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ABSTRACT  

Since the advent of deep learning a decade ago convolutional neural networks have been the predominant method 

for approaching computer vision tasks. However, Transformer model, which has shown significant achievements 

in the field of natural language processing, is increasingly being applied to computer vision tasks and is demonstrating 

comparable or superior performance. The article discusses the application of Transformer model to the super-resolution 

task. The direct application of the original Transformer achived performance comparable to the contemporary 

convolutional neural networks. However, the self-attention mechanism, which underpins Transformer model, involves 

quadratic computational complexity with respect to the size of the input image, presenting a significant challenge 

for processing high-resolution images. Further research has significantly improved performance, but these improvements 

are not exhaustive. An overview and comparative analysis of these studies are presented.  
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1. INTRODUCTION  

The rapid development of digital image processing technologies has led to an increasing demand for high-resolution 

images in various applications, ranging from medical imaging and surveillance systems to the production 

of entertainment multimedia content. However, obtaining high-resolution images is often constrained by the capabilities 

of photosensitive elements or other physical limitations of capture devices, resulting in reduced resolution 

and, consequently, low detalization and poor quality of images. Super-resolution (SR) – the process of generating 

a high-resolution (HR) image from a corresponding low-resolution (LR) image – has recently gained significant attention 

as an effective and cost-efficient way to address this problem. 

Traditional SR methods, such as bicubic interpolation, are simple and efficient but are prone to blurring details 

and producing ringing artifacts. Advanced learning-based methods, such as sparse coding and locally linear regression, 

have been proposed to address these shortcomings. The rapid growth of computational power and the wide availability 

of visual data have made it possible to apply deep learning to the SR task. The application of convolution neural network 

(CNN) and generative adversarial network (GAN) has been extensively investigated for addressing the SR problem over 

the past decade. These approaches have achieved significant improvements in reconstruction quality and have 

demonstrated a high degree of adaptability. However, despite the advancements achieved by CNNs, they exhibit inherent 

limitations due to locality of receptive field, as well as the static nature of convolutional filter weights. GANs focus 

on generating visually appealing images; however, they are prone to producing artifacts and often suffer from instability 

during the training process. 

Transformer model, recently applied to high-level computer vision tasks, has demonstrated a significant performance 

boost compared to CNNs. Initially designed for natural language processing (NLP) applications, Transformer leverages 

a multi-head self-attention mechanism, enabling it to directly model long-range dependencies by examining 

the relationships between all elements of the input image. However, the self-attention mechanism has quadratic 

computational complexity with respect to the length of the input sequence, presenting challenges for application 

of Transformer model to SR task. As an option spiking neural networks
1
 (SNN) can potentially be applied with aim 

to reduce computational complexity.  
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2. SUPER-RESOLUTION 

Super-resolution – is a task of restoration of HR digital image from its LR counterpart. Let 𝐷 be a degradation mapping 

that represents the relationship between a LR image 𝑥 and a HR image 𝑦: 

 𝑥 = 𝐷(𝑦, 𝛿) (1) 

in which 𝛿 – parameters of degradation mapping, for example scaling factor or type and level of the noise. In practice, 

the exact type and parameters of degradation are typically unknown. Therefore, it is commonly modelled by downscaling 

the image using bicubic interpolation. So, the SR task can be defined as finding a mapping that reverses the degradation 

mapping 𝐷. Thus, the objective is to find a function 𝑀:  

 �̂� = 𝑀(𝑥, 𝜃) (2) 

where �̂� is the predicted HR approximation of the LR image 𝑥 and 𝜃 the parameters of 𝑀. Since a single LR image can 

correspond to multiple non-identical reconstructed HR images, the SR is an ill-posed problem.  

The classification of existing SR methods is shown in Figure 1. Early SR methods relied on analytical interpolation 

techniques such as linear, bicubic, cubic spline interpolation, etc. The main advantage of these methods is their 

simplicity and real-time applicability; however, the simplistic interpolation rules often lead to significant blurring 

of details. Reconstruction-based methods utilize prior knowledge to constrain the space of possible solutions, enabling 

the generation of sharper details, but those methods are resource-intensive. Learning-based methods have gained 

widespread popularity in solving the SR problem due to their high performance and acceptable computational 

complexity. These methods employ machine learning to discover statistical relationships between HR and LR image 

patches. As machine learning has advanced, a wide variety of models have been applied to SR tasks, including neighbor 

embedding methods, sparse coding methods and locally linear regression methods. 

 

Figure 1. Classification of existing super-resolution methods. 

