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Abstract—The representation of Reed-Solomon (RS) codes based 
on the  mathematical  theory  of  the  linear  finite-state  machines 
(LFSM) is considered.  The multilevel graphical and automatical 
models of the LFSR are offered. The algorihtm of full error burst 
correction of arbitrary length based LFSM models is suggested. 
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I. THE MATHEMATICAL MODELS OF 
REED- SOLOMON CODES

Reed-Solomon  (RS)  code  of  length  1−=qn  over 
)(qGF  (,),  which  can  be  corrected  τ  random  errors 

usually are presented by the generator polynomial 

 
τ−τ−τ +α++α+α+α= 212122210)( XXXXxg  . 

(1)

For simplification of coding and decoding procedures it is 
more convenient to represent RS code by means of the theory 
of  special  class  of  finite  automata  –  Linear  Finite-State 
Machine (LFSM). According to [2,3], a LFSM over )(qGF  
is defined  by a state (transition) function   

     )(),()()1( qGFtUBtSAtS ×+×=+  
(2)

     and an output function  

)(),()()( qGFtUDtSCtY ×+×=

where  t  is  a  index of  discrete  time,  )(tS ,  )(tU  and 
)(tY  are  the  state,  the  input  and  the  output  vectors 

respectively;           A ,  B ,  C ,  D  are  the  LFSM 
characteristic matrices.
 For the majority of the tasks the transition function is used 
only, therefore is enough only presence of matrices  A  and 

B  which can be presented as follows:
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(3)
The entries of the last column of the matrix  A  from (3) 

are the constant coefficients of the generator polynomial (1).

As RS codes can be described by means of finite automata, 
therefore  is  natural  the  transitions  diagram  (TD)  of  finite 
automata  can be chosen as graphical model of such codes.

For  r -dimensional LFSM over  )(qGF  the graph of 

finite automaton is the directed graph ),( FAFAFA EVG , in 

which vertices from the set FAV  correspond to the  internal 

states  of  the automaton,  and  the  edges  from the set  FAE  
show the directions of the transitions between internal states.  
      In general case the zero edge out

nulle  
corresponding of zero 

element over )(qGF  and  n  edges  oute0  ,  … ,  out
ne 1−  

(them we shall call nonzero), which correspond to degrees , … 
,  1−αn  of  a primitive element  α  over )(qGF , can go 

out from the vertex jv . The zero edge in
nulle  

corresponding 

of  zero  element over )(qGF  and  n  edges  ine0 ,  …  , 
in
ne 1−  (them we shall call nonzero too), which correspond to 

degrees  ,  …  ,  1−αn  of  a  primitive  element  α  over 

)(qGF ,  can  put  into  to  the  vertex  jv  ( ,FAj Vv ∈  

,,,, FA
out
i

out
null

in
i

in
null Eeeee ∈  

rqjni ,,1,1,,0  =−= ).  
      As РС codes belong to a class of cyclic codes, therefore 
the  vertices  of the graph  FAG  form numerous cycles. It is 
possible to perform the ordering of these ZC’s on the basis of 
zero edges.

Always  there  is  one  vertex  0
nullv  

for  which  entering 

in
nulle  and leaving  out

nulle  zero edges are united and form a 

mailto:vpsemerenko@mail.ru


zero cycle (ZC). According to terminology from [4],[5] which 

we shall adhere further, we believe, that the vertex 0
nullv  with 

the edges
 

in
nulle  and out

nulle  form a trivial ZC (TZC).

Other  vertices  of  the  graph   FAG  by  means  of  zero 
edges form cycles of length no more n  which it is possible to 
arrange on levels as follows.

  At the first level  n  basic ZC (BZC) of length  n  are 

placed, and  i -th BZC is connected with TZC by means of 

pairs  oppositely  nonzero  edges  accordingly  i
ine  и i

oute  (
1,...,0 −= ni ). All remaining ZC’s, that according to [4],

[5]  we  will  also  named  as  peripheral  ZC’s  (PZC’s),  are 
allocated on the levels in the following method. 

  At the second level that PZC is placed which is connected 
to one of BZC’s by means of pairs opposite nonzero edges 

accordingly i
ine  и i

oute . At the ( 1+τ )-th level each PZC 

has the nonzero edges  with  the ZCs at the  τ -th  level and 
there are no the  nonzero edges with the ZCs at the ( 1−τ ) 
and less levels ),3,2( =τ .

