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Abstract
This paper investigates the redistribution of metabolic fluxes in the cell with altered activity of S-adenosylmethionine
decarboxylase (SAMdc, EC: 4.1.1.50), the key enzyme of the polyamine cycle and the common target for antitumor therapy.
To address these goals, a stoichiometric metabolic model was developed that includes five metabolic pathways: polyamine,
methionine, methionine salvage cycles, folic acid cycle, and the pathway of glutathione and taurine synthesis. The model is
based on 51 reactions involving 57 metabolites, 31 of which are internal metabolites. All calculations were performed using
the method of Flux Balance Analysis. The outcome indicates that the inactivation of SAMdc results in a significant increase
in fluxes through the methionine, the taurine and glutathione synthesis, and the folate cycles. Therefore, when using
therapeutic agents inactivating SAMdc, it is necessary to consider the possibility of cellular tumor metabolism
reprogramming. S-adenosylmethionine affects serine methylation and activates serine-dependent de novo ATP synthesis.
Methionine-depleted cell becomes methionine-dependent, searching for new sources of methionine. Inactivation of SAMdc
enhances the transformation of S-adenosylmethionine to homocysteine and then to methionine. It also intensifies the
transsulfuration process activating the synthesis of glutathione and taurine.
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Introduction

Numerous reactions of methylation in cells, including
rearrangement of methyl groups on histone tails, methyla-
tion of DNA cytosine and mRNA adenine, require S-
adenosylmethionine (SAM) as a donor of methyl groups.
SAM is a product of a single-carbon metabolic pathway and
is involved in the catabolism of serine. Many works indicate
that histone and DNA methylation reactions are sensitive to
the concentration of SAM [1–3]. Alongside, spermine,
spermidine, and other polyamines are created from the
decarboxylated form of SAM and putrescine [4, 5]. Since

polyamines are directly involved in cell activity, the studies
focus on the role of these substances in malignant growth
[1, 6]. The relations between polyamines and cancer have
been investigated for many decades, resulting in extensive
and comprehensive studies on enzymes and metabolic
pathways. Consequently, many chemotherapy strategies for
cancer were based either on inhibiting the synthesis of
polyamines or on activating their catabolism. The metabo-
lism of polyamines in tumor growth is a good example of
interaction between genes and metabolites, since specific
oncogenes and tumor suppressors control the metabolism of
polyamines, and their concentration affects the rate of cell
proliferation [1, 5, 7, 8].

The increased biosynthetic flux of polyamines dramati-
cally increases the demand for the metabolic pathways of
carbohydrates, methionine, and folates, which begin to
increase the metabolite production in order to maintain
nucleotide and SAM pools [1, 2, 9, 10].

The major polyamine biosynthesis enzymes are pyridoxal-
5-phosphate-dependent ornithine decarboxylase (ODC) and
pyruvate-dependent S-adenosylmethionine decarboxylase
(SAMdc). Spermine/spermidine-N1-acetyltransferase (SSAT)
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plays the main role in the catabolism of polyamines. The
biosynthesis of these enzymes is subtly controlled at the
transcriptional and translational levels. The basic principles of
this regulation are now established for both normal and
tumor cells.

Creating the specific inhibitors for enzymes of polyamine
biosynthesis and catabolism was one of the main goals of
polyamine biochemistry for a long time [1, 11–13]. How-
ever, the most therapeutic strategies based on specific
inhibition of the key metabolic enzyme have not been
successful, presumably due to the presence of compensatory
mechanisms of polyamines metabolism, which buffer the
effects induced by an impact on a particular enzyme.
Another reason is the redistribution of fluxes in metabolic
pathways, which contribute to the further growth of
the tumor.

Changes in the metabolism of cancer cells can directly
affect epigenetic regulation and facilitate its transformation.
Serine can contribute to this process by supplying carbon
units for the regeneration of methionine from homocysteine
(HCY) through the de novo ATP synthesis [14–16]. The
importance of folate-mediated carbohydrate metabolism for
cancer cells proliferation has been long assessed [17], and is
being studied until present [10, 14–16, 18, 19]. Serine plays
a key role in the transfer of carbon units to the tetra-
hydrofolate (THF), supporting nucleotides synthesis and
NADPH production. Cancer cells have a high demand for
serine, and its pool is supported by exogenous absorption
and de novo synthesis from glucose [3, 14–17]. The
enzymes for serine synthesis can be epigenetically activated
by the histone H3 methyltransferase G9A, to support the
survival and proliferation of cancer cells [20]. Folic acid
metabolic disorders caused by diet or genetic reasons are
sustained by the metabolism of one-carbon units and violate
processes of synthesis and methylation of DNA
[10, 16, 18, 21]. Moreover, the high level of polyamine
biosynthesis in сancer cells makes them vastly dependent
on metabolism of the folates and one-carbon units.

Recently, particular attention has been devoted to the
study of cellular regulatory systems. They are investigated
by means of metabolic modeling, which is a promising
approach for in silico prediction of cell activity, based on
relations and interaction of all cellular components. Com-
putational modeling plays an important role in under-
standing the mechanisms of metabolic flux redistribution in
cancer cells. Mathematical approaches such as flux balance
analysis (FBA) are widely used to predict the distribution of
metabolic fluxes in various cell types, ranging from bacteria
to human cells [22–25]. FBA relies on a stoichiometric
model of metabolic network—a set of restrictions on
exchange fluxes and objective function (e.g., the maximum
level of ATP production), which help to predict intracellular
fluxes by the use of linear programming. Although FBA is

applied successfully to unicellular organisms as objects of
biotechnology and metabolic engineering, its use for the
study of metabolic fluxes in human cells is more challen-
ging, due to the difficulty of accurately describing the ways
in which cells exchange metabolites with their environment.

We used the flux balance analysis method to develop a
mathematical model of folate and methionine-dependent
metabolism of polyamines that will enable us to study the
properties of cancer cells. The novelty of this paper is in
extending the study of interactions in a complex biochem-
ical system using the concept of control-effective flux
(CEF) by simulating both overexpression and inhibition of
particular enzymes.

Aims of this study were: (i) to develop model that can be
used for predicting the behavior of cancer cells of different
types; (ii) to determine the metabolic pathways required to
maintain the cancer phenotype during changing SAMdc
activity; (iii) to find the pathways and targets that could be
used by the transformed cell for metabolism reprogramming
and surviving during the therapy.

Materials and Methods

The developed stoichiometric model includes the following
metabolic pathways: polyamine, methionine, methionine
salvage, folate metabolism, and glutathione and taurine
synthesis cycles, in addition to uric acid cycle input. The
model consists of 51 reactions and 57 metabolites, 31 of
which are internal metabolites. The metabolism scheme,
which is the basis of the model, is shown in Fig. 1. The full
list of model reactions is given in Table 1, Appendix.

The processes of folate, methionine, and glutathione
metabolism are built according to [26]. The polyamine
cycle is based on studies [4–7, 27]. The description of
methionine salvage cycle was taken from [11, 13, 28].

The stoichiometric model was developed using the
CellNetAnalyser 2017.1 software [29] using the compre-
hensive knowledge of metabolites and binding reactions
that occur in the metabolic network.

We used FBA for the mathematical description and ana-
lysis of metabolic fluxes. The calculation of the elementary
flux modes (EFMs) based on the stoichiometry matrix was
used for analysis of important pathways in metabolic net-
works and identifying the links between metabolic cycles.
EFM is defined as a directed path that includes a minimal and
unique set of reactions from one external metabolite to
another [30]. EFMs were calculated using CellNetAnalyser
2017.1 and Metatool 4.3 software [31].

