ISBN - 978-1-64871-656-0 DOI -

SCIENTIFIC FOUNDATIONS OF MODERN ENGINEERING

Monography

Boston 2020

Library of Congress Cataloging-in-Publication Data ISBN - 978-1-64871-700-0 DOI-

Автори - Sokolovskaya O., Ovsiannykova L., Valevskaya L., Orlova S., Kalaida K., Zabolotna A., Pyrkalo V., Lanzhenko L., Dets N., Kruchek O., Tkachenko N., Izbash Y., Lozova T., Odarchenko D., Sokolova E., Karbivnycha T., Spodar K., Kovalevska N., Oliinyk S., Samchenko I., Tarasiuk L., Ostryk O., Kuts A., Sots S., Kustov I., Kuzmenko Y., Topchii O., Pasichnyj V., Demydchuk L., Sapozhnyk D., Havrysh B., Tsutsa N., Zherebetska O., Velykholova B. Lavrenenko S., Lytvynenko Y., Merlak O., Lukianchenko O., Kostina O., Sitak I., Sitak I., Shyriaieva N., Makarenko A., Shcherbak I., Garyazha V., Korobka V., Masliennikov A., Duniev O., Yehorov A., Постнікова М. В., Koman B., Yuzevych V., Oksanych A., Prytchyn S., Kohdas M., Dernova M., Mandrichenko O., Holotiuk M., Pakharenko V., Tkhoruk Y., Doroshchuk V., Babich Y., Kyianovskyi A., Koren E., Melnik O., Romanyuk O., Savratsky V., Vyatkin S., Romanyuk O., Mykhaylov P., Chekhmestruk R., Romanyuk O., Perun I., Denysiuk S., Melnychuk H., Lemeshev M., Khrystych O., Cherepakha D., Beliuchenko D., Burmenko A., Loboichenko V., Maxsymov A., Hilov V. Tkach N., Poltoratska V., Troshyn M., Voloshko V., Sankov P., Yuri Z., Boris M., Larisa P., Viktor Z., Shevchuk V., Pidgaychuk S., Blinnikov G., Demianuk K., Strelets V., Kusyi Y., Oleh L., Andrij K., Olha K., Iurii N., Shvets L., Halushchak I., Kniaziev V., Nemchenko Y., Savitskiy V., Sliusar I., Slyusar V., Bogdanova L. O. Korovkina A. A., Lisitsin V., Safoshkina L., Poberezhnyi A., Safoshkin A., Salavelis A. D., Tezhenko L. M., Pavlovsky S. M., Golinska Y. A., Vasylenko O., Stashenko M., Polonskaja O., Namchuk A., Smarev I., Bronnikova S., Kazak V., Shevchuk D., Prokhorenko I., Tymoshenko N., Polozaenko S., Rudkovsky O., Prokudin G., Chupaylenko O., Dudnik O., Prokudin O., Maidanik K., Shvets L., Usacheva O., Votinov M., Smirnova O., Stetsiuk V.

Published by Primedia eLaunch <u>https://primediaelaunch.com/</u>

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. The content and reliability of the articles are the responsibility of the authors. When using and borrowing materials reference to the publication is required.

The recommended citation for this publication is:

Pedagogy theory: monography / SokolovskayaO., OvsiannykovaL. & StetsiukV. – International Science Group. – Boston : Primedia eLaunch, 2020. 534 p. Available at : DOI : XXXXXXXX