 Similar  cyclic  structure  of  TD  can  be  received  if  to 
consider interrelation of the  vertices  of the graph  FAG  by 

means of any of nonzero edges in
ie  

( 11 −÷= ni ). Always 

there  is  one  vertex  i
nullv  

for  which  entering  in
nulle  and 

leaving out
nulle  zero edges are united and form a cycle, that is 

j -th trivial  nonzero cycle  (TNC j ).  At the first  level  n  

basic nonzero cycles ZC (BNC) of length n  are placed, and 
j -th BNC is connected with corresponding TNC by means 

of pairs oppositely nonzero edges accordingly i
ine  and i

oute  

( 10 −÷= ni ).

 Further  peripheral nonzero cycles (PNC’s), are allocated 
on the levels in the following levels thus: at the ( 1+τ )-th 

level  j -th PNC j  is connected with nonzero cycles  at the 
τ -th   level  by  means  of  pairs  oppositely  nonzero  edges 

accordingly i
ine  и i

oute  and there are no such nonzero edges 

with  the  nonzero  cycles at  the  ( 1−τ )   and  less  levels 
),3,2( =τ .  Always  nonzero  edges  inside  of  nonzero 

cycles  differ  from  nonzero  edges  which  connect  nonzero 
cycles of different levels.

       Thus, from same  vertices  of the graph  FAG  can be 

obtained  n  variants of multilevel  graphical model of codes 
RS.

II. ALGORITHM OF CORRECTION OF FULL ERROR 
BURSTS FOR RC CODES

  Definition 1: The sparse error burst τΛsp  of length τ  is 

a burst where the first error is in position ν   and its last error 

is  in  position  nmod)1( −τ+ν ,  but  inside of   the burst 
there can be correct symbols ( n÷=ν 1 ).

        Definition 2: The full error burst  τΛfl  of length τ  is a 

burst  where  all  erroneous  symbols  in  the  burst  are  located 
successively and differ from correct on an identical constant. 

In coding theory the sparse error burst are considered only. 

Full error bursts  τΛfl  can be considered as well as the special 

case of  sparse error bursts τΛsp , however the full error bursts 

are selected as a separate class because there are special methods 
of  error  correction  for  its.  Further  the  full  error  burst  will  be 
considered only.

 Let's consider )(xC   as a codeword without errors, and 

)(, xCb
sol

ν  as the codeword containing a full  error burst  of 

length  b  with the beginning in a component  ν . Then the 
full error burst can be presented by means of a error vector 

)()()( ,, xCxCxE b
sol

b
sol

νν += .

         Let's consider interpretation of the errors from the point  
of view of graphical models described above. Under influence 
of the full error burst there will be a transition from TZC to the 
vertex  errv  of some ZC which we shall name as the error 
ZC. The transition path to error ZC which we shall name as 
code path consists of set of zero and nonzero adges between 
the neighbouring vertices. Under influence of the  error burst 

b
solΛ  in  the  beginning  the  transition  on  continuous  set  of 

nonzero adges is carried out inside of the corresponding j -th 
BNC and then the transition on continuous set of zero adges is 
carried out inside the error ZC.

   The vectors )(, xEb
sol

ν and )(, xCb
sol

ν  correspond to two 

various code paths from the vertex  0
nullv  (i.e.  TZC) to the 

vertex  errv  in  the error  ZC.  So far  as  for  these paths the 
initial  and  final  vertices  coincide,  therefore  they  are 

equivalent. The code path corresponding a vector  )(, xEb
sol

ν  

is  more  convenient  for  the  analysis  as  its  first  part  ( τ
 nonzero adges) is located inside of j -nonzero cycle PNC j , 

and other part ( τ−n  zero adges) is located in that ZC which 

has the common vertex from PNC j . This ZC is the error ZC. 
    Let's consider interpretation of the error burst from the 

point  of  view  of  automatical  model  of  LFSM. Under  the 

influence  both  the  vector  )(, xCb
sol

ν  and  the  vector 

)(, xEb
sol

ν  the LFSM will pass from initial state )0(S  over 

to  the  state  )(, nS b
sol

ν ,  which  we  will  name  as  the  error 

syndrome of the full error burst. It is not difficult to show, that 

the vertex  0
nullv  in  the graph  FAG  corresponds  to initial 

state  )0(S  and  vertex  errv  – to  the  state )(, nS b
sol

ν  of 

LFSM.



