
29

Comparative overview of basic
cybervulnerabilities of mobile applications for

android operating system

S. Semenov, T. Shypova, O. Movchan
Department «Computer Engineering and programming»,

National Тechnical University «Kharkiv Politechnical Institute»
Kharkiv, Ukraine

s_semenov@ukr.net

Abstract: With the market for mobile applications for
Android platform constantly growing and more security-
dependent tasks moving to mobile platforms, security of
Android applications is a major concern for developers
and users. In this paper, an overview of Android
operating system security model is given. Components of
Android application are studied, with special attention
given to mechanisms of Inter-process communication via
Intents. An overview of basic vulnerabilities of Android
applications and vulnerabilities of IPC in Android
applications is performed. Recommendations for avoiding
described vulnerabilities are given.

Keywords: Android, security, inter-process
communication, vulnerability, attack vectors.

I. INTRODUCTION

At the current moment of time, mobile devices are
extremely widely used and the numbers of mobile
device users is growing more and more. In its core, a
modern mobile device is a portable computer with
telephony capabilities. And, as is the case with regular
computers, functionality of mobile device is limited to
software installed on the device. Today mobile
applications are used for various tasks like social
media, communication and entertainment. However,
more and more security-dependent tasks, for example
banking and enterprise management, are going mobile
as well. And it is important to provide the necessary
security level to protect the system from attacks.

The purpose of the paper is to present the overview
of basic vulnerabilities in applications for Android
platform with regard to the architecture of Android
applications and the programming language used in
development, with special attention towards
vulnerabilities in Inter-process communication
mechanisms as a primary source of application
vulnerabilities. It should be noted that this paper
focuses on individual vulnerabilities of the application
under testing rather than overall testing methodology.

II. ANDROID SECURITY MODEL OVERVIEW

In order to analyze vulnerabilities in Android
applications, it is required to have the knowledge of the
security system provided by the OS. The security
system that is enforced by Android can be described as
a two-tier system.

Android, at its core, relies on one of the security
features provided by Linux kernel – running each
application as a separate process with its own set of
data structures and preventing other processes from
interfering with its execution [1, 2]. Parts of the system
are also separated into distinct identities. Linux thereby
isolates applications from each other and from the
system. This mechanism is called sandbox and it is
displayed in figure 1.

More detailed security mechanism of ―permissions‖
allows finer control of access of application to device
and OS features [3]. A basic Android application has no
permissions associated with it by default, meaning it
cannot do anything that would adversely affect the user
experience or any data on the device. To make use of
protected features of the device, you must include one
or more <uses-permission> tags in your app manifest.

If your app lists normal permissions in its manifest
(that is, permissions that don't pose much risk to the
user's privacy or the device's operation), the system
automatically grants those permissions.

Figure 1 – Android application sandbox

If your app lists dangerous permissions in its
manifest (that is, permissions that could potentially
affect the user's privacy or the device's normal
operation), the system asks the user to explicitly grant
those permissions.

III. ANDROID APPLICATION STRUCTURE OVERVIEW

Android applications are developed using Java
programming and Android SDK in a majority of cases,
with the exception of games and other CPU-intensive

mailto:s_semenov@ukr.net

30

apps, where Android NDK and native languages like C
and C++ are used. Considering the fact that most
Android applications are built using Java and Android
SDK, only Android SDK elements will be overviewed.

There are four main components of the Android
application: activities, BroadcastReceivers,
ContentProviders and services. They communicate
between each other using messages called Intents [4].

An Activity is an application component that
provides a screen with which users can interact in order
to do something, such as dial the phone, take a photo,
send an email, or view a map. Each activity is given a
window in which to draw its user interface.

Intents are messages through which other
application components (activities, services, and
Broadcast Receivers) are activated. They can be
thought of as messages stating which operations/actions
need to be performed. Intents can be explicit and
implicit. Explicit intents specify the component to start
by name (the fully-qualified class name). Explicit intent
are usually used to start a component in the same app,
because the class name of the activity or service that is
intended to start, is known. Implicit intents do not name
a specific component, but instead declare a general
action to perform, which allows a component from
another app to handle it.