The importance of each reaction for the efficient and
flexible operation of the entire metabolic system was
assessed using control-effective flux methodics. CEF was
determined directly from the EFM set [22]. Efficiency
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values for cellular objective reactions of each elementary
flux mode were calculated using the following equation:

εj;CELLOBJ ¼ rjCELLOBJP
i r

j
i

�� �� ;

where rjCELLOBJ is the yield of production of the cellular
objective by EFM (reactions related to cellular objectives),

and
P

i rji
�� �� is the sum of the participation coefficients of

each reaction in a certain EFM (the sum of absolute fluxes
of each mode), “j” is the EFM index, “i” is the flux index
through over a specific reaction in certain EFM [22, 24]. To

calculate εj,СELLOBJ, we used rji for the fluxes of reactions
catalyzed by the enzymes MAT-I, DNMT, MS, SSAT (D),
SSAT (S), VACCOA, MTHFR, SHMT, GS, GLS (to
decipher acronyms see legend to Fig. 1). These reactions

Fig. 1 Metabolic scheme of stoichiometric model. The enzymes are:
AH SAH-hydrolase, AICART aminoimidazolecarboxamide ribonu-
cleotide transferase (phosphoribosylaminoimidazolecarboxamide for-
myltransferase), APAO acetylpolyamine oxidase, BHMT betaine-
homocysteine methyltransferase, CBS cystathionine β-synthase, CDO
cysteine dioxygenase, CTGL cystathionine γ-lyase, DAO diamine
oxidase, DHFR dihydrofolate reductase, DNMT DNA-methyl-
transferase, FTD 10-formyltetrahydrofolate dehydrogenase, FTS 10-
formyltetrahydrofolate synthase, GCL glutamate-cysteine ligase (γ-
glutamylcysteine synthetase), GLS glutaminase, GNMT glycine N-
methyltransferase, GS glutathione synthetase, HTD hypotaurine
dehydrogenase, MAT methionine adenosyltransferase, MS methionine
synthase, MTAP methylthioadenosine phosphorylase, MTCH 5,10-
methenyltetrahydrofolate cyclohydrolase, MTD 5,10-methylenete-
trahydrofolate dehydrogenase, MTHFR 5,10-methylenetetrahy-
drofolate reductase, MtnA methylthioribose-1-phosphate isomerase,
MtnE (TAT) tyrosine aminotransferase, NE nonenzymatic inter-
conversion of THF and 5,10-CH2-THF, ODC ornithine decarboxylase,
PAO polyamine oxidase, PGT phosphoribosyl glycinamide-
transformalase, SADC cysteine sulphinic acid decarboxylase, SAHH

S-adenosylhomocysteine hydrolase, SAMdc S-adenosylmethionine
decarboxylase, SHMT serinehydroxymethyl transferase, SpdS sper-
midine synthase, SpmS spermine synthase, SSAT spermidine/sper-
mine acetyltransferase, TS thymidylate synthase, VACCOA
acetyl–CoA synthetase, VCOA N-acetyltransferase. The metabolites
are: 10f-THF 10-formyltetrahydrofolate, 5mTHF 5-methyltetrahy-
drofolate, 5,10-CH=THF 5,10-methenyltetrahydrofolate, 5,10-CH2-
THF 5,10-methylenetetrahydrofolate, AICAR aminoamidazole-
carboxamide ribotide, Arg arginine, aSpd N-acetylspermidine, aSpn
N-acetylspermine, CYS cysteine, CYST cystathionine, dcSAM dec-
arboxylated S-adenosylmethionine, DHF dihydrofolate, dTMP deox-
ythymidine monophosphate, dUMP deoxyuridine monophosphate,
GAR glycinamide ribonucleotide, Gln L-glutamine, Glu L-glutamate,
GluCys glutamyl-cysteine, GSH glutathione, Gly glycine, HCY
homocysteine, hTAUR hypotaurine, KMTB 2-keto-4-methylthiobu-
tyrate, MET methionine, MTA S-methyl-5-thioadenosine, MTR S-
methyl-5-thioribose, MTRu-P S-methyl-5-thioribulose-1-phosphate,
Orn ornithine, Put putrescine, SAH S-adenosyl-L-homocysteine, SAM
S-adenosylmethionine, Ser serine, Spd spermidine, Spn spermine,
SulfALA 3-sulfinoalanine, TAUR taurine, THF tetrahydrofolate
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have a significant effect on the cell condition, especially on
the processes of cellular tumor metabolism reprogramming.

The CEF (υi) of each reaction (rji) was defined as the
mean flux through this reaction in all EFMs, where the flux
through each mode is weighted with its efficiency [22]:

υi ¼
X

CELLOBJ

1
rmaxCELLOBJ

P
j εj;CELLOBJ rji

�� ��
P

j εj;CELLOBJ

where rmaxCELLOBJ is the maximum participation rate in the
EFM for reactions that are the part of the cellular objective,P

j εj;CELLOBJ rji
�� �� is the sum of the products of the

participation coefficients of each reaction for all EFMs
and the corresponding efficiency values,

P
j εj;CELLOBJ is

the total value of the efficiency of the reactions of cellular
objective for each mode.

To determine the behavior of the entire metabolic system
under the condition of a particular enzyme’s deficiency, the
coefficients of the reaction participation rji in the EFM that
include the deficient enzyme were multiplied by the con-
stant dj to reflect the level of enzyme inactivation, with
values from 1 to 0, where 1 is complete inactivation of the
enzyme. To evaluate the behavior of the metabolic network
by the enzyme activation the coefficients were multiplied by
the constant mj, which represents the degree of the enzyme
activation and takes values from 1 to 4.

Results

Elementary Flux Modes Analysis of Polyamine
Metabolism

A total of 292 elementary fluxes have been calculated for
the developed model of metabolism of polyamines; 35 of
which were extreme paths. Thus, there are 257 pathways to
describe all possible ways of distributing stationary fluxes.
Fluxes were divided into five groups depending on the
involved metabolic cycles and final metabolites. 84 ele-
mentary fluxes pass through the folate and methionine
cycles, 48 of which involve the initial and final metabolites
of these metabolic cycles, and 36 of them involve the
external metabolites from the methionine and folate cycles
and move to the glutathione cycle. The final products in this
case are glutathione and taurine.

Polyamines and their acetylated derivatives are synthe-
sized in 173 metabolic fluxes. In 13 of them polyamines are
formed from arginine, from polyamines entering the cell
from outside, and from their acetylated forms in catabolism.
These processes take place without complete inactivation of
SAMdc via inhibitors leads to a decrease in the con-
centration of spermine (Spn) and spermidine (Spd); how-
ever, when compared, the concentration of putrescine (Put)

is higher [32]. Put is formed in the fluxes that remain after
SAMdc inactivation, and the products of polyamine cata-
bolism accumulate due to the entry of Spn and Spd from
outside of the cell.

In 160 elementary fluxes, the production of polyamines
and other metabolites involves folate, methionine, and
polyamine cycles. All 160 elementary flux modes, in which
polyamines are synthesized include the methionine salvage
cycle, indicating its importance for regulating the total pool
of polyamines, methionine, and other vital cell metabolites.
Various mechanisms of catabolism of polyamines are rea-
lized in 44 elementary fluxes. Thus, we can see that the
catabolism of polyamines is equally important for the reg-
ulation of the content of polyamines.

Complete inactivation of SAMdc will block 160 ele-
mentary fluxes in the metabolic network of the cell.

CEF Analysis of the Metabolic Network

The CEF numeric values for a case that SAMdc is a normally
functioning enzyme are shown in Table 1 (see Appendix).
We can see that the peak CEF indicators are characteristic for
folate cycle enzymes that mostly indicates the importance of
the metabolites formed in this cycle for the functioning of the
methionine cycle and the production of SAM and poly-
amines. Enzymes of polyamine metabolism exhibit sig-
nificantly lower CEF values, even in comparison with the
methionine cycle and the methionine salvage cycle. The least
CEF coefficients (CEFs) have enzymes of the folate cycle
phosphoribosyl glycinamidetransformalase (PGT) and phos-
phoribosylaminoimidazolecarboxamide formyltransferase
(AICART), which control the synthesis of purine nucleotides.

Figures 2–4 show changes in CEFs of reactions depending
on the degree of activation (inactivation) of SAMdc. CEFs
are normalized with respect to the indicator value for a nor-
mally functioning enzyme. On the abscissa axis to the right:
0—normally functioning enzyme, 1—complete enzyme
inactivation. The enzyme activity increases from zero to the
left (up to 4 times).

