
3

Sergei I. Vyatkin,

Alexander N. Romanyuk,

Oleksandr O. Dudnyk

TILE BASED RENDERING TECHNOLOGY

Abstract

The paper reviews the tile based rendering technology. We consider

virtual approach the same as the visual system "Arius". "Arius" combines a

good image quality and excellent 3D graphics performance.

Tile based rendering approach takes care of increased scene complexity.

1. Introduction

Any Tile Based Rendering System operates on the divide and conquers

principle, breaking the screen up into n x n pixel chunks called tiles.

STMicroelectronics announced its KYRO 3D and video accelerator based on

Tile Technology [1]. For example, Real Time Visual System "Arius" from CSV

Lab. (Novosibirsk) used tiles 8x8 pixels [2, 3].

Each tile contains a small portion of the total image that can be processed

independently of, and hence in parallel with, every other portion. The Visual

System "Arius" is divided into Geometry, Tile, and Pixel Processors.

Triangles are three dimensional entities, yet the screen on which they'll be

displayed is two-dimensional. Getting rid of the third dimension is accomplished

by projecting the triangles onto a view plane.

Triangles may be mapped to the whole virtual screen, or to just a small

portion, they do allow multiple views of the database to be drawn on the same

display.

Triangles that extend beyond the screen boundaries are clipped against the

viewing pyramid before their vertices are projected. Thus, the geometry function

project triangles onto a plane. The Tile Processor's job is to identify the tiles

containing all or part of each triangle.

user
Уведений текст
ЕЛЕКТРОННІ ІНФОРМАЦІЙНІ РЕСУРСИ: СТВОРЕННЯ, ВИКОРИСТАННЯ, ДОСТУП.Збірник матеріалів Міжнародної науково-практичної Інтернет-конференції. м.Вінниця, Вінницький національний технічний університет, грудень 2014 року.

user
Уведений текст

user
Уведений текст

user
Уведений текст

user
Уведений текст

user
Уведений текст

user
Уведений текст

user
Уведений текст

4

Pixel Processors work a tile at a time, colouring in the entire pixel in one

tile before moving on to the next. The Tile Processor manages tiles for the Pixel

Processors. The Tile Processor keeps a list of features for every tile in its Tile

Buffer.

A triangle's per-pixel shading, texture, fogging, area coverage, and

transparency values are combined in the Pixel Processor to yield the triangle's

contribution to the colour of every pixel in the tile. Since more than one triangle

may contribute to a pixel's colour, an accumulator at each pixel sums up the

contributions from the triangles as they're processed.

Only when the sub pixel masks indicate that every pixel in the tile has

been completely covered are the pixel colours ready to be sent to the second

buffer-Frame Buffer.

2. Geometry Processor

The Geometry Processor performs the following major functions:

1. Data base primitives are sorted so that only that data which is

potentially visible to the viewer is retained for further processing.

2. Primitives are transformed from a three-dimensional representation to a

2D view plane representation in proper perspective.

3. Triangles are projected and clipped to the window boundaries.

4. Triangle colours are modified to simulate sun angle illumination effects

and to smoothly blend the transition between levels of detail.

5. The colour and intensity of light sources are computed.

6. Coefficients used to describe the texture for triangles are computed.

Since only a limited number of triangles can be displayed in a given field,

it is advantageous to process only those triangles that contribute significantly to

the final image. An important observation is that the farther away something is

the less apparent detail it has.

The lowest level of detail (LOD) has very few triangles, while the highest

LOD has many triangles.

Abrupt changes in the scene, caused by the sudden appearance or

5

disappearance of object in the scene, must be avoided. Transparency blending is

a process in which the transparency of a face is smoothly varied from its base

value to invisible.

3. Tile Processor

The Tile Processor function identifies the tiles (pixel arrays) containing all

or part of each triangle. In addition, the Tile Processor computes a set of edge

coefficients for each triangle. A triangle's edge coefficients enabled the Pixel

Processor to determine whether or not the triangle encloses a particular pixel.

The Tile Processor's function is to manage all the tiles for the visual

system, and coordinate the activities of the Pixel Processor that render the

images within the tiles.

The Tile Processor keeps a list of triangles or fragments for every tile. All

of the lists are empty at the start of the field interval. Each time it receives a tile

list from the fragment generator, the tile processor stores the tile list containing

all of the triangles.

The information includes the coefficients of the equations of the triangle's

edges, which the fragment generator function calculates from the coordinates of

the vertices and the triangle number.

The edge coefficients are especially important; they are used by the Pixel

Processor to decide how much of each pixel the triangle covers. The coefficients

of the equations of the triangle's edges the best variant is, which the fragment

generator calculates directly from edge equations.