A service is an application component that can
perform long-running operations in the background for
an application. It does not have a UI component to it,
but it executes tasks in the background. Other
applications can be running in the front while services
will be active behind the curtain even after the user
switches to a different application component or
application.

Content providers provide applications with a
means to share persistent data. A content provider can
be thought of as a repository of data, and different
applications can define content providers to access it.
Providers and provider clients enable a standard
interface to share data in a secure and efficient manner.
When an application wants to access data in a content
provider, it does so through ContentResolver.

Component can be declared exported (public) in
order to be accessible to other applications. This can be
done by setting the EXPORTED flag in the manifest or
by including at least one IntentFilter. After being
declared exported, component can be launched via an
implicit Intent that confines to an IntentFilter, or via an
explicit Intent, which bypasses IntentFilters entirely.
This mechanism of launching exported components
enables many attack surfaces for basing attack on.

IV. ANDROID APPLICATION BASIC ATTACK SURFACES

Considering the platform and the language used in
development of the application for Android platform,
vulnerabilities of Android applications can be divided
into following:

[1] general vulnerabilities of mobile and web

applications;

[2] vulnerabilities specific to the Android

platform.
General vulnerabilities are vulnerabilities that do

not feature Android specific application elements as an
attack vector. Vulnerabilities in this category are quite
common in mobile and web applications and are based
on application architecture flaws or development bad
habits. The list of these vulnerabilities consists of, but
not limited to:

[3] using raw user input as query parameters;

[4] weak or no cryptography on sensitive user

data;

[5] insecure data storage;

[6] poor authentication and authorization controls;

[7] security decisions vie untrusted inputs;

[8] logging sensitive user information.
One of the more common mobile vulnerabilities,

insecure data storage vulnerability is a result of storing
sensitive user information in an insecure storage like a
database on the device. Insecure data storage
vulnerabilities occur when development teams assume
that users or malware will not have access to a mobile
device's filesystem and subsequent sensitive
information in data-stores on the device, which is
usually never the case. Filesystems are easily accessible
for malicious users. It is possible to extract the data
from the filesystem using special tools. Insecure data
storage can result in data loss for one or more users.
Common valuable pieces of data seen stored include
usernames, authentication tokens, passwords, cookies,
personal information like date of birth, address, credit
card data and application data like logs and
configuration files.

According to OWASP, in order to prevent insecure
data storage vulnerabilities, it is recommended to avoid
storing data on the device unless necessary [5]. When it
is impossible to avoid storing sensitive data on the
device, the following actions are advised for Android
platform:

[9] force encryption on local file storages with

setStorageEncryption;

[10] use manual encryption for data on SD card;

[11] ensure any shared preferences properties are

not MODE_WORLD_READABLE unless explicitly

required for information sharing between app;

[12] avoid hardcoding encryption or decryption

keys when storing sensitive information.
Another common class of vulnerabilities, security

vulnerabilities via untrusted inputs exist when
application has no validation of inputs in secure method
realizations. Developers can assume that only high-
level user can call specific secure method and, because
of it, do not validate status of the caller. This allows
attacker to gain access to secure functionality or even
gain higher-level permissions.

In order to avoid these vulnerabilities, it is advised
to follow the rules:

31

[13] if IPC is required, only white-listed

applications should have access to the API and

mechanisms;

[14] all input parameters, that are received from

IPC entry points, like Intents and broadcasts, should

undergo thorough validation, especially their origin;

[15] if possible, passing of sensitive data using IPC

should be avoided.
Android specific vulnerabilities are vulnerabilities

that feature Android specific elements and OS features
as attack vector. The majority of these vulnerabilities
are located in IPC mechanisms of the system [6].
Attacks that target vulnerabilities in IPC using
mechanism of Intents are:

[16] Intent interception;

[17] Intent spoofing.
Intent interception involves a malicious app

receiving an intent that was not intended for it. This can
cause a leak of sensitive information, but more
importantly, it can result in the malicious component
being activated instead of the legitimate component.
The attacks are:

[18] Broadcast Theft;

[19] Activity hijacking;

[20] Service hijacking.
Broadcast Theft is an attack that targets

vulnerability that is present when an application uses
implicit Intent to send data. Any component is able to
intercept an implicit Intent so, if a malicious component
is able to intercept the intent, then it can access the data.
An attacker could perform a denial-of-service attack on
the Ordered Broadcasts, since an Intent can only be
spread on them if the first component receiving the
Intent to uses it for output. Additionally, it could be
used to perform Man-in-the-Middle attacks with its
subsequent data injection on the spread Intents.