According to the simulation results, the growth of
SAMdc activity leads to an increase in fluxes through the
enzymes of polyamine synthesis. However, this growth is
insignificant and does not exceed 10% (Fig. 2). The tumor
growth is accompanied by inhibition of catabolic processes,
including the activity of spermine/spermidine acetyl-
transferases [33]. The simulation results show that fluxes
through SSAT are reduced by 20–30% from the initial level
when SAMdc is activated. At the same time, the catabolism
of polyamines significantly slows down (Fig. 2). Increasing
the activity of SAMdc by a factor of 4 leads to a decrease of
the Put catabolism by more than 70%, to a reduction in
fluxes through polyaminoxidases (PAO(S), PAO(D)) and
acetylpolyamineoxidases (АPAO(S), АPAO(D)) by more

Cell Biochemistry and Biophysics



than a half. Therefore, it can be argued that the increase in
the activity of SAMdc causes the increase in the content of
polyamines, and that is not due to their synthesis, but
because of reducing their catabolism and the processes of
acetylation.

The increased activity of SAMdc leads to a decrease in
fluxes through the enzymes of the methionine cycle, but no
more than by 20% (Fig. 3). Thus, fluxes through MS, MAT-
III, and fluxes of external metabolites (such as methionine
and homocysteine), slightly exceed the control level. These
fluxes support the formation of SAM.

Simulation indicates a slight increase in flux through
methyltetrahydrofolate reductase (MTHFR) when SAMdc
is activated (Fig. 4). It contributes to an increase in the flux
of one-carbon units to the methionine cycle and to the
maintenance of the SAM biosynthesis through the synthesis
of deoxythymidine monophosphate (dTMP). The most
susceptible to the activation of SAMdc are the enzymes that
involve cysteine to the process of taurine synthesis
(decrease in activity down to 20% from norm), AICART
and PGT, which are implicated in de novo synthesis of
purines. For these reactions, CEFs are reduced by more than
60% with a four times increase in SAMdc activity (Fig. 4).
These results allow us to make predictions for changes in
metabolic processes when increasing the activity of this
enzyme.

As we can see from the results of simulation, when
SAMds is inactivated by more than 50%, the fluxes through
all the enzymes of polyamine catabolism decrease, but the
decline does not exceed 20% (Fig. 2). Fluxes through the
reactions of catabolism of Put, Spn, and Spd will not change
within the 50% SAMdc inactivation level, but will decrease
if the activity of the enzyme is less than 50%. SAMdc

inactivation will reduce the fluxes through the enzymes of
Spn and Spd synthesis and acetylation. Therefore, the
reduction of the activity of SAMdc to more than 50% of the
norm leads to a decrease in the total pool of polyamines by
inhibiting their synthesis and the constant rate of
catabolism.

The complete inactivation of SAMdc will result in total
inhibition of fluxes through ODC, arginase, and methionine
salvage cycle. Enzymes that operate consistently with
SAMdc are enzymes of the methionine salvage cycle—
spermine/spermidine synthases (SpnS and SpdS). In this
regard, the effects of the activation/inactivation of these
enzymes on the redistribution of fluxes in the metabolic
network will be similar to SAMdc.

The simulation results indicate that the inactivation of
SAMdc causes significant changes in metabolic pathways
through the methionine cycle (Fig. 3). CEF analysis showed
that inactivation of SAMdc down to 50% results in an
increase of fluxes through glycine N-methyltransferase

Fig. 2 Changes in polyamine cycle CEFs upon the change of SAMdc
activity. In this and the following figures y-axis indicates CEF ratios
with respect to the normal case. In x-axis, 0 shows fully functional
enzyme, 1 (right) depicts a complete deficiency of the enzyme, the
scale on the left indicates an increase in enzyme activity from two to
four times

Fig. 4 Changes in folate cycle, glutathione and taurine synthesis
pathway CEFs upon the change of SAMdc activity

Fig. 3 Changes in methionine cycle CEFs upon the change of SAMdc
activity
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(GNMT) by 20% and through DNA-methyltransferase
(DNMT) by 10%. Subsequent inactivation of SAMdc
does not increase the fluxes of methylation; they remain at
the same level. DNMT is an enzyme that belongs to DNA-
methyltransferases that control the process of DNA
methylation. Therefore, normal activity of the enzymes of
this class is integral to a normal cell life span.

With inactivation by more than 50% we observed a
decrease in the flux through the enzymes MAT-I and MAT-
III that directly affect the formation of SAM from methio-
nine. Complete inactivation of SAMdc leads to stopping the
flux through MAT-III, and the flux through MAT-I is
decreased by 40%. Thus, the decrease in SAM synthesis
concurrent with its increased demand in the methylation
processes will lead to a reduction of the SAM/SAH ratio.

Another outcome of SAMdc activity decrease is sig-
nificant inactivation of MS. Re-methylation of homo-
cysteine in the MS reaction has a critical role for folic acid
metabolism. It singularly regulates the return of 5mTHF to a
pool of active folates involved in the synthesis of purines,
thymidylate, and provides the ability to regenerate methio-
nine in all organs and tissues of mammals. The decrease in
the flux through MS causes the drop in flux through
MTHFR (Fig. 4). CEF for this enzyme is reduced by more
than 40% when SAMdc is completely inactivated.

The study of flux redistribution with inactivation of
SAMdc show that under conditions of MS inactivation, the
HCY remethylation takes place due to betaine-
homocysteine methyltransferase (BHMT). CEF for this
enzyme increases by 20% when SAMdc is inactivated by
more than 50%. The deficiency of MS results in the accu-
mulation of 5mTHF due to THF and methylenetetrahy-
drofolate that in turn leads to the termination of de novo
synthesis of thymidylate [34]. Accordingly, the decrease in
thymidylate synthase (TS) expression is detected, which
results in the accumulation of dUMP and reduce the con-
sumption of 5,10-methylene-THF, which is a substrate for
both TS and MTHFR. These processes occur in tumors that
are folate-depleted [10].

According to the simulation results, the fluxes through
GAR and AICAR, important enzymes for the de novo
purine nucleotides synthesis, are significantly increased
(Fig. 4).

Reducing the fluxes through MS and MTHFR and
enhancing the trans-methylation processes results in an
increase in the HCY concentration, which then increases
activity through cystathionine β-synthase (CBS), the first
enzyme in the trans-sulfation pathway. According to the
simulation, inactivation of SAMdc increases the flux
through CBS (Fig. 3) and amplifies the production of glu-
tathione and taurine (see Fig. 1). At the stage of cysteine
formation, where the pathway branches out, the flux shifts
towards the formation of taurine. According to the

simulation, the rate of the flux through cysteine dioxygenase
(CDO) exceeds fluxes through CBS and cystathionine γ-
lyase (CTGL). CDO catalyzes the oxidation of cysteine to
sulfinoalanine and represents the first step in the pathways
leading to the synthesis of sulfate/pyruvate or hypotaurine/
taurine.

Such activities of key enzymes in cysteine catabolism
(cysteine dioxygenase and γ-glutamylcysteine synthetase)
occurs in conditions of protein deficiency. That is associated
with the accelerated utilization of cysteine excess and the
accumulation of homocysteine with the progress of hyper-
homocysteinemia [35].

Discussion

The development of biochemical and molecular-biological
methods for the study of the tumor cell metabolism con-
tributed to furthering our understanding of the mechanisms
and effects of tumor-associated metabolic disorders at var-
ious stages of tumor formation. Subsequent research has
attempted to understand the underlying mechanisms for the
metabolic profile change, which meet the metabolic demand
during carcinogenesis. To address these questions, it is
critical to combine the use of high-performance experi-
mental and computational models that can determine which
metabolic pathways are necessary to support the cancerous
phenotype and how these pathways are organized to support
vital processes in the proliferation of cancer cells. Under-
standing this phenomenon is crucial for the development of
systematic schemes that help to identify the mechanisms
that promote or delay the malignancy development.

We present and discuss the computational analysis of
methionine-dependent metabolic pathways in cancer cells.
One should remember that metabolic features are hetero-
geneous, and each cancerous cell has peculiar metabolic
features, depending on its genetic, epigenetic, and envir-
onmental status. At this stage, our model does not take into
account all the diversity of enzymatic expression in specific
cancer cells. Nevertheless, the developed model can be
easily adapted to a specific type of metabolism and
expression to calculate the metabolic fluxes in definite
cell types.