TABLE OF CONTENTS

1	SECTION 1. FOOD TECHNOLOGY	11
1.1	Sokolovskaya O., Ovsiannykova L., Valevskaya L., Orlova S.	11
	RESEARCH HYGROSCOPIC PROPERTIES OF MILLET	
1.2	Kalaida K., Zabolotna A., Pyrkalo V.	18
	SUITABILITY OF NEW AND APPRECIABLE VARIETIES OF	
	SWEET PEPPER FRUITS FOR STORAGE	
1.3	Lanzhenko L., Dets N., Kruchek O., Tkachenko N., Izbash Y.	23
	STAGES OF THE DEVELOPMENT AND IMPLEMENTATION	
	OF THE PRINCIPLES OF HACCP IN THE PRODUCTION OF	
	HARD CHEESE WITH BIFIDOBACTERIA	
1.4	Lozova T.	29
	RESEARCH OF THE POSSIBILITY OF INHIBITION OF	
	OXIDATION PROCESSES IN FOODS	
1.5	Odarchenko D., Sokolova E., Karbivnycha T., Spodar K.,	33
	Kovalevska N.	
	FORMATION OF COMMODITY PROPERTIES OF FROZEN	
	SEMI-FINISHED PRODUCT FOR SMOOTHIES BASED ON	
	FRUIT-AN- BERRY RAW MATERIALS	
1.6	Oliinyk S., Samchenko I., Tarasiuk L., Ostryk O., Kuts A.	41
	IMPROVING THE TECHNOLOGY OF PURIFICATION AND	
	STABILIZATION OF LIQUEUR-VODKAS PRODUCTION	
1.7	Sots S., Kustov I., Kuzmenko Y.	50
	RECOMMENDATIONS FOR PROCESSING NAKED OATS	
	INTO FLAKED PRODUCTS	
1.8	Topchii O., Pasichnyj V.	54
	DEVELOPMENT OF FORMULATION MULTICOMPONENT	
	PROTEIN-FAT EMULSION	

2	SECTION 2. CHEMICAL TECHNOLOGY						
2.1	Demydchuk L., Sapozhnyk D.	65					
	CHANGE OF PHYSICAL AND MECHANICAL PROPERTIES						
	OF REINFORCED CONCRETE AT HEATING DEPENDING ON						
	A KIND OF THE PROTECTIVE COVERING						
3	SECTION 3. COMPUTER SCIENCE						
3.1	Havrysh B., Tsutsa N., Zherebetska O., Velykholova B.	70					
	FEATURES OF FILTERS APPLICATION FOR IMAGE						
	PROCESSING						
3.2	Lavrenenko S., Lytvynenko Y., Merlak O.	74					
	THE USE OF MIXED-TYPE FLAT TREES IN DATA						
	PROCESSING IN COMPUTER PROGRAMS						
3.3	Lukianchenko O., Kostina O.	81					
	CURVILINEAR FINITE-ELEMENT MODELING IN						
	STABILITY PROBLEMS OF THIN SHELLS WITH SHAPE						
	IMPERFECTIONS						
4	SECTION 4. ECONOMY OF MANAGEMENT AND	87					
	ADMINISTRATION OF RADIO TECHNOLOGY						
4.1	Sitak I., Shyriaieva N., Makarenko A.	87					
	MANAGEMENT AND ANALYSIS OF COMPANY'S CASH						
	FLOWS						
5	SECTION 5. ELECTRICAL ENGINEERING	93					
5.1	Shcherbak I.,Garyazha V.,Korobka V.	93					
	OPTIMIZATION MODEL OF POWER MANAGEMENT OF						
	CONSUMERS-REGULATORS FOR EQUALIZATION OF THE						
	TOTAL GRAPH OF ELECTRIC LOAD OF TRANSFORMER						
	SUBSTATION 10/0,4 KV						

