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Abstract. Based on the consideration of physical processes in a tunnel-resonant diode under the action of a magnetic field, the construction of an 

autogenerating magnetic field sensor with a frequency output signal is proposed. The use of devices with negative differential resistance makes it possible 
to significantly simplify the design of magnetic field sensors in the entire RF frequency range. Depending on the operating modes of the sensor, an output 

signal can be obtained in the form of harmonic oscillations, as well as in the form of pulse oscillations of a special form. 

The study of the characteristics of the magnetic field sensor is based on the complete equivalent circuit of the tunnel-resonant diode. The equivalent circuit 

takes into account both the capacitive and inductive properties of the tunneling resonant diode. The inductive component exists under any operating 
conditions, as a result of the fact that the current flowing through the device is always lagging behind the voltage that caused it, which corresponds to the 

inductive response of a tunnel-resonant diode. 
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BADANIA MAGNETYCZNEGO CZUJNIKA POLA Z SYGNAŁEM WYJŚCIOWYM 

CZĘSTOTLIWOŚCIOWYM W OPARCIU O DIODĘ TUNELOWO-REZONANSOWĄ  

Streszczenie. Na podstawie uwzględnienia procesów fizycznych zachodzących w diodzie tunelowo-rezonansowej pod działaniem pola magnetycznego 

proponuje się skonstruowanie autogeneracyjnego czujnika pola magnetycznego o częstotliwościowym sygnale wyjściowym. Zastosowanie urządzeń o 

ujemnej rezystancji różnicowej pozwala znacznie uprościć konstrukcję czujników pola magnetycznego w całym zakresie częstotliwości RF. W zależności od 
trybu pracy czujnika sygnał wyjściowy można uzyskać w postaci oscylacji harmonicznych, a także w postaci oscylacji impulsów o specjalnej postaci. 

Badanie charakterystyk czujnika pola magnetycznego opiera się na pełnym obwodzie zastępczym tunelowej diody rezonansowej. Obwód zastępczy 

uwzględnia zarówno właściwości pojemnościowe, jak i indukcyjne tunelowej diody rezonansowej. Składowa indukcyjna istnieje w każdych warunkach 

pracy, na skutek tego, że prąd przepływający przez urządzenie jest zawsze opóźniony w stosunku do napięcia, które go spowodowało, co odpowiada 
odpowiedzi indukcyjnej diody tunelowo-rezonansowej. 

Słowa kluczowe: samoscylator, tunelowa dioda rezonansowa, ujemna rezystancja różnicowa, częstotliwość, heterostruktura kwantowa 

Introduction 

The characteristics of sensors determine the accuracy and 

reliability of control systems and regulation of devices for 

monitoring technological processes, environmental characteristics, 

the safety of industrial installations, and so on. Therefore, strict 

requirements are imposed on magnetic field sensors. They should 

be economical, ensure high measurement accuracy, have minimal 

dimensions, weight and power consumption, be compatible with 

modern computers and be able to be manufactured using standard 

integral technology [8, 14, 19]. 

 At present, the existing semiconductor magnetic field sensors 

do not satisfy the above requirements. They have a low output 

signal, low accuracy and sensitivity, and require analog-to-digital 

converters and amplifying devices for further signal processing. 

A promising scientific direction, eliminating the shortcomings 

of existing analog magnetic field sensors, is the creation of sensors 

that implement the principle of transformation "magnetic field 

induction - frequency" based on self-generated nanoelectronic 

structures with negative differential resistance. Tunneling 

resonance diodes belong to such nanoelectronic structures. The 

operation of these devices is based on the effect of electron 

tunneling through quantum heterostructures as they move 

perpendicularly to the plane of potential barriers separating 

quantum heterostructures. 

1. Formulation of the problem 

The theoretical foundations of the operation of tunnel 

resonance diodes were laid by L. Esaki and R. Tzu [6, 7, 23]. 

Indeed, in these works, they were the first to investigate the 

negative differential resistance in AlGaAs/GaAs nanostructures as 

a result of resonant electron tunneling through potential barriers. 

