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Abstract. One of the most effective ways to obtain products with the 
required performance characteristics is the cold plastic deformation of 
porous workpieces. The relevance of the subject under study is due to the 
need to increase the reliability of the stress-strain state assessment during 
the plastic processing of porous workpieces by clarifying the porosity 
functions. The purpose of the study is to develop a method for describing the 
mechanical characteristics of porous bodies by single functions, the nature 
of which is determined by the properties of the base material and does 
not depend on the initial porosity. Analytical, numerical, experimental, and 
computational methods using modern specialised software systems were 
used to examine the processes of plastic deformation. The study presents 
a method for describing the mechanical characteristics of porous bodies 
with single functions. A set of interrelated methods and techniques is based 
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on the basic provisions of the mechanics of plastic deformation of porous bodies and allows obtaining reliable 
porosity functions for this material, by clarifying theoretical dependencies by experimental studies. Therewith, 
experimental data were obtained in experiments on axisymmetric upsetting of cylindrical samples without friction 
at the ends. Based on the conducted theoretical studies, porosity functions for iron-based materials are obtained. 
Samples of five different initial porosities were used for the study. As a result of processing experimental data, final 
expressions for the porosity functions of the iron-based powder workpiece material are obtained. The study also 
presents a method for calculating the accumulated deformation of the base material. Flow curves for iron-based 
powder materials are plotted. The obtained results will allow formulating the practical recommendations for 
the development of technological processes for the plastic processing of powder materials by pressure to obtain 
products with specified physical and mechanical properties

Keywords: material; porosity function; pressure treatment; cold plastic deformation; flow curve; stress

INTRODUCTION
Information about the effect of shape change on each 
material particle in the volume of the workpiece is nec-
essary to ensure the technological quality of finished 
products in pressure processing. Reliable information 
about the stress-strain state and the regularity of its 
change can be obtained by solving the boundary  value 
problem of plasticity theory. Various types of surface 
plasticity and the associated flow law allow consider-
ing the influence of hardening and the type of stress 
state when solving problems in the theory of plasticity 
of a porous body. Therefore, the development and im-
provement of plastic deformation processes of porous 
materials depend on the accuracy of the stress-strain 
state assessment since the result substantially affects 
the idea of rheological properties in real pressure treat-
ment processes.

The damage accumulation model is based on the 
hypothesis (Grushko et al., 2017) that changes are di-
rected in nature and are described by a second-rank 
tensor. The components of this tensor are determined 
by the mechanics of plastic deformation in a particular 
technological process, and functions that describe the 
physical and mechanical properties of the material. The 
accuracy of determining the value of the plasticity re-
source used depends not only on the criteria that con-
sider the tensor nature of damage accumulation (Titov 
et al., 2018; Puzyr et al., 2021) but also on the reliability 
of the stress-strain state assessment. The considered 
criteria for estimating the value of the plasticity re-
source used include determining the stress-strain state 
considering the strain anisotropy. The formulation and 
solution of problems of the theory of plasticity of a po-
rous material differs substantially from the formulation 
of a similar problem for a solid body. Not all the main 
provisions of the theory of irreversible deformation of 
compressible media are fully established. Model rep-
resentations are most widely used to solve technolog-
ical problems of pressure treatment of porous bodies 
(Shtern et al., 2021), which are based on a continuous 
approach. A locally inhomogeneous medium is consid-
ered as a continuous medium, the state of which can 
be described using force and kinematic parameters that 

obey the laws of a continuous medium. When mathe-
matically modelling the process of irreversible shape 
change of a porous body, it is necessary to determine 
the rheological properties of porous materials, which 
is the main condition. Therefore, theories that define 
plasticity surfaces of various types and use the flow law 
associated with them have become widespread. This 
approach allows considering the effect of hardening 
caused by the amount of shape and volume change and 
the type of stress state.

K. Gogaev et al. (2017), I. Prikhod’ko et al. (2016) 
proposed a model of a nonlinear viscous-elastic me-
dium for examining the extrusion of powder materi-
als through axisymmetric matrices, which allowed for 
formulating and solving the boundary value problem. 
Therewith, experimental data obtained on field sam-
ples using the coordinate grid method were used to de-
termine the velocity field in the strain cell.

The development of various generalisations of the 
simplest theory of plasticity of a porous body towards ac-
counting for strain hardening in the solid phase of a po-
rous body was conducted in two ways: using independ-
ent experiments on a porous material ( Beygelzimer et al., 
2021) and using a static model of a porous body and the 
law of strain hardening of a solid (non-porous) base ma-
terial (Shtern & Kartuzov, 2016). Modification of the load 
surface in the form of an ellipsoid of rotation, which is 
shifted relative to the origin (Aliieva et al., 2020), allows 
considering the difference in deformation resistance and 
changes in volume at hydrostatic pressure. Along with 
considering the macroscopic features of the deformation 
of porous bodies, attempts are made to analyse the na-
ture of changes in the porous structure. Therewith, visual 
representations related to the shape and location of 
the load surface are used. This type includes a model 
(Shtern et al., 2021), which considers the presence of 
two-dimensional defects along with pores.

