
25

Hash Functions Based on One- and Multy-
Dimensional Cellular Automata

O. Konstantynyuk, Yu. Tanasyuk, S. Ostapov

Yuriy Fedkovych Chernivtsi National University
Chernivtsi, Ukraine

y.tanasyuk@chnu.edu.ua

Abstract—Cryptographic hash functions on the basis
of one-, two- and three-dimensional cellular automata
deploying pseudorandom permutation with the use of
various processing rules have been developed. The
proposed constructions revealed high-quality scattering
properties, strong avalanche effect and sufficient
processing rates in producing the message digests of 224,
256, 384, 512 bits.

Keywords—cryptographic hash function, cellular
automata, cryptographic sponge, Keccak algorithm

I. INTRODUCTION

Cellular automata (CA) are well known to be self-

organizing statistical systems, providing ample

opportunities for simulation of physical systems, image

processing, design of computer architectures and

cryptography [1]. Due to their ability to generate high-

quality pseudorandom patterns, CA have been

considered for design of block and stream ciphers,

public key cryptography, message authentication and

hash function. A number of CA rules and their

combinations with bitwise operations exhibit a desired

behavior needed in cryptographic primitives.

Cryptographic hash function is primarily used to

create a unique representation of an input message by

computing its short fixed-length digest, known as a

fingerprint of the message. To be secure, a hash

function needs to be irreversible and resistant to

collisions [2]. CA based hash functions reviewed in [3]

are claimed to be collision free and able to achieve high

processing speed, resulting from parallelism and

homogeneity of the underlying transition rules.

Recently, a large number of hash function

construction approaches have been proposed. Among

the most promising there is a Keccak algorithm,

adopted for the SHA-3 standard, that doesn‘t rely on a

compression approach of its predecessors but is based

on a sponge construction, which provides

pseudorandom permutation [4].

The main purpose of the paper is to develop and

research cryptographic hash functions, based on the

sponge construction of the Keccak algorithm and

various processing rules of one- two- and three-

dimensional CA.

II. KECCAK FUNDAMENTALS

The Keccak algorithm is reported to possess many

attractive features, including its ability to run well on

different computing devices, i.e. embedded or smart,

and high performance in hardware implementation,

comparing to SHA-2 [4]. Keccak is based on the

sponge function, which is, in general, a cryptographic

hash function with a varying output.

Sponge has its inner state, which is a binary array of

the fixed length b. The array consists of two parts – r

and c. Parameter r is called a bit rate. This very part is

combined with the equal portions of the input message

and is used to produce a resulting hash string.

Parameter c is called the capacity, c=b-r. This value is

not directly affected by input message blocks and is

responsible for security level of the hash function.

Namely, to derive the hash with defined mathematical

stability, the value of capacity must be twice as large as

the hash length. For SHA-3 with the state of b=1600

bits the parameters of sponge are given in Table I.

Prior to processing a message by the Keccak hash

function, the input message has to be padded to the

length, which is the multiple of r bits. Then, the padded

message is divided into the blocks of r-length. The

sponge construction operates in two phases: absorbing

and squeezing.

At the absorbing stage r portion of the sponge inner

state is combined with the message block of the same

length by means of XOR operation, and the whole state

array is processed by a permutation function for a fixed

number of rounds. Squeezing phase starts after all

message blocks have been absorbed and is aimed at

generation of the message digest of the desired length.

In the original Keccak algorithm the sponge state is

presented as a three-dimensional array of 5×5 64 bit

words. At heart of the described construction there is

the permutation function, which consists of five steps,

denoted by Greek letters:  (theta),  (rho),  (pi), 

(chi) and  (iota). The named functions include bitwise

operations, and are claimed to be relatively hardware

friendly resulting in high performance of the Keccak

algorithm [2, 4].

mailto:y.tanasyuk@chnu.edu.ua

26

TABLE II. KECCAK PARAMETERS

FOR HASH OF VARIOUS LENGTH

Hash Length,
Z (bits)

Bit Rate,
r (bits)

Capacity,
c (bits)

Security
Level, Z/2

224 1152 448 112

256 1088 512 128

384 832 768 192

512 576 1024 256

In the research conducted we have focused on the

design of cryptographic hash functions that are based

on sponge construction, implemented in the shape of

one-, two- and three-dimensional cellular automata with

the use of specific combinations of the CA processing

rules and bitwise operations.