With the advent of deep learning in 2012, CNNs have become the de facto standard for solving computer vision tasks, 

including SR. Thus, SRCNN
2
 introduced a three-layer CNN that surpassed the performance of existing learning-based 

SR methods. Subsequent enhancements were achieved by increasing the network depth in VDSR
3
 and incorporating 

residual connections in SRResNet
4
. The architecture of SRResNet was further optimized in ESDR

5
, which achieved 

outstanding results and established itself as a benchmark for future research. ESPCN
6
 introduced sub-pixel convolution, 

enabling the upscaling operation to be performed in the final step, thereby reducing memory requirements and improving 

efficiency. RCAN
7
 advanced the field further by introducing channel attention mechanism. 

An alternative to CNN-based methods are generative approaches, particularly those based on generative adversarial 

networks (GANs) and diffusion models. SRGAN
4
 introduced a GAN architecture that combines an adversarial loss 

function with a content loss function, enabling the generation of high-quality images with enhanced perceptual fidelity. 

ESRGAN
8
, an evolution of SRGAN, has set the standard for GAN-based methods. Diffusion models, such as SRDiff

9
, 

represent a relatively new approach that further narrows the gap between the quality of reconstructed images and their 

subjective perception by humans, albeit at the cost of significant computational resources. 

Proc. of SPIE Vol. 13400  134000J-2



 

 
 

 

 

 

Since 2017, Transformer has achieved significant breakthroughs in the field of NLP, with the self-attention mechanism 

and novel network structure proving highly effective for processing sequential data. In 2020, the ViT
10

 (Vision 

Transformer) was introduced, adapting the Transformer model for computer vision tasks. ViT has demonstrated superior 

performance and competitiveness compared to CNNs. Its application in computer vision, particularly in image 

restoration, is currently a subject of active research. 

In the case of learning-based methods, the SR task is framed as an optimization problem, which involves finding 

a set of parameters �̂� for the function 𝑀 that minimizes the loss function 𝐿 for the original HR image 𝑦 

and its approximation �̂�: 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛�̂�𝐿(�̂�, 𝑦) (3) 

The most prevalent loss functions are mean absolute error and mean squared error. Also, Charbonnier loss function 

is frequently employed. 

Evaluating the quality of a reconstructed image is also a challenging task, as it is primarily determined by human 

perception and depends on various attributes such as sharpness, contrast, and level of noise. Subjective human 

assessment methods, such as MOS (Mean opinion score), generally provide the most accurate results. However, 

involving human evaluators is time-consuming and burdensome, particularly for large datasets. An alternative approach 

involves using reference images as a base of objective assessments. The most commonly used metrics for objective 

evaluation are PSNR (Peak signal-to-noise ratio) and SSIM (structural Similarity Index Measure). 

3. VISUAL TRANSFORMER 

The ViT
10

 model directly adapts the original Transformer
11

 for computer vision tasks. An overview of the model 

is depicted in Figure 2. The Vision Transformer is composed of 𝑁 blocks, which are analogous to the encoder blocks 

of the original Transformer. Each block consists of two sequential subblocks with residual connections: a multi-head 

self-attention block and a fully connected multilayer perceptron block. The input image is represented as patch 

embeddings, similar to token embeddings in NLP. This is accomplished by dividing the image into 2d patches, 

and then applying trainable linear projection for each patch to obtain 𝑑-dimensional embeddings.  

 

Figure 2. Visual Transformer overview. 
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Transformer was designed for processing sequences; however, it does not explicitly consider the position of each 

element within the sequence. To mitigate this limitation, positional embeddings are employed to encode the position 

of each image patch. Patch embeddings are combined with their corresponding positional embeddings before being input 

to Transformer. This mechanism allows to account for the relative positions of patches and to capture spatial information 

from the image. 

The self-attention, which is central to Transformer, allows to model interactions and dependencies among elements 

in the input sequence. The output of the self-attention is a weighted sum of the input values, where the weight assigned 

to each value (the attention weight) is determined by a compatibility function between the query and the corresponding 

key. Consider a sequence of 𝑛 embeddings {𝑋1, 𝑋2, 𝑋3, . . . 𝑋𝑛}, where 𝑋 ∈ ℝ𝑛×𝑑 and 𝑑 is the embedding dimension. 