A general constraint (Skorokhod & Shtern, 2019) 
linking porosity functions follows from the analysis of 
known models. Expressions for the material constant 
from the Mises plasticity condition for a porous billet 
based on iron and copper, depending on the porosity 
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functions, are obtained by V. Rud et al. (2020). At the 
stage of isostatic loading and subsequent unloading, 
with combined deformation (Abdelmula et al., 2017), an 
established seal is established. However, it is believed 
that the reduction in porosity during unloading can 
be ignored. Therefore, for the final stage of combined 
deformation under axial load, the initial porosity is 
greater than at the first stage under isostatic load. The 
density increase at the last stage under axial load is 
reduced to solving the Cauchy problem for an ordinary 
differential equation, in which the porosity function 
satisfies the expression with respect to the radial stress 
component and the initial conditions. 

Thus, it can be argued that in most cases the solu-
tion of pressure treatment problems using the devel-
oped mathematical models of various processes and 
phenomena that occur during plastic deformation of 
porous bodies is reduced to the formulation of bound-
ary value problems for certain systems of differential 
equations. The reliability of mathematical methods 
of the theory of plasticity of porous bodies directly 
depends on how accurate the porosity functions are. 
Therefore, the purpose of the study is to increase the 
reliability and accuracy of determining the real phys-
ical and mechanical properties of porous materials by 
experimentally clarifying the porosity functions, which 
is considered an important stage in the creation of new 
technological processes for plastic processing.

MATERIALS AND METHODS
The plasticity equations of a porous body were used to 
develop the theory of forming powder materials (Shtern 
et al., 2021). In this case, the basic equations of the the-
ory of porous body flow have the form:

𝜏𝜏𝜏𝜏02 = р2

𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃)(1−𝜃𝜃𝜃𝜃)
+ 𝜏𝜏𝜏𝜏2

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)(1−𝜃𝜃𝜃𝜃)
  ; (1)

�̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 −
1
3
�̇�𝑒𝑒𝑒𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 = �̇�𝛾𝛾𝛾

𝜏𝜏𝜏𝜏
�𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 − 𝑝𝑝𝑝𝑝𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�  ; (2)

𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)�̇�𝛾𝛾𝛾 = 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃)�̇�𝑒𝑒𝑒  ; (3)

�̇�𝛾𝛾𝛾02 = 𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃)�̇�𝑒𝑒𝑒2

(1−𝜃𝜃𝜃𝜃)
+ 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)�̇�𝛾𝛾𝛾2

(1−𝜃𝜃𝜃𝜃)
  ; (4)

𝐺𝐺𝐺𝐺0 = ∫ �̇�𝛾𝛾𝛾0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡
0   , (5)

where τ0 – intensity of the stress deviator in the base 
material; p – average voltage, 𝑝𝑝𝑝𝑝 = 1

3 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ; θ – porosity; 
τ – intensity of the stress deviator,

𝜏𝜏𝜏𝜏 = �(𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑝𝑝𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)(𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑝𝑝𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  ; (6)

�̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   – components of the strain velocity tensor; �̇�𝑒𝑒𝑒   – rate 
of relative volume change, �̇�𝑒𝑒𝑒 = 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ; �̇�𝛾𝛾𝛾   – intensity of the 
strain velocity deviator,

�̇�𝛾𝛾𝛾 = ���̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
1
3
�̇�𝑒𝑒𝑒𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ��̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −

1
3
�̇�𝑒𝑒𝑒𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = �2

3
𝜀𝜀𝜀𝜀�̇�𝑢𝑢𝑢  ; (7)

σij – components of the stress tensor; �̇�𝛾𝛾𝛾0   – intensity of 
the strain velocity deviator in the base material; G0 – 
accumulated deformation of the base material.

