UDC 004.058.2
M. B. Shkliaruk

COMPARATIVE ANALYSIS OF THE COMPLEXITY OF TWO
ALGORITHMS FOR SOLVING A SINGLE TASK

Vinnytsia National Technical University

AHoTauis

Ilpogedeno nopieHaHHA 080X OOHAKOBUX 3a CKIAAOHICMIO AA2OPUMMIE GUDIUEHHA KOHKPEMHO20 3A80AHH.
Busnaueno, wo uac 8UKOHaHHA aneopummy 3anexCums He miibKu 6i0 U020 CKAAOHOCI.

Kuro4oBi cjioBa: anroput™, CKIagHICTh, CKIAIHICTE allTOPUTMY.

Abstract

Two algorithms with the same complexity for solving a particular task have been compared. It has been determined
that the execution time of an algorithm depends not only on its complexity.

Key words: algorithm, complexity, the complexity of the algorithm.

Introduction

The complexity of an algorithm is a quantitative characteristic reflecting the resources consumed by the
algorithm during its execution [1, 2]. Algorithm complexity is typically assessed based on execution time or
memory usage. In both cases, complexity depends on the size of the input data: an array of 100 elements will
be processed faster than a similar one with 1000 elements. This is not about the exact computation time,
which depends on the processor, data type, programming language, and so on. Complexity is evaluated when
striving to extend the size of the input data to infinity.

However, two different algorithms with the same complexity may have different execution times.
Therefore, a comparative analysis of the complexity of two algorithms for solving a single task is a relevant
task.

Description of Algorithms
The task for which the proposed algorithms were developed involved finding the largest and smallest
guadrilaterals by area using specified points as vertices. The program results for 200 random points are
shown in Figure 1, and for both algorithms, they are identical.

Nepwni anr Dpyrvid anr, Epyad. anr. OumctaTi Yac: 1104 minic
HaimeHwwii: 7.0
Hambinblmid: 523270.(

Figure 1 — Largest and smallest quadrilaterals by area



Both algorithms were created using four nested for loops, hence they had a complexity of O(n%.
However, the execution time of each of them for the same number of points differs significantly. Let’s
consider what influenced the comparison results.

Figure 2 — Code of the first algorithm

The first algorithm, in addition to loops, also employed intelligent iteration with the pre-exclusion of
loops for points that were equal to each other (Figure 2). Therefore, the number of iterations through the
array of points was somewhat reduced.

The second algorithm used the same iteration principle but in a different way: iterations in each
subsequent nested loop started from a point that was one index larger than the current point of the previous
loop. However, to achieve this, it was necessary to add a check for the areas of three quadrilaterals created
from the same points but in different combinations (Figure 3). This way, combinations such as 1-2-3-4, 2-3-
4-1, 3-4-1-2, 4-1-2-3 were excluded.

Figure 3 — Code of the second algorithm

The results of comparing time expenditures depending on the number of specified points are depicted in
Table 1.

Table 1 — Comparison of the results of the first and second algorithms

10 points 50 points 100 points 200 points
Algorithm 1 10 ms 105 ms 1040 ms 13000 ms
Algorithm 2 8 ms 60 ms 300 ms 1400 ms




It is immediately apparent from the table that the first algorithm significantly lags in execution time
compared to the second. However, they have the same complexity and differ only in their ‘intelligent
iterations’, which allow filtering out unnecessary iterations and reducing time and memory device costs.

Conclusions

The assessment of algorithm complexity is a crucial stage in algorithm design and analysis. Theoretical
evaluations, such as determining time and space complexity in terms of "Big-O notation,” provide a
theoretical framework for comparing algorithms and predicting their efficiency as input data sizes increase.

However, real-world programs may interact with various factors that are challenging or impossible to
account for in theoretical models. These factors may include specific computations within the algorithm, the
architecture of a particular computer, properties of specific input data, and other aspects of real-world
algorithm usage.

Therefore, for a comprehensive assessment of algorithm complexity, it is essential to conduct
experimental analysis, which involves measuring execution time on real input data. The combination of
theoretical evaluation and experimental analysis provides a more complete picture of an algorithm’s
efficiency and suitability for practical tasks.

REFERENCES

1. Wikimedia contributors. "Algorithm — Wikipedia." Electronic resource. Accessed at: https://en.wikipedia.org/wiki/Algorithm.
2. Savchuk V. "Big O: Algorithm Complexity." The Code. Electronic resource. Accessed at: https://www.the-
code.com.ua/en/algorithm-complexity/.

Hlknapyk Mapin bozoaniena — crynentka rpymu 2I11-226, dakynbrer iHGOpMaIiiHUX TeXHOJIOTIH Ta
KOMI'IOTEpHOI  imKeHepii,  BiHHWIBKHMA  HalioHANpHHMN  TexHiuHMH  yHiBepcurer, Binnums,  e-mail:
shkliiaruk.mariia@gmail.com

HaykoBuii kepiBunk: Meapbnuk Mapuna BopuciBHa, Bukiamad aHrmiickkoi MOBH, kKadenpa iHO3EMHHUX MOB,
BiHHHIbKHUI HALIOHANIBHUN TeXHIYHUI yHiBepcuTeT. E-mail: melnykmaryl@gmail.com

Maria Bogdanivna Shklyaruk - student of group 2PI-22b, Faculty of Information Technologies and Computer
Engineering, Vinnytsia National Technical University, Vinnytsia, e-mail: shkliiaruk.mariia@gmail.com

Scientific supervisor Melnyk Maryna Borysivna — teacher of English, Department of the Foreign Languages,
Vinnytsia National Technical University. E-mail: melnykmaryl@gmail.com



https://www.the-code.com.ua/en/algorithm-complexity/
https://www.the-code.com.ua/en/algorithm-complexity/
mailto:shkliiaruk.mariia@gmail.com
mailto:melnykmary1@gmail.com
mailto:shkliiaruk.mariia@gmail.com
mailto:melnykmary1@gmail.com