There are several models based on FBA. This method
uses stoichiometry data and information about the reversi-
bility or irreversibility of reactions—it does not require
complex mathematical computations and can be easily
implemented as software for computing experiments. This
approach allows to estimate the distribution of metabolic
fluxes (or steady velocities) and their relative contribution to
the formation of particular metabolite. Analysis of fluxes in
a metabolic network consisting of cellular reactions allows
to establish a relation between the genotype and the
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phenotype of cell [23]. There are some limitations to FBA,
which primarily include restriction by a steady state of flux
and the inability to trace allosteric effects from the
metabolites.

One of the main approaches to the analysis of metabolic
network fluxes is the metabolic pathway analysis (MPA)
[36], which is used to determine the structure of the meta-
bolic network and the general possibilities of cell metabo-
lism. An important tool used in MPA is the identification of
EFMs – a minimal set of enzymes that can operate in a
steady-state weighted by the input fluxes [22, 24, 37]. EFM
analysis allows us to detect and analyze important pathways
in metabolic networks. Another tool for metabolism
assessment is the CEF analysis [22, 24, 38]. CEF value
derived directly from the EFM set, represents the impor-
tance of each metabolic reaction for the efficient and flex-
ible operation of the entire metabolic network.

The difficulty of using the tool of control-effective flux
(CEF) for complex cell types is in the choice of reactions
that should be taken into account in the cellular objective.
The choice of a cellular objective affects the values of
control-effective flux, since the efficiency of each EFM is
evaluated by determining its contribution towards definite
cell objective relative to the costs needed to establish the
mode of cell functioning [38]. A significant advantage of
this approach is taking into account not only the optimal
route, but also the complete set of possible pathways, which
leads to redundancy and flexibility in the metabolic net-
work. In addition, this approach does not require defining
the limits of exchange fluxes [24].

We used stoichiometric modeling to investigate the
effects of SAMdc inactivation, since this enzyme is a
common antitumor therapy target. Cancer cells require high
level of polyamines and up to 70% of cell SAM provides
this biosynthesis [39]. The simulation showed that the
increase in the expression of SAMdc indeed increases the
level of polyamines, as simultaneously the fluxes through
SpmS, SpdS, ODC, and arginase increase. But fluxes
through the pathways of polyamine catabolism decrease.
This result shows pretty good congruence with the experi-
mental data indicating a significant inhibition of the poly-
amine catabolism under conditions of SAMdc activity
intensification observed in tumor growth [6, 40]. However,
the model does not predict a significant increase in the level
of polyamines that coincides with topical studies on over-
expression of SAMdc and SpmS in transgenic mice, which
showed that more than 100 times increase in expression of
SAMdc and more than 9 times increase in expression of
SpmS and SpdS does not lead to a significant increase in the
level of polyamines in tissues [41, 42].

Methionine helps to meet the increased demand for
SAM. The calculations predict a slight increase in the fluxes
through MS, MAT-I/MAT-III, and a notable increase in

flux through the methionine salvage cycle. S-methyl-5-
thioadenosine phosphorylase (MTAP) plays a main role in
the methionine salvage processes, because this enzyme
provides transformation of significant amount of S-methyl-
5-thioadenosine (MTA, the product of SAM decarboxyla-
tion) to methionine. However, the activity of MTAP differs
depending on specific forms of cancer. For example, the
MTAP gene is excreted in many cancer cell lines [43], but
in those that retain the expression of MTAP, like in prostate
cancer, high levels of SAM and polyamines were recorded
[11]. The model predicts a significant reduction in the fluxes
through the enzymes of purine synthesis and a slight
decrease in the fluxes through the cycle of trans-sulfation.
MTAP is a unique enzyme that provides rapid processing of
MTA to adenine. Subsequent transformation of adenine into
AMP depends on the activity of adenine phosphoribosyl
transferase (APRT) in purine salvage pathway. Therefore,
we can conclude that fluxes through APRT and AICART
are less important when MTAP is activated.

According to the simulation results, the increase in
concentration of SAM will not significantly affect the pro-
cesses of DNA methylation and the functioning of most
enzymes of the folate cycle. Maintaining the high level of
polyamines is also possible by the activation of the
methionine cycle where SAM consumption is accompanied
with the removal of the methyl group [10]. One way to
balance the flux is to receive a carbon unit from the folate
cycle through MTHFR to the methionine cycle. Although
experimental study did not detect significant increase in the
expression of MTHFR [10], SAM is an allosteric inhibitor
of MTHFR activity, and therefore increasing the con-
sumption of SAM by increasing the expression of SAMdc
will increase the activity of MTHFR and the flux of one-
carbon units.

Our model points to several curious implications of
SAMdc inhibitors that potentially could enhance the effi-
cacy of chemotherapy.

Our study showed that SAMdc inactivation leads to the
decrease in fluxes through MS, MAT-I/MAT-III, and folate
cycle. According to the literature, such processes occur in
methionine-dependent tumors, including prostate cancer,
lung cancer, fibrosarcoma, melanoma [21], breast cancer
[44]. In listed above tumor cells, that are sensitive to L-
methionine deficiency, the reduced level of MS and MTAP
expression [45], as well as disrupted folate metabolism is
observed. The methionine dependence was also found in the
primary culture of tumors taken from patients [46, 47].

However, we show that, despite the reduction of methio-
nine synthesis and salvage, it remains possible to synthesize
methionine from homocysteine and betaine, as evidenced by
a significant increase in flux through SAH-hydrolase (AH)
and BHMT. But most cancer cells cannot proliferate when
methionine is replaced with homocysteine, while non-cancer
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cells are indifferent to such replacement. The inability of
tumor cells to maintain a sufficient level of methylation in a
methionine-free homocysteine-enriched medium proves the
need for exogenous methionine [45]. It indicates that
methionine and folate restriction may inhibit cancer cell
growth and may enhance the efficacy of chemotherapeutic
agents. Two reviews analyze the results of studies that
indicate the prospects of dietary restriction of methionine
[21, 46]. So, dietary folate manipulations in models of
transgenic adenocarcinoma of the prostate (TRAMP) [10, 18]
and breast cancer [48] revealed that folate restriction sig-
nificantly reduces disease progression with reductions in
tumor grade, lymph node metastasis, decreased recurrence
rate. The threat is the tumors may reprogram and continue
further growth under certain conditions, e.g., a diet enriched
with folates and methionine [2, 10].

Along with SAMdc inactivation driven reduction of the
methionine pool and the adenosine trans-methylation pro-
cesses, the increased DNA and glycine methylation in a
GNMT-catalyzed reaction was detected in our model.
GNMT, as methyltransferase, catalyzes the transfer of the
methyl group from SAM to glycine to form S-
adenosylhomocysteine (SAH) and sarcosine (N-methylgly-
cine). This enzyme is not expressed in most cancer cells [39]
that presumably helps to maintain high level of SAM and
polyamines. However, GNMT is reported to be expressed in
prostate carcinoma [49, 50] and breast cancer [51]. It leads to
a decrease in SAM/SAH ratio in these cells and to the
accumulation of sarcosine. Sarcosine has mostly been
researched in prostate cancer [52]. Studies have shown that
increased sarcosine levels are associated with cancer pro-
gression and metastasis. Sarcosine stimulates the expression
of DNA methyltransferase (DNMT), DNA hypermethyla-
tion, resulting in epigenetic changes in cancer. These studies
could be considered in chemotherapy with SAMdc inhibitors
for tumors with high GNMT expression, that could be
complemented with GNMT or DNMT inhibitors.

