fit into the scheme recommended by von Ross. This term was added to the von Ross’s formula in 

order to include in consideration the symmetrized or Weyl ordered operator. 

In this paper, we prefer to use frequently applied by a lot of authors, see for example works [11,12,14], values, namely 

1   , 0   and 0  , correspond to the Ben Daniel-Duke model [15]. Accordingly to the review [16] this 

choice allows to conserve the fundamental properties of Hamiltonian and considerable simplifies resolution of wave 

equation due to the more simple form of effective potential.  

Because of the fact that  in plane electron movement is free,  in the wave equation  the commonly used method of 

separation of variables can be applied. After this approach has been realized and assuming Ben Daniel-Duke’s  proposal 

we will have for the Schrödinger equation the following expression: 

0( ) ( )m x m f x

( )f x
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                                                                 (4) 

where ( )x  describes the motion along the superstructure axis and ( )E E k  
r

energy counted from 

the energetic band corresponding to the free in plane motion. 

Since we try to find an explicit and exact solution of equation (4) further consideration demands to specify the function 

( )f x which describes coordinate dependence of particle’s mass. There are a lot references [16] where some general 

forms of functions which provide the exact solutions of wave equation (4) have been established. In addition to these 

general forms in the extensive bibliography one can found some concrete examples where these exact solutions have 

been explicitly established  and corresponding energy eigenvalues have been determined. Here we refer to the studies 

represented in the paper [5,14,17], where exact solutions of Schrödinger equation with mass given in terms of hyperbolic 

functions have been found and widely discussed. By the authors of works [12,13,14] the cases relative to description of 

mass in terms of polynomial functions were thoroughly investigated. Three coordinate distributions of masses combined 

with  modified Morse’s and Kratzer’s potentials received complete treatment in the paper [17] where the authors 

applying the point canonical transformation method  have found the wave equation exact solutions. A number of authors, 

see for references[17], develop the super symmetry theory in its operator methods. By using this approach they resolved 

the eigen functions and eigen values problems for a wide set of special mass distributions. 

If exclude the ordering problem, to our knowledge, a majority of studies has been dedicated to resolution of wave 

equation with position-dependent mass given in terms of some smooth functions.  However, for layered systems, such as 

superlattices, mass distribution is periodic and  it can also manifest some sharp change into interfaces.  That is why in 

this paper we try at least slightly to expand the list of exact solutions of position dependent mass problem considering the 

model which in our opinion could be relevant to nanostructures and other applications. Thus we treat the one-

dimensional quantum dynamics of the particle with position dependent effective mass represented by the periodical 

function given as follows [23,24]: 

( )
( ) +1 ; [ ,( 1) ] ; 

x nL
f x x nL n L n Z

L

 
                                       (5) 

Accordingly to this choice parameter 
0m is the mass in the left point of period. We also assume that 0k  . The case 

corresponding to values 1 0k    after changing x x  admits to apply the below described approach. 

Due to the coefficients of Schrödinger equation (4) are periodical functions with the period L  its solutions have to 

satisfy to certain boundary conditions. Having recourse to Floquet theorem [19] we can write the first boundary 

condition as follows: 

0
( ) ( )iqL

x x L
x e x

 
                                                                       (6) 

Concerning the second one it comes up of probability’s flux density continuity, that is: 

0 00

1 1
( ) ( )

( ) ( )

iqL

x x

x x L

x e x
m f x m f x

 

    
                                               (7) 

Here q is the wave vector which runs quasi continuous values into the first Brillouin zone  q
L L

 
  

 

 

It is convenient to apply the method of coordinate transformation [4] in order to resolve the Couchy’s problem 

(4),(6),(7). Hence  we introduce a dimensionless variable y determining it by the expression [25,26]: 
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By substituting the formula (8) into the equation (4) we rewrite it as follows: 

                                             

22

0

1

2
y y E

m L y

 
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 

h
                                                                    (9) 

In order to simplify the last and below written equations we assume a notice: 

                  

2

2 0

2

2m E L
Q



 
  

 h
                                                                     (10) 

Than we finally obtain  

                                                    2 2 2 0y yy Q y                                                                  (11)  

The equation (11) is the main result for further consideration. 