The following expressions for porosity functions 
are obtained from theoretical references (Beygelzimer 
et al., 2022):

𝑓𝑓𝑓𝑓10(𝜃𝜃𝜃𝜃) = (1 − 𝜃𝜃𝜃𝜃)2  ; (8)

𝑓𝑓𝑓𝑓20(𝜃𝜃𝜃𝜃) = 2
3
⋅ (1−𝜃𝜃𝜃𝜃)3

𝜃𝜃𝜃𝜃
  . (9)

The theoretical dependencies (8) and (9) for the po-
rosity functions will be clarified according to the data 
of M. Shtern et al. (2021), via coefficients m and n, which 
are determined experimentally and are different (Sivak, 
1996) for each porous material:

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) = (𝑓𝑓𝑓𝑓10(𝜃𝜃𝜃𝜃))𝑛𝑛𝑛𝑛+1 = (1 − 𝜃𝜃𝜃𝜃)2𝑛𝑛𝑛𝑛+2  . (10)

According to the studies by I. Sivak (1996), function 
α(θ) has the form:

𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃) = 1
6
⋅ 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃)

  . (11)

Theoretical expression for the porosity function:

𝛼𝛼𝛼𝛼0(𝜃𝜃𝜃𝜃) = 1
6
⋅ 𝑓𝑓𝑓𝑓10(𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓20(𝜃𝜃𝜃𝜃) = 𝜃𝜃𝜃𝜃

4(1−𝜃𝜃𝜃𝜃)  . (12)

Function α(θ) considering the parameter m takes 
this form:

𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃) = 𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃) = � 𝜃𝜃𝜃𝜃
4(1−𝜃𝜃𝜃𝜃)

�
𝑚𝑚𝑚𝑚

  . (13)

Experimental values m and n will be calculated for 
axisymmetric upsetting of cylindrical samples without 
friction at the ends in experiments. Since the deforma-
tion is axisymmetric, then . The rate of volume change is:

�̇�𝑒𝑒𝑒 = �̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧 + 2�̇�𝑒𝑒𝑒𝜙𝜙𝜙𝜙  , (14)

and the intensity of the strain velocity deviator is de-
scribed by the expression

�̇�𝛾𝛾𝛾 = ���̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧 −
�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧+2�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑

3
�
2

+ 2 ��̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑 −
�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧+2�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑

3
�
2

= �2
3

(�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑 − �̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧)  . (15)

In addition, with the frictionless upsetting σr=σφ=0, 
σz=-σ, then the relations have the form:

𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎𝑟𝑟𝑟𝑟+𝜎𝜎𝜎𝜎𝜑𝜑𝜑𝜑+𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧
3

= −𝜎𝜎𝜎𝜎
3

  ; (16)

�̇�𝛾𝛾𝛾 = ���̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
1
3
�̇�𝑒𝑒𝑒𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ��̇�𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −

1
3
�̇�𝑒𝑒𝑒𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = �2

3
𝜀𝜀𝜀𝜀�̇�𝑢𝑢𝑢  . (17)

The volume deformation rate is equal to:

�̇�𝑒𝑒𝑒 = 1
𝑉𝑉𝑉𝑉
⋅ 𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= − 1
𝜌𝜌𝜌𝜌
⋅ 𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  . (18)

The density of the material is:

𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌0(1 − 𝜃𝜃𝜃𝜃)  , (19)

where ρ – density of the porous body; ρ0 – density of 
the base material.

The following is considered time parameter:

𝑡𝑡𝑡𝑡 = |𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧| = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ0
ℎ

  , (20)

where h0, h – initial and current height of the upsetting 
sample.
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The expression for axial deformation has the form:
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −1  . (21)

Since the accumulated deformation of the base 
material G0 depends on the time and porosity, the fol-
lowing can be written:

𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

⋅ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  . (22)

Equivalent stress intensity in the base material τ0 
corresponds to the upsetting stress:

𝜎𝜎𝜎𝜎 = |𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧| = 𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴

  , (23)

where P – upsetting force; A – cross-sectional area of 
the sample.

It is necessary to determine parameter m numeri-
cally by solving the differential equation for different 
initial porosities. Integration of a system of differential 
equations and calculation of the corresponding values 
of the stress intensity of the base material at an arbi-
trary initial porosity and parameter n is performed using 
methods of approximate or precise solution of applied 
mathematics problems. The curves of the upsetting 
stress dependence on time must be approximated by a 
power dependence. Approximation coefficients are de-
termined by the least squares method. Implicit depend-
encies of the stress intensity of the base material on 
the accumulated deformation of the base material are 
also approximated by power functions using the least 
squares method. Values m and n which are included in 
the porosity functions obtained as a result of process-
ing experimental data.

Experiments on axisymmetric upsetting of cylin-
drical samples with low friction at the ends were con-
ducted to determine porosity functions f1(θ), f2(θ), and 
α(θ) ( Ogorodnikov et al., 2018). The studies were con-
ducted on samples made of powder material PZh4M2, 
height h0=15.9 mm and diameter d0=4.32 mm. The sam-
ples had five different initial porosity values: 1) θ0=0.283; 
2)  θ0=0.246; 3)  θ0=0.208; 4) θ0=0.164; 5) θ0=0.126. The 
density of the samples was determined by hydro-weighing 
in distilled water. The sample was weighed in a dry state 
(weight Gd), and then, to protect against liquid ingress into 
the pores of the material, it was soaked with paraffin. After 
wiping, the sample with the filler was weighed (weight Gf). 
Then a prototype, on a thin (d=0.05 mm) copper wire, was 
weighed in water (weight Gw). The experimental density 
value was determined by the formula:

𝜌𝜌𝜌𝜌 = 𝐺𝐺𝐺𝐺𝑑𝑑𝑑𝑑
𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝑤𝑤𝑤𝑤

𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤  , (24)

where ρw – water density at the measurement temper-
ature.