The unique properties of tunnel-resonant diodes are their 

microwave properties together with negative differential 

resistance, which made it possible to build logic devices, memory 

devices, switches, resonant amplifiers, generators, sensors and 

many other devices on their basis [15–18]. 

The influence of the magnetic field on the characteristics 

of tunneling-resonant diodes was investigated in a number 

of works [1, 9, 10], while the diodes acted as analog magnetic 

field sensors, however, the development and creation of magnetic 

field sensors with a frequency output signal has hardly been 

studied. Therefore, this work is devoted to the development 

of a mathematical model of a magnetic field sensor with 

a frequency output signal based on a tunnel resonance diode, 

which made it possible to obtain the main characteristics of the 

sensor. 

2. Theoretical research  

Before proceeding to the consideration of the mathematical 

model of the magnetic field sensor based on a tunnel-resonant 

diode, we need to briefly consider its structure, energy diagram, 

the density of electronic states and its dependence on the electron 

energy, current-voltage characteristic, the transparency coefficient 

of potential barriers on the energy of electrons tunneling through 

these barriers. This knowledge is necessary for the development 

of a mathematical model and the possibility of using it as a 

magnetic field sensor with a frequency output. 

The classical structure of a tunnel-resonant diode, which is a 

two-dimensional semiconductor quantum heterostructure, consists 

of a nanometer-length GaAs gallium arsenide film, on which a 

nanometer-sized layer of gallium arsenide aluminate AlGaAs with 

a wider band gap is deposited on both sides. When 0.3x  , 
the band gap of AlxGa1-xAs is approximately 2 eV, while for 

GaAs, it is 1.4 eV. This leads to the fact that a potential barrier 

with an almost rectangular shape and a height of 0.4 eV for 

electrons and 0.2 eV for holes arises as a result of the rupture of 

the bottom of the conduction band and the top of the valence band. 

On one side and the other, gallium arsenide aluminate is sprayed 

with n+ -GaAs serving as an emitter and a collector; and all film 

layers are located on a GaAs substrate [22]. From an energy point 

of view, the conduction band of a tunneling-resonant diode has 

two potential barriers, between which a quantum well is located 

(Fig. 1a) [5]. This structure of the diode is called a two-barrier 
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heterojunction nanostructure. As a result, electrons from the 

emitter region need to tunnel through barriers and a quantum well 

to get into the reservoir area when they move perpendicular to the 

walls of the barrier. The motion of electrons in the quantum well 

is limited by the direction of the z coordinate, while in the plane 

(x, y) they are free and their behavior is the same as in three-

dimensional semiconductor bodies (Fig. 1b) [5]. 

In this case, the wave function of an electron can be 

represented as a product of wave functions in coordinates x, y, z 

[3, 12]. 

 
x y z     (1) 

where  x  and ( )у are solutions to the Schrödinger equation 

for a free electron, that is, they describe a traveling wave. At the 

same time, the wave function  z  is a solution of the same 

Schrödinger equation only for an electron in a rectangular 

potential well ( )U z  [12]. 
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where a  is the width of the potential well. 

 

 a) b) 

Fig. 1. Schematic representation of the energy diagram of the conduction band 

of a tunnel-resonant diode with three energy levels and a change in the wave function 

with different electron energies (a); dependence of the density of quantum states 

on the electron energy for quantum two-dimensional and classical three-dimensional 

structures (b) [5] 

The total energy of an electron in a potential well is described 

by the expression [12]: 
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where / 2h   is Planck’s constant; 
*m  is the effective 

mass of an electron; ,  х уK K  are projections of the wave vector 

of electrons on the x and y axes; nЕ  is the energy levels in 

a quantum well; and n  is the number of energy levels in 

the quantum well. 

In Fig. 1b, a graph of the function of the density of states 

versus the change in the energy of electrons is shown, from which 

it can be seen that the function has a stepwise character, with 

all of the steps having the same width, but located at discrete 

values of energy nЕ . Based on Fig. 1b, we can say that energy 

values between 0 and 1Е  are prohibited. In the energy range 

1 2Е Е Е  , electrons can be located in the subband, which 

corresponds to 1n  . Two subzones can be located 

simultaneously in the energy range between 1Е  and 2Е , 

according to 1n   and 2n  . 