3. WAVE FUNCTIONS AND EIGEN VALUES OF ENERGY 

The system of fundamental solutions of equation (11) can be expressed in terms of the Bessel ( )J   and Neumann

( )N  functions. According to the reference book [19] we have such general solution: 

3/2 3/2

2/3 2/3

2 2
( )

3 3
y AyJ Qy ByN Qy

   
     

                                 (12) 

Substitution (12) in the boundary conditions (6) and (7) leads to the following system of equations for coefficients A  

and B : 

3/2 3/2

0 2/3 0 0 2/3 0

3/2 3/2

2/3 2/3

3/2 3/2

0 2/3 0 0 2/3 0

0 0

2 2

3 3

2 2
                            

3 3

1 2 2

3 3

                 

iqL

L L L L

Ay J Qy By N Qy

e Ay J Qy By N Qy

Ay J Qy By N Qy
y y

   
    

   

    
     

    

     
          

3/2 3/2

2/3 2/3

1 2 2
                        

3 3

iqL

L L L L

L L

e Ay J Qy By N Qy
y y












     
           

(13) 

 where the notice 

1Ly                                                                        (14) 

was introduce. 
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The dispersion equation can be obtained in the standard way, namely, equaling to zero the system (13) determinant. To 

simplify the final result one can apply expressions corresponding to the Vronskian of equation (11), as well as the 

Vronskian relative to the Bessel equation independent solutions [20]. In this way we have found: 

0 0

3/2 3/2 3/2 3/2

2/3 2/3 0 2/3 0 2/3

3/2 3/2 3/2 3/2

0 2/3 0 2/3 2/3 2/3 0

6 2 2 2 2

3 3 3 3

2 2 2 2
                 +

3 3 3 3L L

L L y y L

y L y L

CosqL y J Qy N Qy J Qy N Qy

y J Qy N Qy J Qy N Qy



        
            

        

        
         

        
2 2

3/2 3/2 3/2 3/20
2/3 2/3 0 2/3 0 2/3

0

( ) 2 2 2 2
+

3 3 3 3

L
L L

L

y y
J Qy N Qy J Qy N Qy

y y



         
        

        

     (15) 

After specifying all the derivates we have come to the master equation in its final form, namely:   

2 2
3/2 3/2 3/2 3/20

2/3 2/3 0 2/3 0 2/3

0

3/2 3/2 3/2 3/2

0 2/3 5/3 0 5/3 0 2/3

6 2( ) 2 2 2 2

3 3 3 3

2 2 2 2
              

3 3 3 3

L
L L

L

L L L

y y
CosqL J Qy N Qy J Qy N Qy

y y

Q y y J Qy N Qy J Qy N Qy


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        

        
        

        

3/2 3/2 3/2 3/2

0 2/3 0 5/3 5/3 2/3 0

2 2 2 2
              

3 3 3 3
L L LQy y J Qy N Qy J Qy N Qy



        
         

        

(16) 

Approximate solutions of equation (16) can be obtained for two asymptotic cases, In the first case,  taking into account 

the asymptotic expansions of the Bessel and Neumann functions [20], we come to  the equation: 

   
1/4 1/4 3/21 2

( 1)
2 3

L L Ly y Cos Q y CosqL
         

                        (17) 

where the terms of order 
1Q

and superior ones have been neglected. Let  us point out  that multiplicative factor in 

equation (16) satisfies to the condition  
1/4 1/4( ) / 2 1L Ly y   for all the actual values of parameter  . Hence the 

equation (16) always has solutions. By resolving the equation (16), we have obtained: 

22
2

3/2 1/4 1/4

0

3 2
( )

2 2 ( 1)
n

L L L

CosqL
E q n arcCos

m L y y y






     
     

      

h
                       (18) 

Regarding the expression (16) and comparing it with the well known results of State Solid Theory [21] we make sure 

that periodic and linear modulation of particle mass produces the effect similar to the action of periodic potential of 

perfect crystal whose impact on the electron spectrum comes to the renormalization of the particle mass and formation of 

energetic bands. Accordingly to Eq. (18), that is for highly exited states , subbands reduce to non dispersed energetic 

levels and  the electron moves in such a way as if its effective mass  was constant and renormalized, as follows [27]: 

3/2 2

02

4
( 1)

9
eff Lm m y


       (19) 
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It is quite obvious that the explicit form of mass renormalization depends on peculiarities of model and the last 

expression only can be valid for the mass modification determined by Eqs. (1), (5). 

In order to verify validity of this result we considered the special case corresponding to limit 0  .Due to the 

definitions (1) and (5) the particle mass becomes position independent if   is equal to zero. Than we have to receive a 

free particle energy spectrum. Indeed in the case 0  from equation (15) comes out 

22

0
0

lim ( )
2

n

n
E q q

m L





 
  

 

h
                                                (20) 

Passing to the extended Brillouin’s  scheme we naturally obtain the parabolic dispersion law inherent to the free particle. 