5.2	Masliennikov A., Duniev O., Yehorov A.			
	DEVELOPMENT AND EXPERIMENTAL RESEARCH OF			
	TRANSVERSE MAGNETIC FLUX MACHINE WITH A DISK			
	ROTOR			
5.3	Постнікова М. В.	112		
	ОЦІНКА ЕНЕРГОЄМНОСТІ СИСТЕМИ			
	ЕЛЕКТРООБЛАДНАННЯ ПОТОКОВИХ ЛІНІЙ ОЧИЩЕННЯ			
	ЗЕРНА			
6	SECTION 6. ELECTRONICS	119		
6.1	Koman B., Yuzevych V.	119		
	REGULARITIES OF INTERPHASE INTERACTION AND			
	MECHANICAL STRESSES IN SUBSURFACE LAYERS OF			
	SOLID-STATE STRUCTURES OF MICRO-AND			
	NANOELECTRONICS			
6.2	Oksanych A., Prytchyn S., Kohdas M., Dernova M.			
	DEVELOPMENT OF TECHNOLOGY FOR CREATING OHMIC			
	CONTACT TO POROUS GAAS			
7	SECTION 7. ENGINEERING GRAPHICS	145		
7.1	Mandrichenko O.	145		
	APPLICATION OF AUTOMATED DESIGN SYSTEMS IN			
	GRAPHIC TRAINING OF STUDENTS			
8	SECTION 8. ENGINEERING IN AGRICULTURAL	150		
	PRODUCTION			
8.1	Holotiuk M., Pakharenko V., Tkhoruk Y., Doroshchuk V.,	150		
	Babich Y.			
	INVESTIGATION OF MACHINE PARAMETERS FOR			
	DESTRUCTION OF HOMOGENEOUS FROZEN			
	ENVIRONMENTS			

9	SECTION 9. INFORMATICS, COMPUTER ENGINEERING	156				
	AND AUTOMATION					
9.1	Kyianovskyi A.,Koren E.					
	DECISION SYSTEMS IN THE DESIGN OF ELECTRICAL					
	MACHINES					
9.2	Melnik O.,Romanyuk O.,Romanyuk O.,Savratsky V.	166				
	APPLYING OF HEXAGONAL RASTER IN IMAGE					
	FORMATION					
9.3	Vyatkin S., Romanyuk O., Mykhaylov P., Chekhmestruk R.,	175				
	Romanyuk O., Perun I.					
	INTELLIGENT IMPLANTS IN ORTHOPEDIC SURGERY					
10	SECTION 10. INNOVATIVE TECHNOLOGIES					
10.1	Denysiuk S., Melnychuk H.	187				
	DECENTRALIZATION OF CITY ENERGY SUPPLY SYSTEMS					
	IN THE CONDITIONS OF TECHNOLOGICAL					
	TRANSFORMATIONS AND FORMATION OF					
	INTELLECTUAL CITIES (SMART CITY)					
10.2	Lemeshev M., Khrystych O., Cherepakha D.	211				
	PERSPECTIVE DIRECTION OF RECYCLING OF INDUSTRIAL					
	WASTE IN THE TECHNOLOGY OF PRODUCTION OF					
	BUILDING MATERIALS					
11	SECTION 11. LIFE SAFETY	217				
11.1	Beliuchenko D., Burmenko A., Loboichenko V., Maxsymov A.	217				
	SPECIFICS OF THE MULTIVARIATE SIMULATION					
	EVALUATION OF THE SYSTEM "RESCUER - EMERGENCY					
	EQUIPMENT - EMERGENCY" FUNCTIONING					