In the channel architecture base of processing the polygonal figures

prescribed idea of recursive procedure of doing a screen [4-6], localizing

internal area of polygonal figures in the process of rasterization. Main distinctive

devils of method are a polygon description by kits of direct, getting through ribs,

and recursive fission of screen on hutches, which area decreases in 4 with each

step of fission times.

Advantages of given approach:

1. Discriminating characteristic of given approach is concluded in that that

6

exists nearly single-line dependency of speedup factor Ssqt from the amount of

processors, this is a feature of optimum system architecture.

2. Square organization a tile-buffer and a frame-buffer strategy reaches

speedups for any orientation vectors, in that time, as a single-line organization

capable to reach a parallelism for horizontal or vertical vectors only.

Once all of the visible fragments have been entered in the fragment list,

the tile processor is ready to feed its Pixel Processors. Fragments in the tile are

then sent one by one to the Pixel Processor.

If the fragment does not completely cover the tile, the Tile Processor

sends the next fragment, and the next, until all of the pixels have been coloured.

The Pixel Processor is then given another tile to do. Note that it isn't

always necessary for a Pixel Processor to process all of a tile's fragments. If a

triangle in the foreground completely covers the tile, all of the triangles and

fragments behind it are thrown away. Pixel Processor doesn’t work on fragments

that can't be seen.

4. Pixel Processor

The Pixel Processor provides the following major functions:

1. Antialiasing

2. LOD blending

3. Shading

4. Texturing

5. Fogging

The Pixel Processor computes the contribution of each tile feature to the

currently processed tile taking into account such factors as transparency

blending, illumination, fading, antialiasing, texturing, and shading.

Then pixels are stashed in one half the Frame Buffer until a complete

image is ready. In the other half of the Frame Buffer is the complete image

computed during the previous field interval. The Frame Buffer works only

Read/Write mode.

6. Two Variants of Arrangement of the Pixel Processors

7

Table 1 – analysis variants of arrangement of the Pixel Processors

 Distribution of

fragments per

processors

One fragment per one processor
One fragment per all M

processors

1 Mode of processors Asynchronous Synchronous

2
Distribution of banks of

Frame Buffer
It is possible Non-Assigned Unit Assigned Unit

3
Addressing capabilities

of Tile Buffer
Support M lists Support one list

4
Memory of one

subpixel processor
n*n*Nsub*L n*n*Nsub*L/M

5
Effectiveness of load of

processors
If M/(n*n) = ¼ about 100% If M/(n*n) = ¼ about 70%

6

Modularity

Unlimited quantity of processors

with linear speed-up if M/(n*n)<=1/4

Limited. Speed-up

depends from M/(n*n)

It is possible two variants of arrangement of the Pixel Processors:

1)Each processor evaluates his tile.

2)All processors evaluate one tile.

The result of analysis is shown in the table 1.

Where a Tile is n x n, quantity of processors are M. Nsub - quantity of

subpixels into pixel. L - length of word per subpixel.

6. Conclusion

When drawing an image, the average number of faces required filling up a

tile is the scene's depth complexity. Depth complexity is an important

consideration when designing databases. Tile based rendering approach takes

care of increased scene complexity. Tile based rendering makes extremely

efficient use of the availably memory bandwidth.

References

1. http://us.st.com/stonline/index.shtml, Tile Based Rendering, White Paper

(down load 108 Kb pdf), discusses the techniques used when KYRO performs

transform and lighting, hidden surface removal and texturing and shading using

a tile based approach.

2. R.I. Velickohatny, S.I. Vyatkin, O.Yu. Ghimautdinov, B.S. Dolgovesov, N.R.

Kaipov, A.V. Romanovsky, S.E. Chizhick, “ARIUS” - Family of real-time 3D

http://us.st.com/stonline/index.shtml

8

graphics systems for PC platforms, Graphicon’97 Proceedings, S. Klimenko et

al. (Eds). 132-135, 1997.

3. S.I. Vyatkin, B.S. Dolgovesov, N.R. Kaipov, S.E. Chizhick, Tile Arhitecture

Based on DSP//Autometry - N 1. 1999.

4. S.I. Vyatkin, B.S. Dolgovesov, B.S. Mazurok et al. An Effective

Rasterization Method for Real-Time Computer System Visualization //

Autometry - N 5. 1993.

5. S.I. Vyatkin, B.S. Dolgovesov, A.F. Rozhkov et al. Algorithms of

Visualization for Real-Time Visual Systems // Graphicon’95 Proceedings, S.

Klimenko et al. (Eds). St-Petersburg 1995.

6. A.E. Asmus, A.I. Bogomyakov, S.I. Vyatkin et al. Video-Processor of

Computer System Visualization “Albatross” // Autometry - N 6. 1994.