The important result of our simulation is that inactivation of
SAMdc leads to a significant increase in the fluxes through
GAR and AICAR, involved in de novo synthesis of purine
nucleotides with serine participation. These enzymes, together
with the cytoplasmic and mitochondrial serine hydro-
xymethyltransferase (SHMT), are already known targets for
antitumor therapy, as they are involved in metabolic repro-
gramming that support tumor progression [3, 53]. Serine may
supply one-carbon units for homocysteine to methionine
conversion and thus maintain methionine cycle in case of
methionine depletion. Maddocks et al. [14] found that serine
supports DNA methylation by de novo ATP synthesis. They
showed that serine starvation significantly decreases transfer of
methyl groups from methionine to DNA compared to a serine-
supplemented culture and decreases the level of ATP, SAM,
and S-adenosylhomocysteine (SAH) [17]. Serine-dependent

de novo ATP synthesis is necessary to support the transfor-
mation of methionine to SAM, and the restriction of this ATP
pool can affect SAM generation rate, as well as methylation of
DNA and RNA [14]. Thereby, due to the increased uptake of
exogenous serine in tumors, dietary restrictions on serine and
glycine are recommended [15]. In addition, serine can be
formed in the glycolytic pathway [48]. Increased expression of
3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting
serine biosynthesis enzyme, is shown in breast cancer and
melanoma [3]. Therefore, restriction of glucose intake poten-
tially could be helpful [8].

In silico simulation also indicates that during SAMdc
inactivation homocysteine is involved in the transsulfura-
tion pathway, which is known to be reprogrammed in
cancer. Indeed, experiments in homocysteine-labeled breast
cancer cells MDA-MB468 have revealed a deviation of the
flux from the methionine cycle to the transsulfuration
pathway [44]. The same experiments indicated the reduced
SAM synthesis, resulting in a reduced overall methylation
potential, and, therefore, the reduced SAM/SAH ratio.
Some authors [21] suggest that low SAM or SAM/SAH
ratios are key points to understanding the Hoffmann effect,
and that increased flux through the transsulfuration pathway
may induce these changes in the methylation potential. Such
a redirection of homocysteine to the transsulfuration branch
is induced by oncogenic mutations in phosphoinositide 3-
kinase (PI3K), which result in a methionine-dependent
phenotype [54]. Cysteine, the first metabolite of transsul-
furation pathway, in rapidly proliferating cells can be
involved in the biosynthesis of glutathione and iron-sulfur
clusters, as well as hydrogen sulfide (H2S). We show the
activation of the H2S formation pathway. It is believed to be
involved in protection against oxidative stress, excessive
mitochondrial respiration, it blocks apoptosis and promotes
angiogenesis [3].

Therefore, when using therapeutic agents aimed at
SAMdc inactivation, the possibility of reprogramming of
tumor cellular metabolism should be considered, as well as
the use of SAM in methylation and catabolism of serine.
Understanding the metabolic changes that distinguish can-
cer cells from normal ones requires a systems approach, that
allows the identification of mechanisms that support the
cancer phenotype, and this understanding will contribute to
the development of personalized and thus, more effective
treatment. FBA can be a useful tool for this goal.

Conclusions

The developed stoichiometric mathematical model of poly-
amine metabolism includes polyamine, folate, methionine,
glutathione cycles, and methionine salvage cycle. The model
also includes inputs from cycles of uric acid and the incomes
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of metabolites from outside of the cell. We used the calcu-
lations of the number of elementary modes and the coeffi-
cients of control-effective flux to analyze the behavior of
polyamine metabolic network. The model extended the
possibilities for analyzing interactions in a complex bio-
chemical system using CEF to simulate the behavior of the
network by overexpression and inhibition of a specific
enzyme.

We have performed in silico analysis of the behavior of
the methionine-dependent metabolic network of polyamines
at the activation of SAMdc, which is usually observed in
tumor development. The simulation results are clearly
congruent with previous experimental studies. That indi-
cates the possibility of using this model to predict cellular
processes or formulate certain hypotheses.

We have shown that the activity of SAMdc has a strong
impact on the fluxes in methionine and folate cycles. It
affects these fluxes significantly more than the polyamine
cycle. Inactivation of SAMdc leads to momentous redis-
tribution of fluxes through the methionine cycle, namely,
the enhancement of methylation processes, the transforma-
tion of SAM to homocysteine, and the intensification of
transsulfuration processes that activate glutathione and
taurine synthesis pathway. Cells become methionine
depleted. Reducing the synthesis of SAM and its intensified
use in the methylation processes create conditions for
decreasing the SAM/SAH ratio, which is typical for cancer
cells. It is also significant that SAM affects serine methy-
lation and activates serine-dependent de novo ATP synth-
esis. Lack of methionine may cause additional metabolic
alterations in methionine-dependent tumors. Therefore, the
possibility of reprogramming of tumor cellular metabolism
and the use of SAM in processes of serine methylation and
serine catabolism must be closely considered when using
therapeutic agents aimed at SAMdc inactivation.
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Appendix

Table 1 Reactions included to the model, enzymes and their CEF
values (arrow type → or ↔ indicates whether the reaction is
considered irreversible or reversible in the analysis)

No Reactions Enzymes CEF

Мethionine cycle reactions

1 Met+ATP→ SAM+ADP MAT-I 2,79

2 Met+ATP→ SAM+ADP MAT-III 2,21

3 SAM+Gly→ SAH GNMT 0,85

4 SAM+DNA→ SAH+DNA-
CH3

DNMT 1,85

5 SAH↔Hcy+ adenosine AH 2,70

6 Hcy+ 5mTHF→MET+ THF MS 2,59

7 Hcy+ betaine→MET BHMT 0,33

Polyamine cycle reactions

Polyamine synthesis

8 SAM+H+→ dcSAM+CO2 SAMdc 2,29

9 dcSAM+ Spd→ Spn+MTA SpnS 1,03

10 dcSAM+ Put→ Spd+MTA SpdS 1,26

11 Arg→Orn Arginase 0,48

12 Orn+H+→ Put+ CO2 ODC 0,48

13 Spd+Acetyl-CoA→ аSpd+
CoA

SSAT(D) 1,56

14 Spn+Acetyl-CoA→ aSpn+
CoA

SSAT(S) 1,56

Polyamine catabolism

15 аSpd+O2+H2O→ Put+
H2O2+ 3-AAP

APAO(D) 0,78

16 aSpn+O2+H2O→ Spd+
H2O2+ 3-AAP

APAO(S) 0,87

17 Put+O2+H2O→ 4-
aminobutanal+NH3+H2O2

DAO 0,35

18 Spd+O2+H2O→H2O2+ 4-
aminobutanal

PAO(D) 0,21

19 Spn+O2+H2O→H2O2+ 3-
aminopropanal

PAO(S) 0,28

20 CoA→Acetyl-CoA VACCOA 3,17

21 Acetyl-CoA→CoA VCOA 0,04

Fluxes

22 aSpd→ out of the cell Flux acetylspermidine 0,78

23 aSpn→ out of the cell Flux acetylspermine 0,69

24 Put_out ↔ Put_in Flux putrescine 0,84

25 Spd_out ↔ Spd_in Flux spermidine 0,77

26 Spn_out ↔ Spn_in Flux spermine 1,1

27 MET_out ↔ MET_in Flux methionine 4,17

28 Hcy_out ↔ Hcy_in Flux homocysteine 3,21

29 5mTHF_out ↔ 5mTHF_in Flux 5mTHF 4,87

Methionine salvage cycle reactions

30 MTA+H2O→MTR+
adenine

MTAP 2,29

31 MTR→MTRu-P MtnA 2,29

32 MTRu-P→KMTB (includes
several sequential stages)

2,29

Cell Biochemistry and Biophysics



References

1. Soda, K. (2020). Spermine and gene methylation: a mechanism of
lifespan extension induced by polyamine-rich diet. Amino Acids,
52(2), 213–224. https://doi.org/10.1007/s00726-019-02733-2.

2. Gao, X., Reid, M. A., Kong, M., & Locasale, J. W. (2017). Meta-
bolic interactions with cancer epigenetics. Molecular Aspects of
Medicine, 54, 50–57. https://doi.org/10.1016/j.mam.2016.09.001.

3. Pavlova, N. N., & Thompson, C. B. (2016). The emerging hall-
marks of cancer metabolism. Cell Metabolism, 23(1), 27–47.
https://doi.org/10.1016/j.cmet.2015.12.006.

4. Sánchez-Jiménez, F., Medina, M. Á., Villalobos-Rueda, L., &
Urdiales, J. L. (2019). Polyamines in mammalian pathophysiol-
ogy. Cellular and Molecular Life Sciences, 76, 3987–4008.
https://doi.org/10.1007/s00018-019-03196-0.