11.2	Hilov V. Tkach N., Poltoratska V., Troshyn M., Voloshko V.	221					
11.2	, , <u>,</u> ,						
	ACOUSTIC SAFETY AS AN INTEGRAL PART OF THE						
	ASSESSMENT OF THE QUALITY AND LIFE SAFETY OF THE						
	POPULATION OF URBAN AREAS						
11.3	Sankov P., Yuri Z., Boris M., Larisa P., Viktor Z.						
	URBAN-ANALYSIS ANALYSIS OF THE FORMATION OF A						
	"SMART CITY" ON THE TERRITORY OF A LARGE						
	MUNICIPAL FORMATION ON THE EXAMPLE OF SOME						
	CITIES OF THE WORLD						
11.4	Shevchuk V., Pidgaychuk S., Blinnikov G., Demianuk K.	230					
	MONITORING OF ATMOSPHERIC AIR POLLUTION OF THE						
	TERRITORY OF THE MILITARY EDUCATIONAL						
	INSTITUTION BY THE METHOD OF LICHENINDICATION						
11.5	Strelets V.	240					
	LABORATORY STUDIES OF THE RELIABILITY OF						
	EMERGENCY PREVENTION MATHEMATICAL MODEL						
	WITH THE THREAT OF IMPULSE RELEASE OF						
	HAZARDOUS CHEMICALS						
12	SECTION 12. MECHANICAL ENGINEERING AND	246					
	MECHANICAL ENGINEERING						
12.1	Kusyi Y., Oleh L., Andrij K., Olha K., Iurii N.	246					
	DEVELOPMENT A BLANK PRODUCTION TECHNOLOGY IN						
	A STRUCTURAL MODEL OF A LIFE CYCLE OF A PART						
	TAKING INTO ACCOUNT MECHANICS OF						
	TECHNOLOGICAL INHERITABILITY						
12.2	Shvets L.	258					
	EXTENSION VALUE, WITH HOT ROLLED ALUMINUM						
	ALLOY SPECIMENS, ROUND SECTION IN SMOOTH						
	ROLLERS						

13	SECTION 13. METALLURGY AND ENERGY				
13.1	Halushchak I.				
	NUMERICAL INVESTIGATION OF CONVECTIVE HEAT				
	TRANSFER IN THE BANKS OF TUBES WITH PUNCHED				
	SPIRAL FINNING				
14	SECTION 14. METROLOGY, STANDARDIZATION AND	317			
	CONFORMITY ASSESSMENT				
14.1	Kniaziev V., Nemchenko Y.	317			
	SENSOR FOR MEASURING CONDUCTIVE INTERFERENCE				
14.2	Savitskiy V.	328			
	RESEARCH OF THE WORK OF NEW «ONYX»				
	MODIFICATIONS				
15	SECTION 15. RADIO ENGINEERING	333			
15.1	Sliusar I.,Slyusar V.	333			
	MARQUEE TYPE DUAL-BAND DIELECTRIC RESONATOR				
	ANTENNA FOR RADAR AND COMMUNICATION				
	APPLICATIONS				
16	SECTION 16. REPAIR AND RECONSTRUCTION	343			
16.1	Bogdanova L. O. Korovkina A. A.	343			
	RECONSTRUCTION AS A METHOD FOR SAVING ART				
	NOUVEAU OBJECTS IN THE STRUCTURE OF THE				
	LARGEST CITY				
17	SECTION 17. SCIENTIFIC FOUNDATIONS OF MODERN	349			
	ENGINEERING				
17.1	Lisitsin V., Safoshkina L., Poberezhnyi A., Safoshkin A.	349			
	PROCESS OF CLUSTERS CREATING ON THE DIGITAL MAP				
17.2	Salavelis A. D., Tezhenko L. M., Pavlovsky S. M., Golinska Y. A.,	413			
	SPECIALIZED FOOD BAGS FOR ENTERAL FOOD				