This leads to the fact that the density of the states function 

doubles in value. In general, it is described by the formula [5]: 

 

*

2 2
( ) ( ), (1,2,...)D n

n

m
n E E E n

a



    (4) 

where ( )nE E   is a step function; )2( /h  . The solid line 

in Fig. 1b is a parabolic curve for the three-dimensional case, 

which shows the difference between two-dimensional and three-

dimensional systems. This difference is more pronounced at small 

values of the quantity n . 

To obtain the current-voltage characteristics of the tunnel-

resonant diode, the Schrödinger equation is used in the general 

form [21]: 
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where ( )n r  is the wave function of an electron, which depends 

on the radius vector r , which corresponds to an electron with 

energy level n ; ( )U r  – potential energy of barriers; K  – wave 

vector of the electron; ( )E K  – electron energy;  0nЕ  – energy 

of an electron in a quantum well at 0K   when the energy of the 

resonance level 
0Е  is equal to the bottom of the conduction band 

сЕ . Based on equation (5), a function of the current density of the 

applied voltage is obtained, which is called the Ttsu-Esaki 

function [2, 4, 23] 
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where k  is Boltzmann constant; T  – absolute temperature; 

FE  – Fermi level in the conduction band of the emitter; 

U  – applied voltage; ( )ZТ Е  – transparency coefficient of 

electrons passing through potential barriers and a quantum well.  

For a more accurate description of the current-voltage 

characteristic, it is necessary to take into account the phonon 

scattering of electrons, scattering by impurities, scattering at layer 

boundaries, and scattering of electrons by alloys. A numerical 

kinetic model based on Green's functions [21] most accurately 

describes the current-voltage characteristic of tunneling-resonant 

diodes. One of the problems in calculating the current-voltage 

characteristic is the determination of the transparency 

coefficient ( )ZТ Е  two-barrier quantum heterostructure. 

The transparency coefficient of a potential barrier 

is understood as the ratio of the flux density of electrons passing 

through the barrier to the electron flux density of the incident 

wave. The coefficient of reflection of electrons from the barrier 

is determined by the ratio of the flux density of reflected electrons 

from the barrier to the flux density of electrons incident 

on the barrier. Let us consider the case when electrons interact 

with a rectangular potential barrier of width a  whose height 

( )U z  is more energy E  electrons ( ( ) )U z Е . In this case, 

the transparency coefficient  Т Е  is described by the expression 

[5, 11]: 
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where 
1z  and 

2z  are turning points in the condition 

1 2( ) ( )E U z U z  . Reflection coefficient ( )R E  in this case is 

determined based on the relation 1( ) ( )R E T E  . 

The situation changes significantly in the process of tunneling 

electrons through the double barrier when the function  Т Е  

takes on a more complex form and is a product of two quantities: 

ЕТ  for the first barrier or emitter, and 
КТ  for a second barrier 

or collector: 

 ( ) E KT E T T   (8) 

 

The problem is solved most easily when the barriers 

are identical. The coefficient of such a two-barrier structure 

is described by the equation [12]: 
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where the values 
0Т  and 

0R
 

– transparency and reflection 

coefficients for a single barrier; 
*

01/ 2 ( )m U E   ; 

and Q  – a phase angle. 

Let us proceed to consider the influence of the magnetic field 

on the parameters of the tunnel-resonant diode. In bulk 3D crystals 

under the influence of magnetic field B , the electron energy 

quantum is only in the plane perpendicular to B , however, 

in two-dimensional electronic systems, the energy spectrum can 

be quantized completely. This idea is based on the solution of the 

Schrödinger equation for electrons in such a system when 

a magnetic field is applied to it, which is directed along the z  axis 

perpendicular to the plane of the system. The Schrödinger 

equation for the wave function ( ) ( , )r x y   two-dimensional 

system takes the form [12]: 
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where q – electron charge; B  – magnetic induction; and E – the 

energy of electrons. After transformations in square brackets, 

the equation takes the form: 
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The solution to equation (11) is presented in the form [12]: 

 ( , ) ( ) iKyx y x e   (12) 

where the plane wave corresponds to the coordinate y . 