The experimental value of porosity was calculated 
from the relation:

𝜃𝜃𝜃𝜃 = 1 − 𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌0

  , (25)

where ρ0 – density of iron, the base material of a porous 
body, ρ0=7.85 g/cm3.

After hydro-weighing, the paraffin was removed. 
Complete removal of the mixture was monitored dur-
ing subsequent weighing. upsetting of 2-4 samples of 
each initial density was performed in 10-15 stages. At 
each stage, the upsetting force P was determined, and 
the height h and diameter d of the sample were meas-
ured. In addition, the distance between two labels ap-
plied in the middle of the sample in the axial direction 
was measured. The density of the samples was deter-
mined by hydro-weighing in 5-8 stages. Low friction at 
the ends was ensured by the use of lead gaskets and 
lubrication with graphite grease lubricant. Compressive 
stresses were determined from the upsetting results:

𝜎𝜎𝜎𝜎 = 4𝑃𝑃𝑃𝑃
𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑2

  , (26)

and deformations

𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ0
ℎ

  ; (27)

𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟 = 𝑒𝑒𝑒𝑒𝜑𝜑𝜑𝜑 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑0

  . (28)

In addition to hydro-weighing, the variation in the 
porosity of the material was determined by the change 
in the average calculated volume:

𝑉𝑉𝑉𝑉 = 𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑2

4
ℎ  . (29)

RESULTS AND DISCUSSION
As a result of the development of mathematical meth-
ods of the theory of plasticity of porous bodies, a har-
monic theory was obtained (Shtern et al., 2021). It is 
based on the hypothesis of the existence of a surface 
plasticity of a porous body:

3𝐼𝐼𝐼𝐼2(𝐷𝐷𝐷𝐷𝜎𝜎𝜎𝜎) + 𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼12(𝑇𝑇𝑇𝑇𝜎𝜎𝜎𝜎) − 𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘2 = 0  , (30)

where α, β – porosity functions; I2(Dσ) – the second in-
variant of the stress deviator; I1(Dσ) – the first invariant 
of the stress tensor; k – flow stress of the base material.

The plasticity condition proposed by Y. Beygelzimer 
et al. (2022) is slightly different and has the form:

3𝐼𝐼𝐼𝐼2(𝐷𝐷𝐷𝐷𝜎𝜎𝜎𝜎) − (1 − 2𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼2(𝑇𝑇𝑇𝑇𝜎𝜎𝜎𝜎) + 𝜑𝜑𝜑𝜑2𝑘𝑘𝑘𝑘2 = 0  , (31)

where υ – coefficient of transverse deformation; ϕ – po-
rosity function.

Analysis of known experimental and theoretical re-
sults shows that the plasticity conditions (30) and (31) 
qualitatively describe the mechanism of plastic defor-
mation of porous materials. The main dependencies 
of the flow theory, in particular, the increase in plastic 
deformations from stresses, are determined from the 
plasticity condition and the associated flow law, accord-
ing to which, the vector of increasing plastic deforma-
tions is perpendicular to the load surface at the point 
that corresponds to the stresses.

A. Kuzmov et al. (2020), M. Shtern, and E. Kartuzov 
(2016) used an approach related to the need to set the 
properties of a dissipative function when formulating 
the defining equations. Based on the assumption that 
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the third invariants do not affect the behaviour of a po-
rous body and considering isotropy, the plasticity condi-
tion of the compacted material was obtained. This con-
dition is used quite widely (Skorokhod & Shtern, 2019) 
and is usually written as:

𝑝𝑝𝑝𝑝2

𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃) + 𝜏𝜏𝜏𝜏2

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) = (1 − 𝜃𝜃𝜃𝜃)𝑘𝑘𝑘𝑘2  , (32)

where f1(θ), f2(θ) – porosity functions; 𝑘𝑘𝑘𝑘 = �3
2
𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓   , σf– the 

flow stress of the solid phase under uniaxial tension.
The plasticity conditions (30), (31), and (32) are 

symmetric with respect to the plane p=0. However, 
this requirement is not mandatory. E. Beygelzimer and 
Y. Beygelzimer (2022) experimentally established that 
the plasticity condition of porous bodies under the bulk 
stress state is described by the expression:

(𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝∗)2

𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃) + 𝜏𝜏𝜏𝜏2

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) = (1 − 𝜃𝜃𝜃𝜃)𝑘𝑘𝑘𝑘2  , (33)

where p∗ – function of internal stresses and porosity.
If p=0, then the flow law associated with this plas-

ticity condition leads to the fact that the volume defor-
mation rate is:

�̇�𝑒𝑒𝑒 = −𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃) ⋅

�̇�𝛾𝛾𝛾
𝜏𝜏𝜏𝜏
𝑝𝑝𝑝𝑝∗  . (34)

It follows from expression (34) that during the plas-
tic deformation of a porous body, there is a change in 
volume in the absence of a spherical component of the 
stress tensor.