18	SECTION 18. HISTORY	427					
18.1	Vasylenko O., Stashenko M., Polonskaja O., Namchuk A., Smarev I.	427					
	GOLDEN DIVISION ACT. HISTORY						
19	SECTION 19. TRANSPORT						
19.1	Bronnikova S.,	441					
	THE RELEVANCE OF THE INTEGRATION OF						
	MULTIFUNCTIONAL COMPLEXES IN THE RAILWAY						
	INFRASTRUCTURE						
19.2	Kazak V., Shevchuk D., Prokhorenko I., Tymoshenko N.	445					
	SELF-RECOVERY OF THE CONTROLLABILITY OF THE						
	AIRCRAFT RECEIVING DAMAGE TO EXTERNAL CIRCUITS						
	IN FLIGHT BASED ON THEIR TEMPERATURE CONDITION						
19.3	Polozaenko S., Rudkovsky O.,	460					
	MATHEMATICAL MODELS OF NON-TRACTION ROLLING						
	STOCK OF THE RAILWAY AND THE CONDITION OF						
	CARGOES TRANSPORTED BY IT						
19.4	Prokudin G., Chupaylenko O., Dudnik O., Prokudin O.,	465					
	Maidanik K.						
	OPTIMIZATION OF CARGO TRANSPORTATION IN						
	INTERNATIONAL TRANSPORT CORRIDORS BY SIMPLEX						
	METHOD						
19.5	Shvets L.,	474					
	DEVELOPMENT OF RAILWAY STATION ARCHITECTURE						
	COMPLEXES OF THE SMALL CITIES.						
19.6	Usacheva O.	481					
	IMPROVING THE FORMATION OF THE RECREATIONAL						
	ENVIRONMENT FOR CHILDREN IN THE INFLUENCE AREA						
	OF THE SMALL RAILWAY ON THE EXAMPLE OF UKRAINE						

19.7	Votinov M. A., Smirnova O.V.						
	FEATURES OF RENOVATION AND HUMANIZATION						
	PEDESTRIAN AND TRANSPORT INFRASTRUCTURE OF THE						
	CITY						
20	SECTION 20. RADIO ENGINEERING	490					
20.1	Stetsiuk V.	490					
	48 IMPROVEMENT OF VIBRO-FREQUENCY STABILITY OF						
	AUTO-GENERATOR PIEZO-RESONANCE DEVICES IN THE						
	MODE OF MULTI-FREQUENCY EXCITATION OF QUARTZ						
	RESONATORS						
	References	498					

Table 20.

				The	qualit	y of trend recognition	
Criteria	Measured	Trend time	Recognition	when changing			
Cillena	sample	(measurement)	quality (%)	σ_{y}	α	$ au_{0}$	
				(%)	(%)	(sensitivity)	
Classic	50	7-8	95	70-	60-	10-25	
	50	/-0	95	95	95	(measurements)	
Neural	50	4-5	100	95-	95-	3-5 (measurements)	
networks	50	4-5	100	100	100	5-5 (measurements)	

Comparative assessment of trend definition

At present, when solving complex complex tasks of information monitoring and operation of engines, complex ensemble NM can be successfully used, which, in comparison with conventional fully-connected NM, can provide additional advantages in practice: decomposition of a complex dynamic object (its systems) into a number simple objects (subsystems); On easier to adapt to changing external conditions (in the class of adaptive, self-tuning systems); NA structure can be optimized for a specific task; the speed and accuracy of the NA are significantly higher than the classic fully-connected NM;

HA provide a better approximation of piecewise continuous functions.

The above advantages of NA over conventional fully-connected NM give the possibility of their further application in solving problems of information monitoring, operation management and design of electric motors.

9.2 Applying of hexagonal raster in image formation

Introduction

Today researchers pay attention to the advantages of the hexagonal raster by formation and representation of an image more often [192-193]. These benefits allow to increase the realism of graphical images forming in many cases [193]. Advantages stem from hexagon's ability to cover screen surface without gaps and overlays and

also hexagon's geometrical specialties, like reflection symmetry and coherence of hexagonal raster.

Scope of application of hexagonal raster in visualisation systems

One of the first digital cameras with the matrix, that was made using hexagonal pixels, was released by Fuji Photo Film in 1999 [4]. This matrix was called Super CCD Honeycomb and created in order to expand the total area of photodiodes on the matrix, that allows to increase sensitivity and enlarge the range of photosensors. Pixels in Fuji's photosensor were rectangular-shaped and were placed next to each other [194]. Pixels in Super CCD Honeycomb are hexagonal-shaped. Due to such topology the area of the matrix is used with higher efficiency, there's more light captured for each surface unit and that's why dynamic range is reflected wider. Sensors with hexagonal elements give better results on horizontal and vertical scanning, which a human eye is most sensitive to.