5. Bae, D. H., Lane, D. J. R., Jansson, P. J., & Richardson, D. R.
(2018). The old and new biochemistry of polyamines. Biochimica
et Biophysica Acta, 1862(9), 2053–2068. https://doi.org/10.1016/
j.bbagen.2018.06.004.

6. Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., & Ralser,
M. (2015). Remaining mysteries of molecular biology: the role of
polyamines in the cell. Journal of Molecular Biology, 427(21),
3389–3406. https://doi.org/10.1016/j.jmb.2015.06.020.

7. Battaglia, V., Shields, C. D., Murray-Stewart, T., & Casero, R. A.
(2014). Polyamine catabolism in carcinogenesis: potential targets
for chemotherapy and chemoprevention. Amino Acids, 46(3),
511–519. https://doi.org/10.1007/s00726-013-1529-6.

8. Ruiz-Pérez, M. V., Medina, M. Á., Urdiales, J. L., Keinänen, T.
A., & Sánchez-Jiménez, F. (2015). Polyamine metabolism is
sensitive to glycolysis inhibition in human neuroblastoma cells.
Journal of Biological Chemistry, 290(10), 6106–6119. https://doi.
org/10.1074/jbc.M114.619197.

9. Bistulfi, G., Diegelman, P., Foster, B. A., Kramer, D. L.,
Porter, C. W., & Smiraglia, D. J. (2009). Polyamine biosynthesis
impacts cellular folate requirements necessary to maintain S-
adenosylmethionine and nucleotide pools. FASEB Journal, 23(9),
2888–2897. https://doi.org/10.1096/fj.09-130708.

10. Affronti, H. C., Long, M. D., Rosario, S. R., Gillard, B. M.,
Karasik, E., Boerlin, C. S., Pellerite, A. J., Foster, B. A., Attwood,
K., Pili, R., Wilton, J. H., Campbell, M. J., & Smiraglia, D. J.
(2017). Dietary folate levels alter the kinetics and molecular
mechanism of prostate cancer recurrence in the CWR22 model.
Oncotarget, 8(61), 103758–103774. https://doi.org/10.18632/
oncotarget.21911.

11. Arruabarrena-Aristorena, A., Zabala-Letona, A., & Carracedo, A.
(2018). Oil for the cancer engine: the cross-talk between onco-
genic signaling and polyamine metabolism. Science Advances, 4
(1), eaar2606. https://doi.org/10.1126/sciadv.aar2606.

12. Zhang, Y., Zheng, Q., Zhou, Y., & Liu, S. (2020). Repurposing
clinical drugs as AdoMetDC inhibitors using the SCAR strategy.
Frontiers in Pharmacology, 11, 248. https://doi.org/10.3389/fpha
r.2020.00248.

13. Affronti, H. C., Rowsam, A. M., Pellerite, A. J., Rosario, S. R.,
Long, M. D., Jacobi, J. J., Bianchi-Smiraglia, A., Boerlin, C. S.,
Gillard, B. M., Karasik, E., Foster, B. A., Moser, M., Wilton, J.
H., Attwood, K., Nikiforov, M. A., Azabdaftari, G., Pili, R.,
Phillips, J. G., Casero, Jr., R. A., & Smiraglia, D. J. (2020).
Pharmacological polyamine catabolism upregulation with
methionine salvage pathway inhibition as an effective prostate
cancer therapy. Nature Communications, 11(1), 52. https://doi.
org/10.1038/s41467-019-13950-4.

14. Maddocks, O. D., Labuschagne, C. F., Adams, P. D., & Vousden,
K. H. (2016). Serine metabolism supports the methionine cycle
and DNA/RNA methylation through de novo ATP synthesis in
cancer cells. Molecular Cell, 61(2), 210–221. https://doi.org/10.
1016/j.molcel.2015.12.014.

15. Maddocks, O., Athineos, D., Cheung, E., Lee, P., Zhang, T., van
den Broek, N. J. F., Mackay, G. M., Labuschagne, C. F., Gay, D.,
Kruiswijk, F., Blagih, J., Vincent, D. F., Campbell, K. J., Ceteci,
F., Sansom, O. J., Blyth, K., & Vousden, K. H. (2017). Mod-
ulating the therapeutic response of tumors to dietary serine and
glycine starvation. Nature, 544, 372–376. https://doi.org/10.1038/
nature22056.

Table 1 (continued)

No Reactions Enzymes CEF

33 KMTB+C5H9NO4→MET+
C5H6O5

MtnE (TAT) 2,29

Folate cycle reactions

34 5,10-CH2-THF+NADPH+
H+→ 5mTHF+NADP+

MTHFR 7,10

35 5,10-CH=THF+NADPH+
H+↔ 5,10-CH2-THF+
NADP+

MTD 11,64

36 10f-THF↔ 5,10-CH=THF+
H2O

MTCH 11,64

37 ATP+HCOO–+ THF↔
ADP+ Pi+ 10f-THF

FTS 11,59

38 10f-THF+GAR→ THF+
AICAR

PGT 0,02

39 10f-THF+AICAR→ THF+
FAICAR

AICART 0,02

40 5,10-CH2-THF+ dUMP→
DHF+ dTMP

TS 4,54

41 DHF+NADPH+H+→ THF
+NADP+

DHFR 4,54

42 THF+ Ser ↔ 5,10-CH2-THF
+Gly+H2O

SHMT 11,90

43 5,10-CH2-THF↔ THF+
H2CO

NE 11,38

Transsulfuration reactions

44 Hcy+ Ser→Cyst+H2O CBS 2,38

45 Cyst+H2O→Cys+NH3+
akbut

CTGL 2,38

Reactions of glutathione transformation

46 ATP+ Cys+Glu→ADP+
GlutCys+ Pi

GCL 2,15

47 ATP+GluCys+Gly→ADP
+GSH+ Pi

GS 2,15

Taurine synthesis reactions

48 Cys+O2→ SulfALA CDO 0,23

49 SulfALA→ CO2+ hTAUR SADC 0,23

50 hTAUR+H2O+NAD+

↔ TAUR+NADH+H+
HTD 0,23

Glutamic acid transformation

51 Gln+H2O→Glu+NH3 GLS 2,15

Previously undefined acronyms are: 3-AAP 3-acetamidopropanal,
akbut α-ketobutyrate, FAICAR 5-formamidoimidazole-4-carboxamide
ribotide, Pi phosphate

Cell Biochemistry and Biophysics

https://doi.org/10.1007/s00726-019-02733-2
https://doi.org/10.1016/j.mam.2016.09.001
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.1007/s00018-019-03196-0
https://doi.org/10.1016/j.bbagen.2018.06.004
https://doi.org/10.1016/j.bbagen.2018.06.004
https://doi.org/10.1016/j.jmb.2015.06.020
https://doi.org/10.1007/s00726-013-1529-6
https://doi.org/10.1074/jbc.M114.619197
https://doi.org/10.1074/jbc.M114.619197
https://doi.org/10.1096/fj.09-130708
https://doi.org/10.18632/oncotarget.21911
https://doi.org/10.18632/oncotarget.21911
https://doi.org/10.1126/sciadv.aar2606
https://doi.org/10.3389/fphar.2020.00248
https://doi.org/10.3389/fphar.2020.00248
https://doi.org/10.1038/s41467-019-13950-4
https://doi.org/10.1038/s41467-019-13950-4
https://doi.org/10.1016/j.molcel.2015.12.014
https://doi.org/10.1016/j.molcel.2015.12.014
https://doi.org/10.1038/nature22056
https://doi.org/10.1038/nature22056


16. Gao, X., Locasale, J. W., & Reid, M. A. (2019). Serine and
Methionine Metabolism: Vulnerabilities in Lethal Prostate Cancer.
Cancer Cell, 35(3), 339–341. https://doi.org/10.1016/j.ccell.2019.
02.014.

17. Li, A. M., & Ye, J. (2020). Reprogramming of serine, glycine and
one-carbon metabolism in cancer. Biochimica et Biophysica Acta
(BBA) – Molecular Basis of Disease, 1866(10), 165841. https://
doi.org/10.1016/j.bbadis.2020.165841.