Substituting expression (12) into equation (11), we obtain 

an equation for the functional dependence on coordinate x  

in the form [12]: 
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where the value c  equals: 
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and 
0x  has the form [12]: 
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Expression (13) is the Schrödinger equation for a one-

dimensional harmonic oscillator, since the application of 
0x  to x  

means the shift of the center of the parabolic potential by the 

amount 
0x , so the parameter 

0x  called the center of coordinates. 

Thus, the solution of equation (13) provides an important 

result, which shows that the eigenstates of a two-dimensional 

system in a magnetic field are determined by the expression [12]: 
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where N is the Landau levels. 

The obtained energy values depend on quantum number N  

and the magnitude of magnetic field B  through cyclotron 

frequency 
c . 

Thus, we can conclude that in strong magnetic fields, which 

are directed perpendicular to the plane of a two-dimensional 

quantum heterostructure, electrons move along cyclotron orbitals 

with frequency 
c , which is determined by equation (14). 

Moreover, their energy is quantized according to the rules 

of a harmonious quantum oscillator. It follows from the above that 

the function of the density of states of a two-dimensional electron 

gas after the application of magnetic field B  for each of the 

Landau levels turns into an  -function. Fig. 2 shows that the 

lowest of the Landau levels corresponds to the energy / 2ch , 

and it lies above the bottom of the parabolic zone. Due to the 

scattering of electrons by impurities, the lines broaden, 

blurring - functions, as shown in Fig. 2 [12]. 

 

Fig. 2. Dependence of the function of the density of states of a two-dimensional 

electron gas on the energy in a magnetic field; for comparison, similar dependences 

are presented for a two-dimensional system at 0B   [12] 

After the application of magnetic field B , all Landau levels in 

energy range ch  turn into one common Landau level. In this 

case, degeneracy coefficient D  of the Landau levels is described 

by the expression [12]: 
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As can be seen from formula (17), the degeneracy 

of the Landau levels increases linearly with the applied magnetic 

field. The allowed energy levels, when the magnetic 

field is perpendicular to the two-dimensional system, 

lie on concentric circles with a constant radius 
2 2 2 (2 / )( 1/ 2)x yK K K qB N    . 
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Thus, the kinetic energy of an electron in a quantum well 

is [21]: 
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where ( )RЕ U  – energy of electrons, which depends 

on the applied voltage U ; 
*g B  – magnetic energy of the 

electron spin;   – electron mobility; B – magnetic induction; 

and 
*g  – Lande coefficient [13, 21, 24]. 

Let us move on to considering the mathematical model 

of a magnetic field sensor with a frequency output based on a 

tunnel-resonant diode. The main characteristic of such a device 

is the dependence of the resonant frequency of a generator built 

on a diode, from the measured value, in our case, the magnetic 

induction. This dependence can be determined based on the 

electrical circuit of the sensor, which is shown in Fig. 3. 

 

Fig. 3. Electrical diagram of a magnetic field sensor 

In the tunnel-resonant diode, the current-voltage characteristic 

has a falling section corresponding to the existence 

of a differential negative resistance in this section. The descending 

section arises due to a decrease in the current that passes through 

the double-barrier quantum heterostructure due to a decrease 

in the transparency coefficient of potential barriers due to 

an increase in the energy of tunneling electrons with increasing 

voltage and the action of a magnetic field in comparison with 

the energy resonance level. The negative differential resistance 

converts the DC electric field energy of the tunnel-resonant diode 

power supply into AC electric field energy. The electrical circuit 

of the sensor (Fig. 3) is powered from constant voltage source 

PU . Loss resistance 
SR , which includes all of the ohmic 

resistances of the circuit, external inductance L , which 

is connected in series to the internal inductance of the diode, 

and also contains the inductance of the circuit terminals, external 

capacitance C , which is connected in parallel to the internal 

capacitance of the diode, as well as the tunnel-resonant diode 

itself, on which the magnetic field acts. 