Paired photodiodes are also applied into Super CCD Honeycomb construction, they are located as double cells, that's why matrix can operate with any particular light intensity [3]. First photodiode from a double cell is configured for high photosensitivity, the other one is for lower light, it allows to take pictures in any light condition (pic. 63).

Microlenses, that are made as a hexagonal array, are used in the manufacture of optical gears. In particular, such arrays of the microlenses are applied in the Airyscan detector in the laser scanning microscope ZEISS LSM 800 [195].

The operation principle of Airyscan's electric scheme is that a hexagonal array of microlenses is connected directly to the ends of the fibre bundles and captures falling light[4]. On the other end the fibre is in contact with the linear array, that functions as a detector.

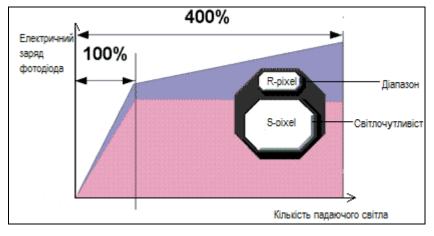
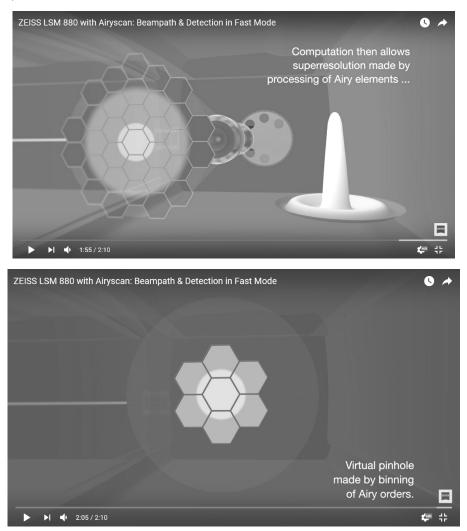
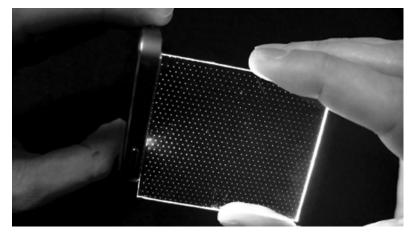
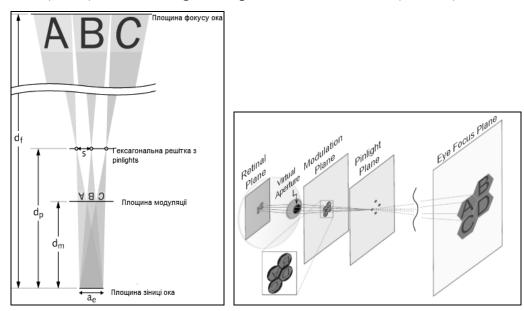



Рис. 63. Double hexagonal pixel


Thus, a picture is configurated with the help of optical scaling to Airy disc. Meanwhile, single element of the detector acts as a separate microaperture in the detector (Pic.64).

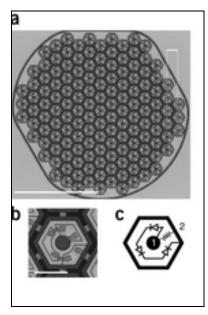
Pic. 64. Hexagonal array of microlenses of Airyscan detector


In VR glasses from Google (Google Glass) [196], each eye has its own 'pinlight' array, that consists of white light – highlighting cones of the transparent acryl layer and low deepening hexagonal grid cells. Hexagonal cells capture full inner light reflection and create so-called point light. The operation principle of them is the same as in camera obscura (Latin), that can capture an image without an objective [196].

Hexagonal array eliminates a need in focusing optics, except user's pupil of the eye (pic.65).

Pic.65. Google Glass display

Light from hexagonal LCD grid with pinlights is being designed using spatial light moderator (SLM) in order to get full picture on the retina (Pic. 66).