III. DESIGNING HASH FUNCTIONS ON THE BASIS OF CA

A CA is a collection of simple cells connected in a

regular manner. Each cell can assume the value of

binary 0 or 1. The cells evolve simultaneously in

discrete time steps according to some deterministic rule.

The next state of the cell depends on itself and on its

neighbors. Our investigations considered the following

CA processing rules:

rule 30: b’ = а  (b  c), (1)

rule 86: b’ = (a  b)  c, (2)

rule 150: b’ = а  b  c, (3)

where b is the current cell, b’ is its new value after

the rule application, a is the previous cell, c is the next

cell, and , ,  denote the bitwise XOR, AND, and

OR operations, respectively. According to [5] the rule

150 (3) is called linear, since it involves only XOR

logic. The rules (1) and (2) containing XNOR logic are

nonlinear. As recommended in [1], in order to design a

reliable hash function a combination of linear and

nonlinear CA rules is to be used. Linear rules provide

collision resistance, while nonlinear ones bring about

one-way property and nonlinearity.

A. One-dimensional CA

One-dimensional sponge state is implemented as a

1600-bit long binary array, which is a three

neighborhood CA, with extreme cells adjacent to each

other. The round permutation is performed through the

multiple use of one of the rules of 30, 86, or 150, their

joined sequential application, or a combination of the

rules with bitwise operations of cyclic shift and

negation, depending on the number of iteration [6]. It‘s

noteworthy, that cell processing was implemented not

in a bit-to-bit manner, but in parallel. For this purpose

at each round two instances of the current state array

were created: one-bit cyclically shifted to the right copy

represented all previous cells, while one-bit cyclically

left-shifted one contained all next cells. This approach

enabled us to apply corresponding bitwise operations to

the obtained bit sets. Fig. 1 shows schematically

application of rule 30 (1) to the 8-bit long string.

.

Concurrent application of rule 30 (1) to the entire bit string

B. Two-dimentional CA

In two-dimensional CA representation the sponge

state is arranged as an array of 25 64-bit long strings,

making 1600 bits in total. The cells are localized

according to the Moore neighborhood [5], when two

cells are considered adjacent if they have either a

common edge or a vertex. Therefore, each cell interacts

with its eight direct neighbors, denoted as parts of the

world (Fig. 2). Extreme cells are connected in tor with

their counterparts on the opposite edge (row/column) of

the array.

To ensure effective permutation, combinations of

adjacent cells were processed with different CA

transformation rules, as shown in Fig.2. The rule deals

with the entire rows concurrently, according to the

technique, described above.

C. Three-dimensional CA

The sponge state is arranged as a two-dimensional

array (5х5) of 64-bit vectors (b=5×5×64=1600 bits). As

in the constructions, described above, r and c portions

were defined by the desired hash length (see Table I).

First r/64 vectors were initialized with binary 1s, while

a bit corresponding to a vector‘s index was inverted.

This procedure is chosen to improve scattering

properties of the developed construction. Each cell of

the proposed three-dimensional CA possesses 6

neighbors with common edges (Fig. 3), denoted as

North, South, East and West within the same plate,

while Face and Back are shown as neighboring cells of

the adjacent plates.

27

Interaction rules for a cell X with its neighbors in two-dimensional
CA, where N, W, NE, NW are treated as previous cells, while S, E,

SE, SW are the next ones.

A group of cells, participating in interaction in three-dimensional CA.

With respect to the central cell, North, West and Back are considered

as previous neighbors, and South, East and Face are the next ones.

