

International Science Group

ISG-KONF.COM

XXIV INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE "MULTIDISCIPLINARY ACADEMIC NOTES. SCIENCE RESEARCH AND PRACTICE"

> Madrid, Spain June 21 - 24, 2022

ISBN 979-8-88680-822-3 DOI 10.46299/ISG.2022.1.24

MULTIDISCIPLINARY ACADEMIC NOTES. SCIENCE RESEARCH AND PRACTICE

Proceedings of the XXIV International Scientific and Practical Conference

Madrid, Spain June 21 – 24, 2022

MULTIDISCIPLINARY ACADEMIC NOTES. SCIENCE RESEARCH AND PRACTICE

UDC 01.1

The XXIV International Scientific and Practical Conference «Multidisciplinary academic notes. Science research and practice», June 21 - 24, 2022, Madrid, Spain. 611 p.

ISBN - 979-8-88680-822-3 DOI - 10.46299/ISG.2022.1.24

EDITORIAL BOARD

Pluzhnik Elena	Professor of the Department of Criminal Law and Criminology Odessa State University of Internal Affairs Candidate of Law,
	Associate Professor
Liubchych Anna	Scientific and Research Institute of Providing Legal Framework for the Innovative Development National Academy of Law Sciences of Ukraine, Kharkiv, Ukraine, Scientific secretary of Institute
<u>Liudmyla Polyvana</u>	Department of Accounting and Auditing Kharkiv National Technical University of Agriculture named after Petr Vasilenko, Ukraine
Mushenyk Iryna	Candidate of Economic Sciences, Associate Professor of Mathematical Disciplines, Informatics and Modeling. Podolsk State Agrarian Technical University
Oleksandra Kovalevska	Dnipropetrovsk State University of Internal Affairs Dnipro, Ukraine
Prudka Liudmyla	Odessa State University of Internal Affairs, Associate Professor of Criminology and Psychology Department
<u>Slabkyi Hennadii</u>	Doctor of Medical Sciences, Head of the Department of Health Sciences, Uzhhorod National University.
Marchenko Dmytro	PhD, Associate Professor, Lecturer, Deputy Dean on Academic Affairs Faculty of Engineering and Energy
Harchenko Roman	Candidate of Technical Sciences, specialty 05.22.20 - operation and repair of vehicles.
Belei Svitlana	Ph.D., Associate Professor, Department of Economics and Security of Enterprise
Lidiya Parashchuk	PhD in specialty 05.17.11 "Technology of refractory non-metallic materials"
<u>Kanyovska Lyudmila</u> Volodymyrivna	Associate Professor of the Department of Internal Medicine
Levon Mariia	Candidate of Medical Sciences, Associate Professor, Scientific direction - morphology of the human digestive system
<u>Hubal Halyna</u> Mykolaivna	Ph.D. in Physical and Mathematical Sciences, Associate Professor

STUDY THE INFLUENCE OF GAS SAMPLE TEMPERATURE ON THE EFFICIENCY OF ECOLOGICAL DIAGNOSTICS SYSTEMS FOR AUTOMOTIVE DIESEL ENGINES

Polyvianchuk Andrii

Doctor of Technical Sciences, Professor Vinnytsia National Technical University

Burennikov Yuriy

Candidate of Economic Sciences, Associate Professor Vinnytsia National Technical University

Tsymbal Olga

Assistant Vinnytsia National Technical University

Semenenko Roman

Postgraduate Student Vinnytsia National Technical University

Bazyl Andrii

Postgraduate Student Vinnytsia National Technical University

Research problems. When using compact systems for environmental diagnostics of automotive diesel engines - mini- and microtunnels, the requirement to ensure their accuracy should be met: relative deviations of the measurement results of the normalized indicator PM - mass emission of particulate matter with exhaust gases (EG), determined by compact (partial flow) and reference (full flow) systems should not exceed $\pm 5\%$ [1, 2]. When using compact tunnels to measure the PM index, a methodological error arises in measuring this value - δPM_t , due to a change in the temperature of diluted HS in the tunnel, on which the mass of the soluble organic fraction (SOF) in the PM composition depends [3-5]. The δPM_t error can be eliminated by using sample temperature controllers in compact systems that provide the conditions for dilution of the EG corresponding to the reference system. Since such regulators are expensive, high-tech devices, the installation of which complicates and increases the cost of measuring systems, the feasibility of their use should be investigated.

Analysis of recent research and publications. In accordance with the requirements of regulatory documents - UNECE Regulation R-49, international standard ISO 8178, etc. measurement of mass emissions of PM from automotive diesel engines can be carried out using various measuring systems [1]: reference full-flow tunnels with 1 and 2-fold dilution of EG with clean air and compact partially flow

tunnels, which are divided into minitunnels (have a diameter of 7.5 ... 12 cm and a length of 75...120 cm) and microtunnels (they have a diameter of 2.5...4 cm and a length of 25...40 cm). The best-known partially flow tunnels include: a minitunnel with an isokinetic sampler MT 474 (AVL), a multi-pipe type minitunnel (Mitsubishi), microtunnels with a differential method for determining the mass flow of EG - SPC 472 (AVL), PTR 200 [6-9].