The material model is one of the main components 
in the research on the processes of forming porous 
materials. This model is formed in the form of defin-
ing equations that relate the components of stress 
tensors and strain rates to the state parameters of the 
deformable material (Shtern & Kartuzov, 2016). One of 
these parameters is the current porosity. Therefore, the 
relationship between stress tensors and strain rates 
contains internal variables for which conditions are 
formulated in the form of equations for state param-
eters. The kinetic equation of conservation of mass for 
materials the behaviour of which depends on porosity 
can be used as these relations. The defining relations 
for such materials are shown as a generalised model, 
which is a partial case of the equations of sensitivity 
of the plastic potential to the Nadai-Lode parameter 
(Skorokhod & Shtern, 2019) or the third invariant of the 
stress tensor (Sivak, 2017). In most cases, the porosity 
functions included in these equations are determined 
from experimental data.

Since the experimental values m and n will be cal-
culated for axisymmetric upsetting of cylindrical sam-
ples without friction at the ends in experiments, the 
relation (3) is reduced to the form:

�̇�𝛾𝛾𝛾
�̇�𝑒𝑒𝑒

= 𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)

⋅ 𝜏𝜏𝜏𝜏
𝑝𝑝𝑝𝑝

= 1
6𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃)

⋅ 𝜏𝜏𝜏𝜏
𝑝𝑝𝑝𝑝

  . (35)

The relations (16) and (17) are substituted in equa-
tion (35) and the expression is written:

�̇�𝛾𝛾𝛾
�̇�𝑒𝑒𝑒

= 1
6𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃)

⋅
�2
3
𝜎𝜎𝜎𝜎

−𝜎𝜎𝜎𝜎
3

= − 1
√6𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃)

  . (36)

After substituting the relations (14) and (15) into 
equation (36), the following expressions are obtained:

�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧 + 2�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑 = −�2
3

(�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑 − �̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧)√6𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃)  ; (37)
�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑
�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧

= − 1−2𝛼𝛼𝛼𝛼
2(1+𝛼𝛼𝛼𝛼) = −1

2
+ 3

2
⋅ 𝛼𝛼𝛼𝛼
1+𝛼𝛼𝛼𝛼

  . (38)

It follows from expression (38) that:

�̇�𝑒𝑒𝑒𝜑𝜑𝜑𝜑 = −�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧
1−2𝛼𝛼𝛼𝛼
2(1+𝛼𝛼𝛼𝛼)

  . (39)

Expression (39) is substituted to relation (14) and 
the following equation is obtained:

�̇�𝑒𝑒𝑒 = �̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧 −
1−2𝛼𝛼𝛼𝛼
2(1+𝛼𝛼𝛼𝛼)

�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧 = 3𝛼𝛼𝛼𝛼
1+𝛼𝛼𝛼𝛼

�̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧  . (40)

Using expressions (18) and (19), the volume strain 
rate is calculated:

�̇�𝑒𝑒𝑒 = �̇�𝜃𝜃𝜃
1−𝜃𝜃𝜃𝜃

  . (41)

It follows from expressions (40) and (41) that:
�̇�𝜃𝜃𝜃

1−𝜃𝜃𝜃𝜃
= 3𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃)

1+𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃) �̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧  , (42)

given function (13), the following relation is obtained
�̇�𝜃𝜃𝜃

1−𝜃𝜃𝜃𝜃
= 3𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃)

1+𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃) �̇�𝑒𝑒𝑒𝑧𝑧𝑧𝑧  , (43)

or:
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 3(1−𝑑𝑑𝑑𝑑)𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧
1+𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  . (44)

Expression (21) is substituted into relation (44), and 
as a result, the following is obtained:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −3(1−𝑑𝑑𝑑𝑑)𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚

1+𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚
  , (45)

then the differential equation is obtained
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= − 1+𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚

3(1−𝑑𝑑𝑑𝑑)𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚
  , (46)

solving which, the following is calculated

𝑡𝑡𝑡𝑡 = −∫ 1+𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃∗)
3(1−𝜃𝜃𝜃𝜃∗)𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃∗)

𝜃𝜃𝜃𝜃
0 𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃∗  . (47)

The solution of equation (47) allows determining 
the value of the parameter m, at which the calculated 
curves coincide with the experimental ones.