In order to apply CA processing rules to each cell

and explain the interaction of the current cell with its

neighbors, we‘ve introduced the following notations:

along X axis West is a previous cell and East is a next

one. In the direction of Y axis (as shown in Fig. 3)

North and South are previous and next cells,

respectively. And along Z axis Back is a previous

neighbor and Face is the following one.

To implement any rule of CA all previous cells and

all next cells are combined by XOR operation with each

other. Namely, rule 86 (2) is performed as follows:

b‘ = (([North] xor [West] xor [Back]) OR [b]) XOR

([South] xor [East] xor [Face])

 Interaction with compliance to the described rules

is carried out between the entire binary vectors, rather

than individual cells, which can significantly accelerate

the processing rate.

With regard to transformations between the cells of

the face and back within the current vector, two copies

of it are created: one bit cyclically shifted to the left,

and to the right, denoting the Back and the Face,

respectively.

A permutation function on the basis of the designed

three-dimensional CA includes a combination of CA

processing rules and binary functions, applied at each

round of absorbing and squeezing. The processing

involves two empty two-dimensional (5х5) arrays of

64-bit vectors newArrayRC and tempArray. Each 64-

bit vector of the original array (ArrayRC) is processed

with the use of rule 30, followed by 23-bit cyclic shift

to the right, and the resulting vectors are consistently

written into tempArray.

As the transformation is complete, ArrayRC is

combined with tempArray as its shifted copy through

XOR operation. Then, similarly, the basic array is

updated by XOR with its copy tempArray, obtained

through application of rule 86 with further 3-bit cyclic

shift to the left. After that the vectors of the basic array

undergo processing by rule 150. When the manipulation

of the main array is over, the content of its first column

of 64-bit vectors is copied to the last column of the

newArrayRC, followed by one-position horizontal and

vertical shift of the vectors to the left and down,

respectively. The whole procedure is accomplished in 5

steps. On completion of the transformations, the

newArrayRC becomes a main array. Its final processing

is performed with the use of rule 86, 3-bit left cyclic

shift, XOR and rule 150 operations, in the manner

described above.

IV. RESULTS AND DISCUSSION

Computer program to implement the proposed

permutation functions has been developed. The

parameters of the inner state of cryptographic sponge

comply with those, proposed by the Keccak algorithm.

Although, the created software enables generation of

the hash strings of 224, 256, 384 and 512 bits, message

digest of any other desired length may be calculated, if

corresponding ratio between r and c parameters is

preserved. In order to provide a sufficient level of

security, value of c must be twice as large as the hash

length.

Scattering properties of the developed hash

functions were studied using the NIST STS technique.

The binary sequences of 10
8
 bits were generated by the

proposed one-, two- and three-dimensional

constructions with such parameters (bits): b=1600, hash

length Z= 512, r=576, c=1024.

According to the obtained statistical data, at least 96

% of the sequences have successfully passed all the

NIST STS tests. It points out, that binary strings

generated by the constructed hash functions on the basis

of both one- and multi-dimensional CA, by their

properties approach the pseudorandom ones.

Fig. 4 and 5 shows typical statistical portraits of the

cryptographic hash functions, built on the proposed

construction of multi-dimensional CA. The generalized

results of the conducted statistical investigation are

given in Table II.

Fig. 4. Statistical portrait of the cryptographic hash function on the
basis of two-dimensional CA after 5 rounds of permutation, where N is
a number of a test, P is the portion of test sequences, which passed the
test

N

28

Fig. 5. Statistical portrait of the cryptographic hash function on the
basis of three-dimensional CA after 2 rounds of permutation, where N
is a number of a test, P is the portion of test sequences, which passed
the test

TABLE III. GENERALIZED RESULTS

OF STATISTICAL TESTIG OF VARIOUS PERMUTATION FUNCTIONS ON

THE BASIS OF CA

Hash
algorithm
versiona

NIST STS testing results

<0.96 0.96 0.98-0.97 1-0.99 Average

1. 0 2 56 130 0.9897

2. 0 2 65 121 0.9889

3. 2 6 41 139 0.99

4. 4 4 55 125 0.9883

5. 0 4 46 140 0.9907
a where 1 - one-dimensional CA, 25 rounds; 2, 3 - two-dimensional CA, 5 rounds and

10 rounds, respectively; 4, 5 – three-dimensional CA, 1 round and 2 rounds, respectively.