Let 𝑊𝑄 ∈ ℝ𝑛×𝑑𝑄 , 𝑊𝐾 ∈ ℝ𝑛×𝑑𝐾, 𝑊𝑉 ∈ ℝ𝑛×𝑑𝑉  be the learnable weight matrices for the linear projections of queries, 

keys, and values, respectively. Then the self-attention can be defined as: 

 𝑄 = 𝑋 ∙ 𝑊𝑄 (4) 

 𝐾 = 𝑋 ∙ 𝑊𝐾 (5) 

 𝑉 = 𝑋 ∙ 𝑊𝑉 (6) 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑄
) 𝑉 (7) 

It was shown
11

 that applying the self-attention multiple times in parallel to the same input sequence enables the model 

to focus on information from different subspaces of the representation for various combinations of input embeddings. 

Thus, self-attention computed ℎ times, with the input sequence X being projected using distinct sets of weights 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 

𝑊𝑖
𝑉. Each application of the self-attention mechanism in this manner is termed a self-attention head. The outputs from 

these heads are then concatenated and projected using a weight matrix 𝑊𝑂:  

 ℎ𝑒𝑎𝑑 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑊𝑖
𝑄 , 𝑋𝑊𝑖

𝐾 , 𝑋𝑊𝑖
𝑉) (8) 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋) =  𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … ℎ𝑒𝑎𝑑2)𝑊𝑂 (9) 

where 𝑊𝑖
𝑄 ∈ ℝ𝑛×𝑑𝑄 , 𝑊𝑖

𝐾 ∈ ℝ𝑛×𝑑𝐾 , 𝑊𝑖
𝑉 ∈ ℝ𝑛×𝑑𝑉, 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑛. To reduce the computational burden of multi-head 

self-attention calculation, each head operates on only a part of each embedding, such that: 𝑑𝑄 = 𝑑𝑘 = 𝑑𝑣 =
𝑑

ℎ
. 

4. SOLVING SUPER-RESOLUTION USING TRANSFORMER MODEL 

The IPT
12

 (Image Processing Transformer) is the first application of Transformer to SR. The proposed network, consists 

of an input component for feature extraction from the input image, a body, and an output component for image 

reconstruction from the extracted features. The input and output components vary depending on the specific task, such 

as denoising, SR, or rain removal. The body of the IPT is composed of 12 encoding blocks and 12 decoding blocks, 

each constructed similarly to ViT blocks. The input component includes a convolutional layer and two ResNet layers. 

For SR tasks, the output component comprises one or two sub-pixel convolutional layers
6
. The IPT model demonstrated 

significant performance improvements for scaling factors of x2, x3, and x4 across all datasets compared to state-of-the-

art CNNs, such as RCAN. However, it is noteworthy that the IPT model contains 114M parameters, compared 

to RCAN's 16M. Additionally, it was observed that when trained on a limited dataset (less than 60% of the ImageNet 

dataset), IPT underperforms comparing to CNNs, although its performance increases with larger training datasets. 

Effective application of Transformer to computer vision tasks involves challenges that stem from the differences 

between visual and language domains. The first difference is scale. Images usually contain visual elements of different 

scales, making it challenging to process them with Transformer, which, similar to token processing in NLP, works with 

elements of a same size. The second difference is the volume of information, as the computational complexity 

of self-attention calculating is quadratic with respect to the length of the input sequence, what becomes more critical 

while processing of high-resolution images.  

The Swin Transformer was proposed by Ze Liu et al.
13

 – general-purpose visual transformer designed to address 

these challenges. It improves efficiency by using a local self-attention mechanism, where self-attention is calculated only 

for window of N×N embeddings instead of whole sequence of embeddings. Such approach allows to reduces 
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computational complexity to a linear scale. But, to maintain connections between visual elements in different windows, 

windows should be "shifted" while calculation of self-attention at the deeper layers of the network. 

The SwinIR network
14

, inspired by the Swin Transformer, achieved a PSNR improvement of 0.08-0.28 dB over IPT 

while maintaining a significantly smaller model size of 11.8M and being trained on a much smaller dataset, 

thus establishing a robust foundation for future research. The architecture of SwinIR, illustrated in Figure 3, is similar 

to architecture of RCAN network and consists of three main components: a shallow feature extraction module, 

a deep feature extraction module, and a high-resolution image reconstruction module. The shallow feature extraction 

module is a convolutional layer with a 3x3 core, responsible for extracting shallow features and transforming the image 

into a higher-dimensional space for subsequent processing by the deep feature extraction module. The deep feature 

extraction module consists of 𝑁𝑅𝐺  RG (residual group) and a convolutional layer. Each RG consists of 𝑁𝑇𝐵  TB 

(transformer block) and a convolutional layer. In SwinIR, the TBs are based on the ViT blocks (Figure 2), 

with the difference that local self-attention with shifted windows applied. Shallow and deep features are fused before 

passing into the high-resolution image reconstruction module, which implemented as a sub-pixel convolutional layer
6
.  