The intensity of the deformation rates of the base 
material �̇�𝛾𝛾𝛾0   is expressed through the volume deforma-
tion rate �̇�𝑒𝑒𝑒   with a frictionless draft. Expression (4) is 
reduced to this form to do this:

�̇�𝛾𝛾𝛾02 = 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)�̇�𝑒𝑒𝑒2

1−𝜃𝜃𝜃𝜃
�𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)

− �̇�𝛾𝛾𝛾2

�̇�𝑒𝑒𝑒2
�  . (48)

Expressions (11) and (36) are substituted in equa-
tion (48) and the following the relation is obtained:

�̇�𝛾𝛾𝛾02 = 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)�̇�𝑒𝑒𝑒2

1−𝜃𝜃𝜃𝜃
� 1
6𝛼𝛼𝛼𝛼

+ 1
6𝛼𝛼𝛼𝛼2

�  . (49)

Considering expressions (40) and (21), the relation 
(49) is reduced to the form:

�̇�𝛾𝛾𝛾02 = 3
2

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)
(1−𝜃𝜃𝜃𝜃)(1+𝛼𝛼𝛼𝛼)

  , (50)
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hence

�̇�𝛾𝛾𝛾0 = �3
2�

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)
(1−𝜃𝜃𝜃𝜃)(1+𝛼𝛼𝛼𝛼)

  . (51)

Expressions (46) and (51) are substituted in equa-
tion (22), considering that �̇�𝛾𝛾𝛾0 = 𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⁄   , the following is 
calculated:

𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

⋅ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −1
6�

𝑓𝑓𝑓𝑓1(𝑑𝑑𝑑𝑑)
(1−𝑑𝑑𝑑𝑑)3

⋅ √1+𝛼𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

  . (52)

Given that 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) = 𝑓𝑓𝑓𝑓101+𝑛𝑛𝑛𝑛(𝜃𝜃𝜃𝜃) = (1 − 𝜃𝜃𝜃𝜃)2+2𝑛𝑛𝑛𝑛   , the fol-
lowing expression is obtained:

𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= − 1
√6

(1 − 𝜃𝜃𝜃𝜃)𝑛𝑛𝑛𝑛−0.5 �1+𝛼𝛼𝛼𝛼0
𝑚𝑚𝑚𝑚

𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚
  . (53)

Equation (1) is transformed considering the rela-
tions (11), (16), and (14) and the following is obtained:

𝜏𝜏𝜏𝜏02 = 1
𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)(1−𝜃𝜃𝜃𝜃) �𝑝𝑝𝑝𝑝

2 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃) + 𝜏𝜏𝜏𝜏2� =

2
3
𝜎𝜎𝜎𝜎2(1+𝛼𝛼𝛼𝛼)

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)(1−𝜃𝜃𝜃𝜃)  . (54)

As a result, the equivalent stress intensity of the 
base material during frictionless upsetting is deter-
mined by the relation:

𝜏𝜏𝜏𝜏0 = �2
3

√1+𝛼𝛼𝛼𝛼
�𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃)(1−𝜃𝜃𝜃𝜃)

𝜎𝜎𝜎𝜎 = �2
3
�1+𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃)
(1−𝜃𝜃𝜃𝜃)𝑛𝑛𝑛𝑛+1.5 𝜎𝜎𝜎𝜎  . (55)

Parameter value n can be determined from relation 
(55) by the iteration method, based on the condition 

that the dependence τ0=f(G0) must be uniform for any 
initial porosity of the material.

Therefore, to estimate the stress-strain state in the 
plastic region, the flow curve of the deformable ma-
terial is necessary. In terms of plastic deformation of 
porous bodies, the problem is complicated by the fact 
that the type of flow curve depends on both the base 
material and the initial porosity (Sivak, 1996). The pre-
sented method allows constructing the dependence of 
the intensity of the stress deviator in the base material 
τ0 from accumulated deformation G0, which is uniform 
for this material and does not depend on the initial po-
rosity. It is necessary to know the porosity functions to 
examine the processes of plastic deformation of porous 
bodies and construct a single flow curve τ0(G0).