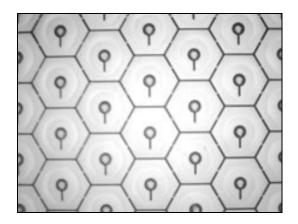
Pic. 66. Hexagonal array Pinlight

Hexagonal arrays are made separately for each eye and installed on the frame.

As a result glasses are light and suitable for constant wearing in Google Glass VR displays [196].

Photovoltaic prosthetics are used for prosthodontics of patients with retina degeneration, whose eyesight is lost because of progressive photoreceptors breakdown. Electrical stimulation and neurons implementation of retina provides an alternative way for delivery of visual information (pic. 67).

Pic. 67. Zoomed image of photovoltaic prosthetic module


The module of the photovoltaic prosthetic consists of hexagonal pixels, that are 70 μ m wide [197].

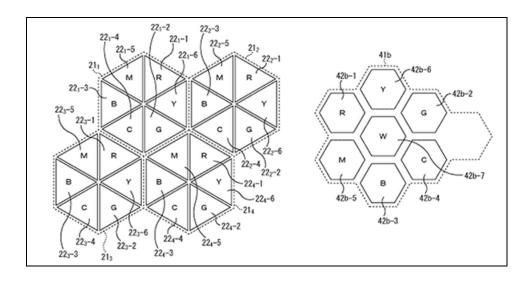
Easy implantation of these hexagonal wireless and modular arrays, combined with its high resolution, gives an opportunity to regenerate the eyesight of the patients, who have lost it because of the retina degeneration [197].

Creation of electronic devices, that form an image in reflected, but not in radiated light, originally, started in the `70s last century. Biggest advantages of such ways of image outputting are picture naturalness for a human's eye, a wide angle of sight and a low energy consumption. Flexibility, strength and a small weight are also

innovative mechanical benefits of displays. Such displays and complex of its creating technologies are combined into the common name 'E-paper' [198].

E-paper display matrix contains hexagonal pixels (hexagonal-shaped cells) [198]. There is a tank with a black paint in the middle of each hexagonal pixel and this paint is spread through a thin channel all over the pixel (under the influence of voltage) (pic. 68).

Pic. 68. E-paper display matrix


A thin aluminium layer functionates as a reflecting basis and a coal ink is used as a black paint. Aluminium is applied on a polymeric surface and covered with Indium Oxide and Tin Oxide, that's how a transparent electrode is made. Under the voltage the ink is getting squeezed out and spread out because of electromechanical pressure. When voltage is turned off, the ink drains back into tank due to the curvature of the channel and physical shape of hexagonal pixels [198].

The pixels shape is 100 μ m wide, it allows to make screens with the resolution up to 300 pixels/inch. This pixels size provides flexible screens creating .

Time transition between white and black colour of the pixel takes 1 millisecond, it is enough for playing a video. The background brightness depends on the amount of reflected light, the screen material in E-paper reflects 55% of any light, that falls onto it (for instance, a white paper reflects 85%) [198].

It is intended to turn white-black E-paper technology into full colour one. Hexagonal pixels, that are used in the white-black technology, is the most suitable solution, they can be separated and filled with red, green and blue colours.

SONY patented a technology of hexagonal pixels matrix development [199], where each pixel consists of a hexagonal elements set, that simulates its own colour (pic. 69).

Pic. 69. Variants of colour topology in hexagonal pixels SONY

Advantage of this technology is a combination of CMY and RGB filters, that considerably increases the characteristics of filter's spectral sensitivity. This combination can improve colour representation in order to process the images successfully. CMY filter has higher capacity, than RGB filter, that's why it's more 'saturated', regardless of the technical realisation [199].

The undeniable benefits of technology suggested by SONY is the image quality and portability of the devices with hexagonal matrix.

Implementation of hexagonal elements gains momentum in computer and tablet games.