18. Bistulfi, G., Foster, B. A., Karasik, E., Gillard, B., Miecznikowski,
J., Dhiman, V. K., & Smiraglia, D. J. (2011). Dietary folate
deficiency blocks prostate cancer progression in the TRAMP
model. Cancer Prevention Research, 4(11), 1825–1834. https://
doi.org/10.1158/1940-6207.CAPR-11-0140.

19. Konno, M., Asai, A., Kawamoto, K., Nishida, N., Satoh, T., Doki,
Y., Mori, M., & Ishii, H. (2017). The one-carbon metabolism
pathway highlights therapeutic targets for gastrointestinal cancer
(Review). International Journal of Oncology, 50(4), 1057–1063.
https://doi.org/10.3892/ijo.2017.3885.

20. Ding, J., Li, T., Wang, X., Zhao, E., Choi, J. H., Yang, L., Zha,
Y., Dong, Z., Huang, S., Asara, J. M., Cui, H., & Ding, H. F.
(2013). The histone H3 methyltransferase G9A epigenetically
activates the serine-glycine synthesis pathway to sustain cancer
cell survival and proliferation. Cell Metabolism, 18(6), 896–907.
https://doi.org/10.1016/j.cmet.2013.11.004.

21. Kaiser, P. (2020). Methionine dependence of cancer. Biomole-
cules, 10(4), 568. https://doi.org/10.3390/biom10040568.

22. Çakır, T., Tacer, C. S., & Ülgen, K. Ö. (2004). Metabolic pathway
analysis of enzyme-deficient human red blood cells. Biosystems,
78(1–3), 49–67. https://doi.org/10.1016/j.biosystems.2004.06.
004.

23. Çakιr, T., Alsan, S., Saybaşιlι, H., Akιn, A., & Ülgen, K. Ö.
(2007). Reconstruction and flux analysis of coupling between
metabolic pathways of astrocytes and neurons: application to
cerebral hypoxia. Theoretical Biology and Medical Modelling, 4
(1), 48. https://doi.org/10.1186/1742-4682-4-48.

24. Schwartz, J. M., Barber, M., & Soons, Z. (2015). Metabolic flux
prediction in cancer cells with altered substrate uptake. Bio-
chemical Society Transactions, 43(6), 1177–1181. https://doi.org/
10.1042/BST20150149.

25. Geryk, J., Krsička, D., Vlčková, M., Havlovicová, M., Macek, Jr.,
M., & Kremlíková Pourová, R. (2020). The key role of purine
metabolism in the folate-dependent phenotype of autism spectrum
disorders: an in silico analysis. Metabolites, 10(5), 184. https://
doi.org/10.3390/metabo10050184.

26. Reed, M. C., Thomas, R. L., Pavisic, J., James, S. J., Ulrich, C.
M., & Nijhout, H. F. (2008). A mathematical model of glutathione
metabolism. Theoretical Biology and Medical Modelling, 5(1), 8.
https://doi.org/10.1186/1742-4682-5-8.

27. Rodríguez-Caso, C., Montañez, R., Cascante, M., Sánchez-Jimé-
nez, F., & Medina, M. A. (2006). Mathematical modeling of
polyamine metabolism in mammals. Journal of Biological
Chemistry, 281(31), 21799–21812. https://doi.org/10.1074/jbc.
M602756200.

28. Chu, Y., Lai, H., Pai, L., Huang, Y., Lin, Y., Liang, K., & Yeh, C.
(2019). The methionine salvage pathway-involving ADI1 inhibits
hepatoma growth by epigenetically altering genes expression via
elevating S-adenosylmethionine. Cell Death & Disease, 10(3),
240. https://doi.org/10.1038/s41419-019-1486-4.

29. von Kamp, A., Thiele, S., Hadicke, O., & Klamt, S. (2017). Use of
CellNetAnalyzer in biotechnology and metabolic engineering.
Journal of Biotechnology, 261, 221–228. https://doi.org/10.1016/
j.jbiotec.2017.05.001.

30. Gagneur, J., & Klamt, S. (2004). Computation of elementary modes:
a unifying framework and the new binary approach. BMC Bioin-
formatics, 5(1), 175. https://doi.org/10.1186/1471-2105-5-175.

31. Bedaso, Y., Bergmann, F. T., Choi, K., Medley, K., & Sauro, H.
M. (2018). A portable structural analysis library for reaction
networks. Biosystems, 169, 20–25. https://doi.org/10.1016/j.
biosystems.2018.05.008.

32. Autelli, R., Stjernborg, L., Khomutov, A. R., Khomutov, R. M., &
Persson, L. (1991). Regulation of S-adenosylmethionine dec-
arboxylase in L1210 leukemia cells: Studies using an irreversible
inhibitor of the enzyme. European Journal of Biochemistry, 196
(3), 551–556. https://doi.org/10.1111/j.1432-1033.1991.tb15849.x.

33. Murray-Stewart, T., Applegren, N. B., Devereux, W., Hacker, A.,
Smith, R., Wang, Y., & Casero, Jr., R. A. (2003). Spermidine/
spermine N1-acetyltransferase (SSAT) activity in human small-
cell lung carcinoma cells following transfection with a genomic
SSAT construct. Biochemical Journal, 373(2), 629–634. https://
doi.org/10.1042/bj20021895.

34. Smulders, Y. M., Smith, D. E. C., Kok, R. M., Teerlink, T.,
Swinkels, D. W., Stehouwer, C. D. A., & Jakobs, C. (2006).
Cellular folate vitamer distribution during and after correction of
vitamin B12 deficiency: a case for the methylfolate trap. British
Journal of Haematology, 132(5), 623–629. https://doi.org/10.
1111/j.1365-2141.2005.05913.x.

35. Jiang, H., Hurt, K. J., Breen, K., Stabler, S. P., Allen, R. H.,
Orlicky, D. J., & Maclean, K. N. (2015). Sex-specific dysregu-
lation of cysteine oxidation and the methionine and folate cycles
in female cystathionine gamma-lyase null mice: a serendipitous
model of the methylfolate trap. Biology Open, 4(9), 1154–1162.
https://doi.org/10.1242/bio.013433.

36. Tröndle, J., Schoppel, K., Bleidt, A., Trachtmann, N., Sprenger,
G. A., & Weuster-Botz, D. (2020). Metabolic control analysis of
L-tryptophan production with Escherichia coli based on data from
short-term perturbation experiments. Journal of Biotechnology,
307, 15–28. https://doi.org/10.1016/j.jbiotec.2019.10.009.

37. Trinh, C. T., & Thompson, R. A. (2012) In: X. Wang, J. Chen, P.
Quinn, (eds.). Elementary mode analysis: a useful metabolic
pathway analysis tool for reprograming microbial metabolic
pathways. Reprogramming microbial metabolic pathways. Sub-
cellular Biochemistry, vol. 64 (pp. 21–42). Dordrecht: Springer.

38. Dotsenko, O. I. (2019). In silico study of peculiarities of meta-
bolism of erythrocytes with glucosephosphate isomerase defi-
ciency. Regulatory Mechanisms in Biosystems, 10(3), 306–313.
https://doi.org/10.15421/021947.

39. DebRoy, S., Kramarenko, I. I., Ghose, S., Oleinik, N. V., Kru-
penko, S. A., & Krupenko, N. I. (2013). A novel tumor suppressor
function of glycine N-methyltransferase is independent of its
catalytic activity but requires nuclear localization. PLoS ONE, 8
(7), e70062. https://doi.org/10.1371/journal.pone.0070062.

40. Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., & Park,
M. H. (2013). Depletion of cellular polyamines, spermidine and
spermine, causes a total arrest in translation and growth in mam-
malian cells. Proceedings of the National Academy of Sciences,
110(6), 2169–2174. https://doi.org/10.1073/pnas.1219002110.

41. Nisenberg, O., Pegg, A. E., Welsh, P. A., Keefer, K., & Shantz, L.
M. (2006). Overproduction of cardiac S-adenosylmethionine
decarboxylase in transgenic mice. Biochemistry Journal, 393(1),
295–302. https://doi.org/10.1042/BJ20051196.