From the storage conditions of the mass:
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌0𝜌𝜌𝜌𝜌0  ; (56)

𝜌𝜌𝜌𝜌0(1 − 𝜃𝜃𝜃𝜃)𝑉𝑉𝑉𝑉 = 𝜌𝜌𝜌𝜌0(1 − 𝜃𝜃𝜃𝜃0)𝑉𝑉𝑉𝑉0  , (57)

finding the porosity

𝜃𝜃𝜃𝜃 = 1 − 𝑉𝑉𝑉𝑉0
𝑉𝑉𝑉𝑉

(1 − 𝜃𝜃𝜃𝜃) = 1 − 𝑑𝑑𝑑𝑑02ℎ0
𝑑𝑑𝑑𝑑2ℎ

(1 − 𝜃𝜃𝜃𝜃0)  . (58)

Dependency graphs eφ(t), σz(t), θ(t) obtained from 
the equations (26), (28), and (58) are shown in Fig. 1-3. 
In graphical dependencies 𝑡𝑡𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ0

ℎ
= −𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧   – time pa-

rameter.

Figure 1. Strain dependence eφ depending on the degree of upsetting (iron)
Source: compiled by the authors

Figure 2. Porosity dependence θ depending on the degree of upsetting (iron)
Source: compiled by the authors
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Figure 3. Axial stress during upsetting of samples with different initial porosity θ0

Source: compiled by the authors

Parameter m was determined numerically by solv-
ing equation (46) for various initial porosities θ0. Ana-
lysing the dependency t(θ) at different m, the following 
value was eventually identified (m=0.86), at which the 
experimental curve was identified to be close to the 
calculated one at the initial porosity θ0=0.208. The fol-
lowing calculations showed that when m=0.86, calcu-
lated curves θ(t) coincide with the experimental ones 
for the remaining initial porosities. Integration of the 
system of differential equations (46), (53), and calcu-
lation of the corresponding values τ0 according to re-
lation (55), for arbitrary initial porosity and parameter 
n was performed using numerical methods. Under this 
condition, the coefficient was entered as the initial data 
m=0.86, and curves σz(t) (Fig. 3). Therewith, curves σz(t) 
were approximated by power dependence:

𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎2   . (59)

The approximation coefficients depending on (59) 
were determined by the least squares method. As a re-
sult, it is established that the accepted expression is 
a valid approximation for describing the experimental 
dependence σz(t). When solving the system of equations 
(46), (53), and calculating the ratio (55), data for two 
initial porosities were applied simultaneously θ0. The 
obtained implicit dependencies τ0=f(G0) were approxi-
mated by power functions:

𝜏𝜏𝜏𝜏0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1𝐺𝐺𝐺𝐺0𝑏𝑏𝑏𝑏2   , (60)

using the least squares method.
Curves (60) for both initial porosities were obtained 

at different values of the parameter n starting from n=0. 
When n=0.75, curves τ0=f(G0) coincided for both initial 
porosities. Applying the resulting value n=0.75 in the 
programme for other initial porosities confirmed the 
uniqueness of the curve τ0=f(G0). Thus, as a result of 
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processing experimental data, the values m and n were 
obtained, which are included in the porosity functions 
of the workpiece based on PZh4M2 powder. Finally, the 
following dependencies are obtained for the porosity 
functions:

𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) = 𝑓𝑓𝑓𝑓101+𝑛𝑛𝑛𝑛(𝜃𝜃𝜃𝜃) = ((1 − 𝜃𝜃𝜃𝜃)2)1+1,75 = (1 − 𝜃𝜃𝜃𝜃)3,5  ; (61)

𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃) = 1
6𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃) 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) = 1

6𝛼𝛼𝛼𝛼0𝑚𝑚𝑚𝑚(𝜃𝜃𝜃𝜃) 𝑓𝑓𝑓𝑓2(𝜃𝜃𝜃𝜃) = 0.546 (1−𝜃𝜃𝜃𝜃)
𝜃𝜃𝜃𝜃0,86

4,36
  . (62)

For the flow curve, when G0≥0.01 the following ex-
pression was obtained:

𝜏𝜏𝜏𝜏0 = −15 + 83,73𝐺𝐺𝐺𝐺0
0,186  . (63)

Dependencies (61), (62), and (63) are used to cal-
culate stresses during plastic deformations of porous 
workpieces in pressure treatment processes. Functions 
α(θ), f1(θ), f2(θ) are shown in Fig. 4, 5, and the flow curve 
τ0(G0) – in Figure 6.