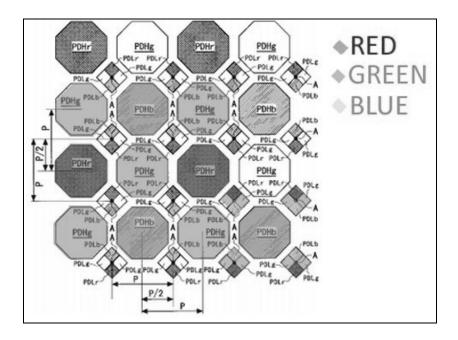
The most famous and popular game for its time, Heroes of Might and Magic 3 used hexagonal topology of the playing map. The playing field was separated not into squares, but into hexagons [200]. It gave an opportunity to move a character in 6 directions and increasing the quantity (2 more) of interacting field sites (pic. 70).

Pic.70. Game map - Heroes of Might and Magic 3

The well known game, Civilization has released its 5th version on the hexagonal map too [201]. This way it became impossible to move onto diagonals of a square, for there were no squares actually. Now the movement in all 6 directions is balanced by distance. A new landscape generator, that is based on the hexagonal map element, was used in the game too. It also added tactical challenges to the gameplay. Also hexagonal space is perceived better (pic. 71).

Pic. 71. Game field in Civilisation 5

The popular strategic game with nuanced graphics, Endless Legend is designed on the hexagonal map too [202]. It improved perception and gave an opportunity not just to apply hexagons, but to use the areas, that are constructed out of the hexagonshaped fields. This approach provided detail and bigger quantity of interactive combinations (2 more, comparing with square), what is connected with hexagonal raster.


Today the great number of smartphone games in 'strategy' genre are constructed on the hexagonal game maps: UniWar – developer TBS Games, Catan – developer USM, Conquest! Medieval Realms – developer Slitherine, Eastern Front: Conflictseries – developer Joni Nuutinen.

Reflection symmetry inherent in the hexagonal raster and ability of equilateral hexagon to fill up the surface without any gaps and overlays allow to create the maps of small size, that suit to the screens of smartphones.

Samsung Company has developed a new pixel structure, that is used in new AMOLED technology, for its smartphones and tablets [203].

Implementation of the hexagonal and rhombus-shaped pixel structures allowed to develop 440 ppi screen resolution [203]

Nikon Company also goes this way, it has patented a cellular touchscreen with the subpixel in order to improve the dynamic range (pic. 72) [204].

Pic. 72. Nikon touchscreen with subpixel

Dynamic range improving is reached due to addition of 4 subpixels around the main pixel.

Conclusions

Given information demonstrates a wide spectre of use of hexagonal raster for image creating. It is believed, that screens, that are made on a hexagonal pixel basis, will be used in VR visualisation systems.

9.3 Intelligent implants in orthopedic surgery

Introduction

Intelligent implants can provide personalized medicine, optimize the care of individual patients, and improve results while reducing costs [205]. As diagnostic tools, smart implants can provide information that characterizes the environment inside the body that cannot be obtained in any other way. This information can provide objective quantitative data for adapting treatment, initiate changes in care, and detect adverse events at an early stage of treatment. Intelligent implants can also provide continuous monitoring of critical parameters for real-time processing. The integration of implants into daily clinical practice has the potential for large cost savings in the healthcare system by minimizing costly complications, shortening recovery time, and reducing lost working days after surgery and procedures. Implantbased intelligent research has also made an important contribution to understanding pathophysiology, healing, implant interfaces, and biomechanics. They also provide important knowledge for the development of next-generation implants and surgical techniques. Although the technology behind smart implants, including sounding, energy transfer, energy storage, and wireless, has advanced significantly in recent years, there are still significant technical challenges that must be overcome before implants become part of healthcare. In all applications, the intelligent implant - e is the vehicle that carries the diagnostic technology in the body. Due to the relatively large physical dimensions of many orthopedic implants, the bulk provides the