Returning to the result (17) we note that the periodic modulation of the effective mass by some coordinate dependent 

function in relation to the energy eigen values plays the same role as the periodic potential, namely, the spectrum splits in 

allowed energy zones, in each of which the energy is a continuous function of the wave vector. Consequently, one can 

pass to conclusion that one of the way to expand technologic possibilities of zone spectrum engineering consists in the 

periodic modulation of the position dependent mass 

The width 
nW  of allowed zone is determined by the expression: 

2
2 2

3/2 1/4 1/4

0

(2 1) 3 2 2
1 arccos

2 2 ( 1)

 

 

   
    

    

h
n

L L L

n
W

m L y y y
                  (21) 

while the forbidden zone gap
gnE  has been found as follows: 

2
2 2

3/2 1/4 1/4

0

3 1 1 2
arccos

2 ( 1) 2

 

 

   
     

    

h
gn

L L L

E n
m L y y y

                       (22) 

It is interesting to note that neglecting by the dispersion one can obtain the results identical to ones corresponding to the 

well known problem of the particle in the  rectangular potential well [22].  

In the second case, that is, if 
1/2 1LQy = , after applying the expansion of cylindrical functions in series and restricting 

us by the main terms only, we have 

22

3

0

10 1
( )

1 (1 )

CosqL
E q

m L





  
    

    

h
                                             (23) 

Consequently lowly laid branches of energy spectrum  is analogous to the energy bands peculiar for  the well-known in 

the Solid State Physics model of the nearest neighbours. It is easy also to see that for small values of wave number, the 

spectrum admits parabolic approximation with inverted scheme of  quadratic energetic band and averaged electron mass 

which can be in obvious manner  determined by correspondent expansion in series of equation (23) 

4. CONCLUSION 

In the context of the superlattice formed by periodic array of layers with effective mass dependent on coordinate into 

each of them, electron quantum dynamics has been studied. Assuming that the electron mass inside layer can be 

expressed as linear function of coordinate aligned along the superlattice axis, effective wave equation has been found  in 

such special mathematic form that allows to obtain its exact solutions. These exact solutions were established not only 

for eigenfuntion but for secular equation too. The mentioned equation was found by  joint applying of boundary 

conditions and the Floquet theorem and it shows the structure typical for well-known in Solids State Physics 
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Shrödinger’s equations with periodic coefficients such as Kronig-Penney model for example [21,22]. However its 

solution in explicit form could only be found for two limits.  

One of these cases corresponds to dimensionless wave number much more than one. In this case the dispersion law 

clearly shows the features of superlattice electron spectrum, namely, it consists of energetic subbands separated by 

forbidden zones. Characteristic properties such as subbands and forbidden zone widths depend on sublattice basic 

parameters that are period L and angular coefficient . Due to these peculiarities the creation of structures with 

predictable spectral properties becomes possible. The electron spectrum for highly situated energetic subbands turns out 

weakly depended on wave number and reveals behavior appropriated to one-dimensional rectangular well. The result 

points out that electron can be considered as the particle confined inside of the layer.  

In the case correspondent to the wave number much less than one electron dispersion law is similar to the energetic 

spectrum in the nearest neighborhoods approximation with the renormalized effective mass and consists of one inverted 

energetic band. 

The obtained results can be also applied to the frequency spectrum of layered photonic crystals with  periodic and linear 

modulation of dielectric permeability. 

REFERENCES 

[1] Weisbuch, C., Vinter, B., [Quanum Semiconductor  structures], New York, Academic Press (1993). 

[2] Fang, X., Bando, Y., Guatam, U. K., Zhai, T., Gradečak, S., Golberg, D., “Heterostructures and superlattices in 

one-dimensional nanoscale semiconductors,” J. Mater. Chem. 19, 5683-5689 (2009). 

[3] Levy-Leblond, J. M., ”Position-dependent effective mass and Galilean invariance,” Phys.Rev. A 52, 1845 

(1995). 

[4] Koç, R., Saym, S.,”The Schrödinger equation with position-dependent mass,” J.Phys.A: Math.Theor.-43, 

455203 (2010). 

[5] Cunha, M. S., Christiansen, H. R., “Analityc results in the position-dependent mass Schrödinger problem,” 

Comm. in Theoretical Physics, 1-14 (2013). 

