УДК 004.9

К РАЗРАБОТКЕ СИСТЕМ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВА ДЛЯ ПРЕДПРИЯТИЙ ГИДРОПОНИКИ

Кокая Гига

Грузинский университет им. Святого Андрея Первозванного Патриаршества Грузии, Тбилиси, Грузия

Аннотация

Работа посвящена проблематике, связанной с разработкой систем автоматизации производства для предприятий, производящих сельскохозяйственную продукцию на базе гидропоники.

Автор дает обобщенный анализ рассматриваемого подхода, делится собственным опытом создания конкретной системы вышеуказанного профиля, а также приводит соображения о перспективном развитии подобных систем.

Abstract

This work is devoted to the problems associated with the development of production automation systems for enterprises that produce agricultural products based on hydroponics.

The author gives a generalized analysis of the approach in question, shares his own experience in creating a specific system of the above profile, and also gives reasons for the future development of such systems.

Введение

С внедрением новейших компьютерных технологий, одна из древнейших форм разведения сельскохозяйственной продукции, гидропоника (исторически наиболее ярко представленная "висячими садами Семирамиды") получила мощный импульс для дальнейшего развития ([1-3]). В частности, стали появляться различные предприятия профиля гидропоники, с высоким уровнем автоматизации производственных процессов. Небезынтересно, что в настоящее время до 80 % всех овощей, зелени и фруктов в Израиле выращивается гидропонным способом.

Преимущества гидропоники

По сравнению с разведением растений на земельных участках, гидропоника имеет целый ряд преимуществ:

- 1. Вода расходуются существенно экономнее.
- 2. Благодаря возможности вертикального этажирования, требует намного меньше площади.
- 3. Процедура выращивания не требует использования химикатов, поэтому не сопровождается загрязнением окружающей среды, а полученный продукт является экологически чистым.
- 4. Производство и отдельные его составляющие обладают свойством переносимости (модульности).
- 5. Производственный процесс независим от времени года.
- 6. Имеется возможность получать несколько урожаев в год
- 7. Процесс в целом легче подвержен автоматизации, благодаря чему имеется возможность создавать и поддерживать оптимальные условия выращивания растений, что благотворно сказывается на продуктивности производства и качестве полученной продукции.
- 8. Масштабируемость производства.

В настоящий момент следует выделить два фактора, препятствующих распространению технологий, основанных на гидропонике:

- 1. Ощутимая дороговизна качественных светодиодных лампочек, обеспечивающих оптимальное освещение выращиваемых растений.
- 2. Отсутствие стандартизованных автоматизированных систем производства.

Основные функции автоматизированной системы

Перед автором стояла задача автоматизации системы производства, на базе вертикально этажованной гидропоники. В частности, следовало автоматизаировать следующие производственные функции:

- 1. Обеспечение бесперебойной циркуляции воды в системе.
- 2. Контроль температуры.
- 3. Контроль освещения.
- 4. Контроль рН (водородный показатель) воды.
- 5. Контроль циркуляции и вентиляции воздуха.
- 6. Непрерывная подача воздуха в резервуар с водой (для обогащения кислородом).
- 7. Контроль влажности воздуха.
- 8. Контроль содержимого питательных веществ.

Некоторые особенности реализации

Управляющая часть системы была создана на языке Python и работает на миникомпьютере Raspberry Pi. Компоненты системы, предназначенные для работы с датчиками и соленоидами под управлением Arduino ([4,5]), созданы на С++. Для удобства конечного пользователя создана система, доступная из глобальной сети и предназначенная для вывода текущей информации о состоянии производственного процесса в виде текстов и графиков.

Заключение

На данный момент система уже в течение более чем полугода обеспечивает автоматизацию полного цикла производства на одном из предприятий, расположенном в Грузии и специализирующемся на выращивании салата. В течение данного периода система подтвердила свою жизнеспособность. Ведется работа по увеличению надежности системы за счет более полной обработки ситуаций, связанных с возможными отказами со стороны отдельных аппаратных составляющих, а также в направлении дублирования наиболее важных функций.

Главной преградой на пути стандартизации системы в настоящий момент представляется отсутствие де-факто стандарта в сфере аппаратных составляющих. Нынешнее состояние разработки позволяет уверенно прогнозировать быструю стандартизацию подобных систем по мере решения вопроса стандартизации аппаратного обеспечения.

Список использованных источников:

- 1. Keith Roberto, How-To Hydroponics ISBN 978-0967202617
- 2.John Mason, How to Grow 86 Different Plants in Hydroponics ISBN: 978-0864173003
- 3.Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower ISBN-13: 978-1439878675
- 4.Улли Соммер, Программирование микроконтроллерных плат Arduino/Freeduino БХВ-Петербург ISBN: 978-5-9775-0727-1
- 5.Теро Карвинен, Киммо Карвинен, Вилле Валтокари, Делаем сенсоры. Проекты сенсорных устройств на базе Arduino и Raspberry Pi, Вильямс, ISBN: 978-5-8459-1954-0, 2015