 

Figure 3. SwinIR architecture. 

Subsequent research has offered networks with architectures similar to SwinIR, focusing primarily on developing 

efficient methods for capturing more global information while maintaining network size, local self-attention window 

size, and training dataset size. In the EDT
15

 (encoder-decoder-based transformer) network, the approach proposed 

according to which input feature map divided into two equal parts along the channel dimension and rectangular 

self-attention windows of different directions applied then to each part creating cross-shaped receptive field. The ART 

(attention retractable transformer) network is proposed by Jiale Zhang et al.
16

, here every even TB in RG is replaced 

by a SAB (sparse attention block), where self-attention is applied to patches spaced at certain intervals. A similar 

approach is proposed in the DWT
17

 (Detailed window transformer), but with the difference that interval between patches 

increases with the increasing of network depth. The RWin-SA (Rectangle-window self-attention) is proposed by Zheng 

Chen et al.
18

, featuring TBs with overlapping rectangular self-attention windows, similar to EDT, but with windows 

of different orientations applied to different self-attention heads. The study includes networks with rectangular self-

attention windows – CAT-R, and networks where one side of the window is equal to the hight or width of the image – 

CAT-A. Additionally, RWin-SA TB is extended with the LCM (Locality Complementary Module), a convolution 

operation that it performed on the V in the self-attention block in parallel with the attention part.  

Network SRFormer proposed by Yupeng Zhou
19

 is consists of PSA (Permuted Self-Attention) TBs, here channel 

dimensions of K and V reduced with aim to enhances efficiency of self-attention computation. This approach allows 

to obtain larger self-attention window sizes while maintaining the network's parameter count and computational 

complexity. 

In the SwinFIR
20

 application of frequency domain representation investigated by replacing convolutional layer in each 

RG with SFB (spatial frequency block). The SFB is composed of two branches: a frequency branch and a spatial branch. 
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The frequency branch, performs sequential forward and revers Fourier transforms with aim to extract global features. 

And the spatial branch consists of two consecutive convolutional layers. 

The application of channel attention is explored by Xiangyu Chen et al.
21

 and the HAT (Hybrid Attention Transformer) 

is proposed. In this model, a Channel Attention Block (CAB), similar to the one used in RCAN, is added parallel 

to the self-attention block in each TB. In addition, in HAT, the final convolutional layer in each RG is replaced 

with an OCAB (overlapping cross-attention block). Unlike traditional local self-attention in TB, where Q, K, 

and V are computed for windows of the same size, in OCAB, K and V are computed for a larger window than Q, 

introducing more inter-window connections. The DAT (Dual Aggregation Transformer) network is proposed by Zheng 

Chen et al.
22

, where DSTB (Dual spatial transformer block) and DCTB (Dual Channel Transformer Block) 

are alternately applied within RGs. Furthermore, each TB in this network is augmented with a convolutional layer on V, 

in parallel to the self-attention block, and an AIM (Adaptive interaction module), which effectively integrates features 

obtained from both the self-attention block and the convolutional layer. This approach efficiently combines channel 

and spatial features at both the TB level and the deep feature extraction module level, enhancing the network's 

representational capability. 

The feasibility of global information pre-aggregating prior to computing local self-attention is studied by Zheng Chen 

et al.
23

 RGM (recursive generalization module) introduced for this purpose. This module utilizes the recursive 

application of a single convolutional layer to the input feature map with aim to generate a compressed feature map. 

The RA-SA (Recursive-Generalization Self-Attention) block, built upon Rwin-SA, incorporates RGM and calculates 

the values of K and V based on the compressed feature map, while Q is derived from the corresponding local 

self-attention window. The RGT (Recursive Generalization Transformer) network consists of on RA-SA and Rwin-SA 

blocks, which alternating sequentially. 

Comparison of the characteristics and performance of the aforementioned networks presented on Table 1. Comparation 

based on Urban100
24 

test dataset with scaling factor x4. State-ot-the-art CNN networks with channel attention 

and non-local sparse attention mechanisms such as RCAN and NLSA
25

 are included for reference. SwinIR used 

as the baseline for comparison, with the columns PSNR and SSIM indicating the changes in the metrics comparative 

to SwinIR. 

Table 1. Performance and parameters comparison of SR networks based on transformer architecture. 