[6] Gora, T., Williams, F., ”Theory of Electronic States and Transport in Graded Mixed Semiconductors,” 

Phys.Rev. 177, 1179 (1969). 

[7] Bastard, G., Furdyna J. K., Mucielski, J., “Landau levels and cyclotron resonance in graded mixed 

semiconductors,” Phys.Rev. B12, 4356-4359 (1975). 

[8] Bastard, G., ”Superlattice band structure in the envelope-function approximation,” Phys.Rev. B24, 5693 (1981). 

[9] Von Roos, O., “Position-dependent effective masses in semiconductor theory,” Phys. Rev. B27, 7547 (1983). 

[10] Von Roos, O., Mavromatis, H., “Position-dependent effective masses in semiconductor theory,” II,Phys. Rev. 

B31, 2294 (1985). 

[11] Barranco, M. M. Pi, Gatica S. M., Hermandes, E. S., Navarro, J., “Structure and energetic of mixed 
4
He-

3
He 

drops,”
 
Phys.Rev. B56, 8997 (1997). 

[12] Peter, A. J., Navaneethakrishnan, K., “Effects of position-dependent mass and dielectric function of a 

hydrogenic donor in a quantum dot,” Physica E : Low-dimensional Systems and Nanostructures 40(9), 2747-

2751 (2008). 

[13] Koç, R., Saym, S., “Remarks on the solution of the position-dependent mass Schrödiger equation,” J.Phys.A: 

Math.Theor. 43, 455203 (2010). 

[14] Alvarez, C. D. E., “Exactly Solvable Potentials and Romanovski Polynomials in Quantum Mechanics,” Thesis 

for MS degree, Universidad Autónoma de San Luis Potosí, Mexico (2007). 

[15] Ben Daniel, D. J., Duke, C.B., “Position-Charge Effects in Electron Tunneling,” Phys. Rev., 152, 683-692 

(1966). 

[16] Christiansen, H. R., Cunha, M.S., ”Energy eigenfunctions for position-dependent mass particles in a new class 

of molecular Hamiltonians,” J. of Math. Phys., 1-32 (2014). 

[17] Ramazan, S., Tezcan, C., “Exact solution of Schrödinger equation for modified Kratzer’s molecular potential 

with the position-dependent mass,” International Journal of Modern Physics E 17(07), 1327-1334 (2008). 

Proc. of SPIE Vol. 11176  111764N-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Nov 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

[18] Guo-Xing, J. U., Chang-Ying, C. A. I., Zhong-Zhou R. E. N., “Generalized Harmonic Oscillator and 

Schrödinger Equation with Position-Dependent Mass,” Communications in Theoretical Physics 51(5), 797 

(2009). 

[19] Kamke, E., [Differentialgleichungen, lösungsmethoden and lösungen], Leipzig, (1959). 

[20] Abramovwitz, M., Stegun I. A., “Handbook of Mathematical Functions with formulas, graphs and mathematical 

tables,” New York, NBS (1964). 

[21] Ashcroft, N.W., Mermin N. D., [Solid State Physics], Holt, Rinehart and Winston, New York, (1976). 

[22] Flügge, S., “Practical Quantum Mechanics,” V1, Springer-Verlag (1971). 

[23] Wojcik, W., Kisala, P., „Source: The application of inverse analysis in strain distribution recovery using the 

fibre bragg grating sensors,” Metrology and Measurement Systems 16(4), 649-660 (2009). 

[24] Wojcik, W., Gromaszek, K., Kotyra, A., et al., „Pulverized coal combustion boiler efficient control,” Przeglad 

Elektrotechniczny 88(11B), 316-319 (2012). 

[25] Zabolotna, N. I., Wojcik, W., Pavlov, S. V., et al., „Diagnostics of pathologically changed birefringent networks 

by means of phase Mueller matrix tomography,” Optical Fibers and Their Applications 2012 Book Series: 

Proceedings of SPIE 8698, UNSP 86980E (2013). 

[26] Krak, Y. V., Barmak, A. V., Bagriy, R. A., Stelya, I. O., “Text entry system for alternative speech 

communications,” Journal of Automation and Information Sciences 49(1), 65-75 (2017). 

[27] Kryvonos, I. G., Krak, I. V., Barmak, O. V., Bagriy, R. O., “Predictive text typing system for the Ukrainian 

language,” Cybernetics and systems analysis 53(4), 495–502 (2017). 

Proc. of SPIE Vol. 11176  111764N-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Nov 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