An equivalent sensor circuit for calculating its characteristics 

is presented in Fig. 4. 

 

Fig. 4. Equivalent circuit of a magnetic field sensor 

Power source ( )І U  at the operating point on the descending 

section of the current-voltage characteristic determined the ratio 

(/ )U І U , which corresponds to negative differential resistance 

gR  (Fig. 4). 

Based on the equivalent circuit (Fig. 4), we calculate input 

impedance 
inputZ , on the basis of which we determine 

the resonant frequency. The impedance is expressed as: 
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  (19) 

Let us equate to zero the imaginary component of Eq. (19) and 

determine resonant frequency 
resf , which is described by the 

formula: 
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The solution to equation (20) is the expression: 
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where: 
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3. Experimental research 

When a magnetic field is applied to a tunnel-resonant diode, 

in the direction parallel to the current, a change in the energy 

of the electrons tunneling through potential barriers occurs, 

leading to a change in the current through the device. The change 

in current causes a change in the negative differential resistance, 

which in turn uniquely changes the resonant frequency. 

The change in the intrinsic capacitance and inductance 

of the diode is four orders of magnitude less in relation to the 

values of the external capacitance and inductance, therefore, their 

effect on the resonant frequency can be ignored [20, 25]. 
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Fig. 5 shows the theoretical and experimental dependences 

of the resonant frequency, that is, the sensor conversion function 

on the action of the magnetic field. As can be seen from Fig. 5, 

the conversion function increases with an increase in the magnetic 

field induction while maintaining a constant sensor supply 

voltage. This is due to the fact that the main contribution 

to the frequency change is made by the component of the change 

in the electron energy according to the law 
1

2
cN h

 
 

 
, 

that is, the energies of the cyclotron orbitals of electron motion. 

 

Fig. 5. Theoretical and experimental dependence of the sensor conversion function 

on the action of the magnetic field 

The sensitivity of the magnetic field sensor is determined 

by the first derivative of the conversion function with respect 

to magnetic induction, that is, equal to the ratio kHz/mT. Fig. 6 

shows the theoretical dependence of the sensor sensitivity function 

on the action of the magnetic field, its analytical expression 

is a complex expression and is described by the equation: 
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  (22) 

As can be seen from the graph (Fig. 6), the sensitivity value 

varies from 250 kHz/mT to 300 kHz/mT, the optimal area, when 

the change in the sensitivity function is only 10 kHz/mT, 

is the range of magnetic field induction change from 1 T to 3 T. 

The complex nature of the behavior of the sensitivity function 

on the magnetic field is explained by the complex dependence 

of the sensor conversion function on the change in negative 

differential resistance when a magnetic field is applied. 

 

Fig. 6. Dependence of the sensitivity of the sensor on the action of the magnetic field 

4. Conclusions 

1) A mathematical model of a magnetic field sensor has 

been developed, with which the analytical dependences 

of the conversion and sensitivity functions are determined. 

It is shown that the main contribution to the conversion 

function is made by the change in the energy of electrons 

during their motion in cyclotron orbitals under the influence 

of a magnetic field. It changes the negative differential 

resistance, which in turn changes the output frequency 

of the magnetic sensor. The sensitivity of the magnetic field 

sensor varies from 250 kHz/mT to 300 kHz/mT in the range 

of magnetic field induction from zero to 3 Tesla. In this case, 

the output frequency varied from 5.4·109 Hz to 6.3·109 Hz. 

2) Based on the consideration of physical processes in a tunnel-

resonant diode under the influence of a magnetic field, 

it is proposed to design magnetic field sensors with 

a frequency output signal. These sensors have significant 

advantages over analog magnetic field sensors. Their 

advantages are the ability to operate in the microwave range, 

increasing the microminiaturization of the sensor down 

to the nanoscale, the ability to measure magnetic induction 

from tens of millitesla to tens of tesla with wireless 

transmission of the measured information over a distance. 
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