The performance of the cryptographic hash

functions, given in Table II, was estimated on the

computer with CPU Intel Core i5 4200U, 1.5 GHz and

RAM 4GB by processing rates of forming a 100 MB

text file of 512-bit binary hash strings, used in the NIST

STS statistical tests. As Table III shows, the highest

processing rates were achieved for two-dimensional CA

construction at 5 rounds of permutation (hash algorithm

of version 2). The second best result applies to the

functions built on one-dimensional CA that underwent

processing by the set of rules and binary operations for

at least 25 rounds (version 1).Keccak Parameters For

Hash of Various Length

Hash
algorithm
versiona

Number of
rounds

Time to form a 100
MB
 text file of 512-bit
 hash strings
(seconds)

Processing
rate (KB/s)

1. 25 213 492.3

2. 5 136 771

3. 10 288 364.1

4. 1 408 257

5. 2 834 125.7
a where 1 - one-dimensional CA, 25 rounds; 2, 3 - two-dimensional CA, 5 rounds and

10 rounds, respectively; 4, 5 – three-dimensional CA, 1 round and 2 rounds, respectively.

The application of the developed permutation

functions for obtaining a hash image revealed the

dependence of the scattering properties on the length of

the hash, the type of the function, and the number of

processing rounds. For all proposed hash functions,

strong avalanche effect was observed, i.e. the digest of

the incoming message was completely updated when

changing the hash length (224, 256, 384, 512 bits) or at

the smallest changes in the message. It should be noted,

that for various hash functions the avalanche effect was

observed at different number of the processing rounds.

Namely, the one-dimensional permutation functions

based on the use of one CA transformation rule need up

to 100 rounds, while application of several rules brings

about satisfactory outcomes after 50 iterations [6]. A

full change in the resulting hash occurs for two-

dimensional hash functions starting from 5 processing

rounds, while three-dimensional constructions produce

a completely different hash string after 1 round of

permutation, without significant degrading a processing

rate.

V. CONCLUSION

Summarizing the conducted investigations the

following conclusions can be made:

1. The permutation functions, based on one-,
two- and three-dimensional CA, with the use of
various rules of CA interactions have been
developed.

2. Joint application of both linear and nonlinear
CA processing rules together with bitwise operations
enabled us to achieve high-quality scattering
properties and provide satisfactory level of security
in the designed constructions.

3. Concurrent manipulation of the inner state‘s
vectors of the cryptographic sponge ensured
reasonable processing rates, while deployment of
multi-dimensional CA significantly reduces the
number of iterations.

4. All the designed transformation functions
under investigation revealed the appearance of the
avalanche effect, considered to be a desirable
characteristic of cryptographic hash function.

REFERENCES

[1] J.-Ch. Jeon Analysis of hash functions and cellular automata
based schemes. International Journal of Security and
Applications, 2013. – Vol. 7, No. 3, pp.303–316.

[2] Ch. Paar, J. Peltz. Understanding cryptography. – Springer-
Verlag Berlin Heidelberg, 2010. – 372 p.

[3] N. Jamil A new cryptographic hash function based on cellular
automata rules 30, 134 and omega-flip network. ICICN 2012,
2012. – Vol. 27, pp. 163 – 169.

[4] G. Bertoni [Electronic resource]. – The Keccak sponge function
family. – Access mode : http://keccak.noekeon.org/.

[5] S. Wolfram S. A New Kind of Science Wolfram Media, Inc. –
2002. 1197 p. – [Electronic resource]. – Access mode:
http://www.wolframscience.com/nksonline/toc.html.

[6] Yu. Tanasyuk, Kh. Melnychuk, S. Ostapov. Development and
research of cryptographic hash funcions on the basis of cellular
automata. – Information Processing Systems, 2017. – Vol.
4(150), pp. 122 – 127

P

N