To determine the normalized environmental indicator PM - the average operational mass emission of PM from the EG, bench tests of automotive diesel engines are carried out according to regulated test cycles, consisting of normalized engine operation modes with specified values of the crankshaft speed - n, engine shaft load - L, weight factor WF, taking into account the relative time of operation of the diesel engine in the mode during operation, and the duration of the test mode - τ . At the same time, various modes of diluting EG by air can be used in tunnels: D1 - mode with a constant mass flow rate of diluted EG or CVS-mode; D2 - CVS-mode with external air cooling of the tunnel; D3 - mode with a constant dilution factor of EG; D4 - mode with a constant dilution ratio of the EG and external air cooling of the tunnel.

The degree of influence of the temperature of the sample in the tunnel on the controlled mass emission of PM can be estimated from the results of experimental studies of foreign and domestic authors [7,9,10], indicating the following: 1) an increase in the temperature of diluted EG in front of the filters - t_f leads to a decrease in the PM emission controlled by the weight of the PM sample - mf and vice versa; 2) the influence of temperature t_f on the value of m_f can be taken into account using the established empirical linear dependences [7, 10]; 3) the value of the coefficient of proportionality of these dependencies depends on the mode of operation of the engine: with an increase in diesel power, their value decreases.

Formulation of the problem. The purpose of the work was to assess the feasibility of sample temperature control in compact systems - mini- and microtunnels (fig. 1) based on studies of their accuracy, taking into account the methodological error in measuring the PM index. To achieve this goal, the following tasks were solved: 1) analysis of literary sources on the research topic; 2) development of mathematical models for determining the temperature of a sample of diluted EG in the tunnel and the resulting measurement error of the PM index - δPM_t ; 3) study of the feasibility of sample temperature control in mini- and microtunnels.

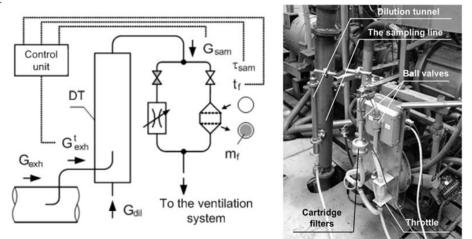


Fig. 1. Schematic diagram and general view of microtunnels MKT-2 [5]

TECHNICAL SCIENCES MULTIDISCIPLINARY ACADEMIC NOTES. SCIENCE RESEARCH AND PRACTICE

Presentation of the main material of the study.

At the heart of the mathematical model for determining the temperature of a sample of diluted EG in the tunnel is t_f . the heat balance equation for the process of heat exchange of heated gas in a cylindrical pipeline with ambient air was used [11]. As a result of the transformation of this equation, the main calculation formula was obtained to determine the temperature of the gas flow at the end of the pipelines for the flow of diluted EG. Sequential calculation of the final temperatures of gas flows in all pipelines of the EG dilution system makes it possible to determine the sample temperature before the filter - t_f .

The mathematical model for determination of the resulting error of PM indicator measurements - δ PM provides determination of this quantity as sum of its instrumental - δ PM_{in} and methodical - δ PM_t components: The magnitude δ PM_{in} is determined by the dependence for calculation of the error of indirect measurement result [10]. The error δ PM_t is numerically equal to the relative deviation of the controlled mass emission of PM determined at the actual temperature t_{fi} from the mass emission of PM determined at the temperature t_{f0i}, taken as the reference and corresponding to the dilution of HB in the reference system at t_{dil} = 20 ° C, t_{f(max)} = 52 °C [12].

Studies of the feasibility of regulating the temperature of the sample in mini- and microtunnels were carried out on the criterion of relative deviation of the results of measurements of the RM by partial-flow and reference systems - δ PM*. Based on the results of environmental tests of diesels 1Ch12/14, equipped with a minitunnel MT-1, and 4ChN12/14, equipped with a microtunnel MKT-2 [5, 10, 12] on a 13-stage ESC cycle using these mathematical models calculated calculations of absolute temperature deviations samples in a full-flow system with a diameter of 46 cm from similar temperatures in a minitunnel with a diameter of 10 cm and a microtunnel with a diameter of 3 cm - Δ t_f, as well as the resulting methodological errors in measuring mass emissions of PM - m_f (fig. 2).