Training set 
Window 

size 

Params. 

count 

× 106 

Publication 

date 
Network 

Urban100 x4 

PSNR SSIM PSNR SSIM 

DIV2K  16.0 2018 RCAN 26.82 0.8087 -0.63 -0.0167 

ImageNet  115.5 12.2020 IPT 27.26  -0.19  

DIV2K   2021 NLSA 26.96 0.8109 -0.49 -0.0145 

 8x8 11.8 08.2021 SwinIR 27.45 0.8254 0 0 

DF2K 6x24 11.7 12.2021 EDT 27.46 0.8246 0.01 -0.0008 

DF2K 16x16 20.8 05.2022 HAT 27.97 0.8368 0.52 0.0114 

DF2K 12x12 14.0 08.2022 SwinFIR 27.87 0.8348 0.42 0.0094 

DF2K 8x8 16.5 01.2022 ART 27.77 0.8321 0.32 0.0067 

DF2K 4x16 16.6 11.2022 CAT-R 27.62 0.8292 0.17 0.0038 

DF2K 4xW[H] 16.6 11.2022 CAT-A 27.89 0.8339 0.44 0.0085 

DF2K 8x32 13.3 03.2023 RGT 27.98 0.8369 0.53 0.0115 

DF2K 24x24 10.4 03.2023 SRFormer 27.68 0.8311 0.23 0.0057 

DF2K 16x16 12.0 05.2023 DWT 27.81 0.8324 0.36 0.0070 

DF2K 8x32 14.8 08.2023 DAT 27.87 0.8343 0.42 0.0089 

DF2K 9x9 12.0 02.2024 Uniwin 27.90 0.8362 0.45 0.0108 

 

It is evident that the size of the self-attention window directly affects performance, highlighting the critical role of global 

information for SR. Consequently, the search for efficient methods to incorporate extensive global information remains 

a pertinent research focus. As for now, the most effective results have been demonstrated by DWT, where sparse 

attention with variable intervals was applied, and RGT where a recursive convolutional layer is employed to compress 

the input feature map in spatial dimension before computing self-attention. 
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The extension of the TBs with convolutional layers in parallel to the self-attention blocks proposed in the CAT, HAT 

and DAT networks also has a significant positive effect on the performance in the SR. This may indicate either 

the limited capabilities of local features extraction, or the lack of spatial information and requires further research. 

The observed high performance of HAT and DAT networks underscores the efficacy of channel attention mechanisms, 

highlighting the variability in feature importance across the channel dimension. This variability suggests that reducing 

channel dimensionality could be a promising research direction. Such an approach has the potential to not only enhance 

model performance but also decrease computational time. A similar methodology is applied in SRFormer. 

The SwinFIR network demonstrated high value of SSIM metric, achieved despite using a small attention window, 

which highlights the potential benefits of employing frequency domain representation for SR. So, the further research 

into this direction is highly warranted. 

A key feature of the self-attention mechanism in Transformer model is its capacity to focus on critical information 

within the data stream, a characteristic that aligns with human biological systems
1
. This makes the implementation 

of self-attention mechanisms using SNN (spiking neural networks) an intriguing prospect, as both methodologies 

are biologically inspired. Zhaokun Zhou et al. proposed Spikformer – SNNs based Transformer for image classification. 

Investigating a similar approach for SR tasks is highly appropriate. The application of SNNs could reduce computational 

complexity, enhance energy efficiency and facilitate effective real-time processing. 

5. CONCLUSIONS 

1. The application of transformer architecture to SR task has resulted in substantial performance improvements (ΔPSNR: 

0.5–1.2 dB, ΔSSIM: 0.0055-0.0234) compared to state-of-the-art on deep neural networks-based approaches, such 

as CNNs and GANs. 

2. However, the application of Transformer to SR tasks faces next challenges: high computational complexity when 

global self-attention applied, limitations in capturing spatial information, the need to balance computational complexity 

with the amount of captured global information, the high capacity of Transformer-based networks, and consequently, 

need for large volumes of training data. 

3. The reviewed works primarily focus on finding a balance between the amount of captured global information 

and computational complexity. Various forms of local self-attention are being introduced and investigated, with sparse 

self-attention currently providing the best results. An alternative approach is the method proposed in RGT, which 

implements compression of the input feature map before applying self-attention. Combining transformer architecture 

with CNNs, employing channel attention, and utilization of frequency domain representation are also promising research 

directions. 

4. To effectively address SR tasks in real-time scenarios, it is worthwhile to explore the implementation of self-attention 

mechanisms using SNNs. 
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