The problem of correction  of  the  full  error  burst  in  RS 
code  consists  in  the  obtaining  of  the  error  burst  vector 

)(, xEb
sol

ν  that is equivalent to search of a code path in the 

graph  FAG  from the vertex  errv  to the vertex  0
nullv . So 

far  as  there  is  a  interdependent  conformity  between  the 
vertices of the graph  FAG  and the LFSM states, therefore 
this problem can be solved in terms of the automatical model 
of  LFSM with the help of the formula (2). It is possible to 
suggest the following algorithm of correction of a single full 
error bursts.

       Algorithm:

 Input:  – codeword )(, xCb
sol

ν with full error burst;

 Output: corrected codeword )(xC  .

       1. Compute the syndrome )(, nS vb
err : 

       1.1 For i  from 1 to n  perform the following:
                     ][)1()( iUBiSAiS ×+−×= ,
                      where  ][iU  

– i -th bit position of the 

codeword )(, xCb
sol

ν ;    

                 1.2. Assign )()(, nSnS vb
err = .

        
2. Assign )()0( )( nSS b

err= , BZ =)0( .

        3. For i  from 0 to 1−n  perform the following:
        3.1 Compute the vector )1( +iZ :

                      BiZAiZ +×=+ )()1( ,   )(qGF .
              3.2 For h  from 0 to 1−n  perform the following:

            3.1.1 For  j  from 0 to  1−n  perform the 
following:

         3.1.1.1 Compute the vector )1( +jS :

           )()1( jSAjS ×=+ ,    )(qGF

.
                        3.1.1.2 If )1()1( +=+ iZjS , then go to p. 
5.

               3.1.2 Form the new vector )(iZ , in which the 

bit position wz  compute the following:

    ,mod)1( nzz ww += .

knwiZzw −÷=∈ 1),( .

4. Codeword )(, xC fl
ντ  contains noncorrected 

configuration of the error burst. Go to step 8.

5. Form the first error vector )(1,, xEb
sol

ν  which 

corresponds to full error burst of length 11 +=τ i  
with  its beginning  in position 

nij mod)1(1 +−=ν .

  6.  Form the second error vector )(2,, xEb
sol

ν , which 

corresponds to full error burst of  length 
nn mod)( 12 τ−=τ  with its  beginning  in position 

nvv mod)( 112 +τ= .

           Nonzero categories are equal both error vectors to 
a   degree  hα  of  the  primitive   element  α  over 

)(qGF .

7. Correct  the  codeword )(, xCsol
ντ  in accordance to the 

first error vector )(1,, xEb
sol

ν or to second error vector 

)(2,, xEb
sol

ν :

 

)(),()()( ,1,, qGFxCxExC b
sol

b
sol

νν +=  

or 

)(),()()( ,1,, qGFxCxExC b
sol

b
sol

νν +=

,    
8. End.

As well as for a case of full error bursts over )2(GF [5] 
in  nonbinary  Galois  field  we  shall  always  deal  with  two 
indistinguishable full error bursts which give an identical error 
syndrome. In practice as more probable the error burst of the 
shortest length is chosen.

III. CONCLUSIONS

       In works [6],[7] methods are shown for correcting full 
vector symbol error bursts of length  1kn −−  or less with 
special  restrictions  (linear  independent  of  the  error  vectors, 
some  properties  of  parity  check  matrix).  Known  methods 
require many badly formalized operations with greater data. 
       The suggested algorithm allow to correction of a single 
full  error  bursts  of  length  )11( −÷= nb  and  does  not 
require the operations of interleaving and deinterleaving. This 
algorithm does not using a any type of full error bursts too but 
it has complexity  )( bnO ×  concerning the operations of 
computing of the LFSM states.

 The offered multilevel graphical and automatical models of 
LFSR  defines  the  correcting  capabilities  of  RS  codes  and 
allows to provide uniform approach to correction of errors of 
various types (random errors, error bursts and erasures). Based 
on LFSM theory the procedures  of  errors  search  of  various 
types allow to perform it in parallel. Thanks to use only one 
operation of recursive calculation of the next LFSR state the 
suggested algorithm easily is interpreted to an architecture of 
the high-efficiency computing systems which use principles of 
matrix-conveyor data processing.
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