42. Shi, C., Welsh, P. A., Sass-Kuhn, S., Wang, X., McCloskey, D. E.,
Pegg, A. E., & Feith, D. J. (2012). Characterization of transgenic
mice with overexpression of spermidine synthase. Amino Acids, 42
(2-3), 495–505. https://doi.org/10.1007/s00726-011-1028-6.

43. Chang, Y. C., Su, C. Y., & Hsiao, M. (2016). Therapeutic targeting
of methylthioadenosine phosphorylase. Cancer Cell & Micro-
environment, 3(3), e1322. https://doi.org/10.14800/ccm.1322.

44. Borrego, S. L., Fahrmann, J., Datta, R., Stringari, C., Grapov, D.,
Zeller, M., Chen, Y., Wang, P., Baldi, P., Gratton, E., Fiehn, O., &
Kaiser, P. (2016). Metabolic changes associated with methionine

Cell Biochemistry and Biophysics

https://doi.org/10.1016/j.ccell.2019.02.014
https://doi.org/10.1016/j.ccell.2019.02.014
https://doi.org/10.1016/j.bbadis.2020.165841
https://doi.org/10.1016/j.bbadis.2020.165841
https://doi.org/10.1158/1940-6207.CAPR-11-0140
https://doi.org/10.1158/1940-6207.CAPR-11-0140
https://doi.org/10.3892/ijo.2017.3885
https://doi.org/10.1016/j.cmet.2013.11.004
https://doi.org/10.3390/biom10040568
https://doi.org/10.1016/j.biosystems.2004.06.004
https://doi.org/10.1016/j.biosystems.2004.06.004
https://doi.org/10.1186/1742-4682-4-48
https://doi.org/10.1042/BST20150149
https://doi.org/10.1042/BST20150149
https://doi.org/10.3390/metabo10050184
https://doi.org/10.3390/metabo10050184
https://doi.org/10.1186/1742-4682-5-8
https://doi.org/10.1074/jbc.M602756200
https://doi.org/10.1074/jbc.M602756200
https://doi.org/10.1038/s41419-019-1486-4
https://doi.org/10.1016/j.jbiotec.2017.05.001
https://doi.org/10.1016/j.jbiotec.2017.05.001
https://doi.org/10.1186/1471-2105-5-175
https://doi.org/10.1016/j.biosystems.2018.05.008
https://doi.org/10.1016/j.biosystems.2018.05.008
https://doi.org/10.1111/j.1432-1033.1991.tb15849.x
https://doi.org/10.1042/bj20021895
https://doi.org/10.1042/bj20021895
https://doi.org/10.1111/j.1365-2141.2005.05913.x
https://doi.org/10.1111/j.1365-2141.2005.05913.x
https://doi.org/10.1242/bio.013433
https://doi.org/10.1016/j.jbiotec.2019.10.009
https://doi.org/10.15421/021947
https://doi.org/10.1371/journal.pone.0070062
https://doi.org/10.1073/pnas.1219002110
https://doi.org/10.1042/BJ20051196
https://doi.org/10.1007/s00726-011-1028-6
https://doi.org/10.14800/ccm.1322


stress sensitivity in MDA-MB-468 breast cancer cells. Cancer &
Metabolism, 4, 9. https://doi.org/10.1186/s40170-016-0148-6.

45. Cavuoto, P., & Fenech, M. F. (2012). A review of methionine
dependency and the role of methionine restriction in cancer growth
control and life-span extension. Cancer Treatment Reviews, 38(6),
726–736. https://doi.org/10.1016/j.ctrv.2012.01.004.

46. Guo, H. Y., Herrera, H., Groce, A., & Hoffman, R. M. (1993).
Expression of the biochemical defect of methionine dependence in
fresh patient tumors in primary histoculture. Cancer Research, 53,
2479–2483.

47. Wanders, D., Hobson, K., & Ji, X. (2020). Methionine restriction
and cancer biology. Nutrients, 12(3), 684. https://doi.org/10.3390/
nu12030684.

48. Ashkavand, Z., O’Flanagan, C., Hennig, M., Du, X., Hursting, S.
D., & Krupenko, S. A. (2017). Metabolic Reprogramming by
Folate Restriction Leads to a Less Aggressive Cancer Phenotype.
Molecular Cancer Research, 15, 189–200. https://doi.org/10.
1158/1541-7786.MCR-16-0317.

49. Song, Y. H., Shiota, M., Kuroiwa, K., Naito, S., & Oda, Y. (2011).
The important role of glycine N-methyltransferase in the carcino-
genesis and progression of prostate cancer. Modern Pathology, 24
(9), 1272–1280. https://doi.org/10.1038/modpathol.2011.76.

50. Ottaviani, S., Brooke, G. N., O’Hanlon-Brown, C., Waxman, J.,
Ali, S., & Buluwela, L. (2013). Characterisation of the androgen
regulation of glycine N-methyltransferase in prostate cancer cells.
Journal of Molecular Endocrinology, 51(3), 301–312. https://doi.
org/10.1530/JME-13-0169.

51. Yoon, J. K., Kim, D. H., & Koo, J. S. (2014). Implications of
differences in expression of sarcosine metabolism-related proteins
according to the molecular subtype of breast cancer. Journal of
Translational Medicine, 12, 149. https://doi.org/10.1186/1479-
5876-12-149.

52. Strmiska, V., Michalek, P., Lackova, Z., Guran, R., Krizkova, S.,
Vanickova, L., Zitka, O., Stiborova, M., Eckschlager, T., Klejdus,
B., Pacik, D., Tvrdikova, E., Keil, C., Haase, H., Adam, V., &
Heger, Z. (2019). Sarcosine is a prostate epigenetic modifier that
elicits aberrant methylation patterns through the SAMe-Dnmts
axis. Molecular Oncology, 13(5), 1002–1017. https://doi.org/10.
1002/1878-0261.12439.

53. Dekhne, A. S., Shah, K., Ducker, G. S., Katinas, J. M., Wong-
Roushar, J., Nayeen, M. J., Doshi, A., Ning, C., Bao, X.,
Frühauf, J., Liu, J., Wallace-Povirk, A., O’Connor, C., Dzinic,
S. H., White, K., Kushner, J., Kim, S., Hüttemann, M., Polin,
L., Rabinowitz, J. D., & Matherly, L. H. (2019). Novel pyrrolo
[3,2-d]pyrimidine compounds target mitochondrial and cyto-
solic one-carbon metabolism with broad-spectrum antitumor
efficacy. Molecular Cancer Therapeutics, 18(10), 1787–1799.
https://doi.org/10.1158/1535-7163.MCT-19-0037.

54. Lien, E. C., Ghisolfi, L., Geck, R. C., Asara, J. M., & Toker, A.
(2017). Oncogenic PI3K promotes methionine dependency in
breast cancer cells through the cystine-glutamate antiporter xCT.
Science Signaling, 10(510), eaao6604. https://doi.org/10.1126/
scisignal.aao6604.

Cell Biochemistry and Biophysics

https://doi.org/10.1186/s40170-016-0148-6
https://doi.org/10.1016/j.ctrv.2012.01.004
https://doi.org/10.3390/nu12030684
https://doi.org/10.3390/nu12030684
https://doi.org/10.1158/1541-7786.MCR-16-0317
https://doi.org/10.1158/1541-7786.MCR-16-0317
https://doi.org/10.1038/modpathol.2011.76
https://doi.org/10.1530/JME-13-0169
https://doi.org/10.1530/JME-13-0169
https://doi.org/10.1186/1479-5876-12-149
https://doi.org/10.1186/1479-5876-12-149
https://doi.org/10.1002/1878-0261.12439
https://doi.org/10.1002/1878-0261.12439
https://doi.org/10.1158/1535-7163.MCT-19-0037
https://doi.org/10.1126/scisignal.aao6604
https://doi.org/10.1126/scisignal.aao6604

	In Silico Prediction of Metabolic Fluxes in Cancer Cells with Altered S-adenosylmethionine Decarboxylase Activity
	Abstract
	Introduction
	Materials and Methods
	Results
	Elementary Flux Modes Analysis of Polyamine Metabolism
	CEF Analysis of the Metabolic Network

	Discussion
	Conclusions
	Compliance with Ethical Standards

	ACKNOWLEDGMENTS
	Appendix
	References