By taking advantage of Activity hijacking
vulnerability, a malicious Activity is launched instead
of the expected one, so the user will be in a wrong
application without being aware. This happens when
the change of an Activity depends on an implicit Intent.
The attacker registers a more accurate Intent Filter and
controls it. The presence of this vulnerability allows
executing phishing attacks, as well as leaks of the
information handled by the user in the involved
Activity. Additionally, this vulnerability allows the
attacker modifying the data, putting at risk its integrity.

Service hijacking is a vulnerability similar to
Activity hijacking with only difference being that it
targets services instead of activities. This vulnerability
is more persistent, however, due to the fact that it is
transparent to the user because the services do not
include graphic interface for it.

For intent spoofing, a typical scenario is that the
vulnerable application has a component which only
expects to receive intents from other components of the
same application. However, if the component is
exported, and it becomes exported when declaring

intent filter, then any application can send intents to it.
Moreover, they do not have to be implicit intents, and if
they are explicit then they do not even have to match
the intent filter.

These vulnerabilities share the cause – mechanism of
implicit Intents and their inherent lack of security. It is
advised to avoid using implicit Intents for IPC and instead
use explicit Intents when possible, because explicit Intents
always target specific component and cannot be intercepted
by malicious component. When use of implicit Intents is
required, parameters of the intent, especially its origin,
should be validated.

Vulnerabilities, described above, can be avoided if
developers of the application are aware of both the
vulnerabilities, and rules and guidelines to develop
secure applications. Security specialists offer guidelines
to secure coding for various platforms and
programming languages. For example, CERT
(Computer Emergency Response Team) offers ―The
CERT Oracle Secure Coding Standard for Java‖ that
covers the rules for developing secure Java
applications. Most of these rules apply to Android
platform as well. CERT also offers a set of rules for
Android specifically. Another set of guidelines is
provided by developers of Android and is featured in
the official developers guide to Android [7]

Conclusion
As a result of the Android security model and IPC

mechanisms overview, basic IPC vulnerabilities of Android
applications are described. It is shown, that mechanism of
implicit Intents is the source of the most of IPC
vulnerabilities, which is connected to the inherent lack of
security of the mechanism. Considering this, it is advised to
minimize usage of implicit Intents for IPC. When it is
impossible to avoid using implicit Intents, source of them
should be validated.

REFERENCES

[1] System and kernel security | Android open source project: [Electronic
resource]. – Mode of access:
https://source.android.com/security/overview/kernel-security.html.

[2] Dubey Abhishek Android Security – Attacks and Defenses /
Abhishek Dubey, Anmol Misra // Taylor & Francis Group 2013 P.
272.

[3] System permissions | Android developers: [Electronic resource]. –
Mode of access:
http://developer.android.com/guide/topics/security/permissions.html.

[4] Application fundamentals | Android developers: [Electronic resource].
– Mode of access:
http://developer.android.com/guide/components/fundamentals.html.

[5] Exploring the OWASP Mobile Top 10: M1 Insecure data storage:
[Electronic resource]. – Mode of access:
http://community.hpe.com/t5/Protect-Your-Assets/Exploring-The-
OWASP-Mobile-Top-10-M1-Insecure-Data-Storage/ba-
p/5904609#.Vtd0A9CjXeg

[6] Chin E., Porter Felt A., Grenwood k., Wagner D. Analyzing Inter-
Application Communication in Android [Electronic resource] / Erika
Chin, Adrienne Porter Felt, Kate Greenwood, David Wagner. Mode of
access: https://www.eecs.berkeley.edu/~daw/papers/intents-
mobisys11.pdf

[7.] Security Tips | Android developers: [Electronic resource]. – Mode of
access: http://developer.android.com/training/articles/security-tips.html

http://developer.android.com/training/articles/security-tips.html