Fig. 2 - Results of experimental studies of the accuracy of mini- and microtunnels

The results of the studies indicate the following: thermal conditions of dilution of hydrogen sulfide in a minitumel and a reference system are approximately equal:

deviations of sample temperatures in these systems are less than 0.7 °C, resulting in methodical errors of PM measurements do not exceed 0.4 % and do not affect significantly the resulting error of the tunnel; thermal conditions of hydrogen sulfide dilution in a microtunnel and a reference system have significant differences: sample temperature deviations in these systems reach 2.5 °C, the resulting methodological errors of RM measurements are 1.6 - 1.7%, which leads to an increase in the resulting error up to $\pm 5.9\%$. Thus, adjustment of the sample temperature in minitrunnels can be not used, but in a microtunnel it is expedient and allows to provide the necessary accuracy of PM measurements.

Conclusions. Based on the results of the analysis of regulatory documents -UNECE Rules R-49, R-96, international standard ISO 8178, etc., world and domestic experience in the use of dilution tunnels, the following were established: technical characteristics and operating conditions of reference full-flow and partial-flow tunnels, empirical dependences of the degree of temperature impact samples in the tunnel for the accuracy of measurements of mass emissions of PM in different operating modes of the diesel engine. Mathematical models have been developed to determine: the temperature of a sample of EG diluted with air in tunnels of various types, the resulting error in determining the average operational PM emission - the PM indicator, taking into account the influence of the sample temperature in the tunnel on the accuracy of PM measurements. Based on the test results of diesel engines 1Ch12/14 and 4ChN12/14 in the ESC cycle and the developed mathematical models, computational studies were carried out to assess the effect on the accuracy of a minitunnel and a microtunnel with diameters of 10 cm and 3 cm, respectively, of the temperature regimes of sample preparation, which were compared with a diameter of 46 cm The results of the research proved the expediency of controlling the temperature of the sample in the microtunnel to eliminate significant methodological errors in the measurements of the PM index,

References:

1. Regulation № 49-06. Uniform Provisions Concerning the Measures to be Taken Against the Emission of Gaseous and Particulate Pollutants from Compression-ignition Engines and Positive-ignition Engines for Use in Vehicles. E/ECE/TRANS/505, 2013. – 541 p.

2. Lianga Z. Investigation of SVOC nanoparticle emission from light duty diesel engine using GC×GC-ToF-MS / Z. Lianga, J. Tiana, S. Zeraati Rezaeia, Y. Zhanga et al. // School of Mechanical Engineering, University of Birmingham, UK, 2015. – 31 p.

3. Foote E. Evaluation of Partial Flow Dilution Methodology for Light Duty Particulate Mass Measurement / E. Foote, M. Maricq, M. Sherman, D. Carpenter et al. // SAE Technical Paper № 2013-01-1567, 2013. – 10 p.

4. Клименко О.А. Дослідження та створення перспективної системи для визначення масових викидів забруднюючих речовин у відпрацьованих газах двигунів / О.А. Клименко, А.М. Редзюк, О.В. Кудренко, С.О. Ричок // Автошляховик України, 2012. – № 5 (229) – С. 2–8.

5. Polivyanchuk A.P. Improving the accuracy of the gravimetric method for control particulate matter in diesel exhaust / A.P. Polivyanchuk, I.V. Gritsuk, E.A. Skuridina

TECHNICAL SCIENCES MULTIDISCIPLINARY ACADEMIC NOTES. SCIENCE RESEARCH AND PRACTICE

// New stages of development of modern science in Ukraine and EU countries: monograph / Riga, Latvia: "Baltija Publishing", 2019. – P. 269-301.

6. Редзюк А.М. Щодо визначення масових викидів забруднюючих речовин двигунами колісних транспортних засобів / А.М. Редзюк, О.А. Клименко, О.В. Кудренко // Автошляховик України, 2012. – № 4 (228) – С. 2–7.

7. Alozie, N. Influence of Dilution Conditions on Diesel Exhaust Particle Measurement Using a Mixing Tube Diluter / N. Alozie, D. Peirce, A. Lindner, W. Winklmayr et al. // SAE Technical Paper № 2014-01-1568, 2014. – 14 p.

8. Smart Sampler PC SPC 472. PC program for SPC 472 control. – AVL, List GmbH Graz, Austria, 1993. – 76 p.

9. Russel R. Development of a Miniaturized, Dilutien-Based Diesel Engine Particulate Sampling System for Gravimetric Measurement of Particulates / R. Russel // SAE Techn. Pap. Ser. №931190, 1993. – 12 p.

10. Polivyanchuk A.P. Features of Environmental Diagnostics of Heat Motors and Boiler Plants by Information Methods / A. Polivyanchuk, M. Ahieiev, A. Kagramanian, A. Baranovskis, O. Samarin // ICTE in Transportation and Logistics 2019. Series: Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham, 2020. – P. 360-367.

11. Болгарский А.В. Термодинамика и теплопередача / А.В. Болгарский, Г.А. Мухачев. – М.: Высшая школа, 1964. – 458 с.

12. Полив'янчук А.П. Підвищення ефективності систем контролю викидів твердих частинок з відпрацьованими газами дизелів: монографія / А.П. Полив'янчук. – Х.: ХНАДУ, 2015. – 224 с.