Figure 4. Porosity function α(θ) for the PZh4M2 iron
Source: compiled by the authors
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Figure 5. Porosity functions f1(θ), f2(θ) for the PZh4M2 iron
Source: compiled by the authors

Figure 6. Flow curve of the porous PZh4M2 iron base material
Source: compiled by the authors

Mathematical models created based on ideas about 
the concept and methods of continuous environment 
mechanics are used to solve specific technological 
problems. These are mainly problems for determining 
the fields of residual porosity and deformation. Methods 
of mechanics of deformable powder materials allow ex-
plaining quite a lot of regularities at the macro level. 
However, the task of modelling the processes of obtain-
ing powder materials, which consists in establishing 
the relationship between the deformation scheme and 
the properties of the product, cannot be reduced only 
to calculating residual deformations. It is necessary to 
consider changes in the parameters that determine the 
structure and physical properties. During research in 
the field of physics of dispersed and porous media, a 
number of important, qualitative results were obtained 
regarding the influence of porosity on  elementary 

deformation processes and mechanical characteris-
tics of porous bodies. The most common theory of 
plasticity of porous bodies in the form of condition 
(30) emerged as a generalisation of the  Mises plastic 
body model (Green, 1973; Kuhn & Downey, 1971). The 
first stress tensor invariant included in the load func-
tion (30) makes the load surface closed, convex, and 
smooth. The closeness of the load surface reflects the 
property of volume-deformed bodies, which consists in 
the occurrence of plastic deformations at any monoto-
nous trajectory of the applied forces. The most common 
modification of the theory of plasticity of porous bodies 
is based on the fluidity condition (32). In stress space, 
condition (32) corresponds to an ellipsoid of rotation 
relative to the hydrostatic axis. There are at least two 
ways to determine the half-axes of a  given ellipsoid. 
The first method is based on  independent experiments 
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(Kuhn & Downey, 1971) to obtain the relationship be-
tween stress and strain for a porous material under the 
stress state of simple types. 

The second is the way to determine the porosity 
and flow stress functions under uniaxial compression. It 
is based on ideas about the mechanics of a micro-inho-
mogeneous continuum. Assuming a certain type of real 
microstructure of a porous body, the relative position 
of the pores, the nature of their interaction, and using 
known solutions to problems about the behaviour of 
an isolated pore in deformable space, it is possible to 
determine the effective characteristics of media that 
have an infinite number of pores. V. Skorokhod and 
M. Shtern (2019) calculated various boundaries of the 
flow stress of a porous body based on the static model 
of a porous body and solved the simplest macroscopi-
cally homogeneous problems of the theory of plasticity 
of compressible materials. Another area is based on the 
assumption of regular pore stacking (Green, 1973). Us-
ing the solution of two problems on the behaviour of 
an isolated pore in an infinite perfectly plastic medium, 
porosity functions such as the semi-axis of an ellipsoid 
were determined. This path allows considering the fea-
tures of the porous structure. Consistent softening of 
the initial assumptions can lead to a change in the po-
rosity functions and lead to a more complete considera-
tion of physical and structural factors in the framework 
of the described theory of plasticity of porous bodies. 
In this form, the theory of plasticity of porous bodies 
is widely recognised and has allowed explaining quite 
a lot of the regularities of volume changes identified 
at the macro level in the most common deformation 
schemes. This method also helped to solve boundary 
value problems on density distribution and determine 
the fields of residual deformations. Based on the postulate 
of exact certainty of the dissipative function (Skorokhod & 
Shtern, 2019), the measure of accumulated deformation 
of the solid phase is calculated by formula (5), consider-
ing expression (48). A. Kuzmov et al. (2020) suggested that 
the relationship between the flow stress for uniaxial com-
pression and accumulated deformation is identical to the 
deformation hardening curve of the solid phase.

N. Abdelmoula et al. (2017), A. Kuzmov et al. (2020) 
analysed the evolution of porosity for porous workpieces. 
As a result, by solving the equation and determining 
the radial stress component, the dependence of poros-
ity on axial strain is obtained for three values of the 
initial porosity. Analysis of the results shows that the 
number of cavities increases for materials with lower 
initial porosity. Therewith, a decrease in the number of 

cavities is observed in blanks with high initial porosity. 
The initial porosity is also indicated, which corresponds 
to the absence of volume changes. It is necessary to 
consider that at the first stage, under isostatic load, 
there is a temporary decrease in pressure to coordinate 
the theoretical and experimental results, so in this case, 
it is necessary to use a certain law of change in the radial 
stress component. At the initial stage of deformation, 
such a replacement ensures that the calculated data 
correspond to the experimental curves “porosity – axial 
deformation”.

CONCLUSIONS
Using the basic provisions of the mechanics of plastic 
deformation of porous bodies, a method for describ-
ing the mechanical characteristics of porous bodies by 
single functions was developed, the nature of which 
is determined by the properties of the material from 
which the workpiece is made, and does not depend on 
the initial porosity. The considered approach allows for 
obtaining reliable porosity functions for this material 
by clarifying the theoretical dependencies through ex-
perimental studies. Porosity functions for iron-based 
materials were obtained. A method for calculating the 
accumulated deformation of the base material was 
developed. A flow curve was plotted for iron-based 
materials, which, regardless of the initial porosity, de-
scribes the dependence of the stress intensity in the 
base material on the accumulated deformation of the 
base material as a single curve. Porosity leads not only 
to quantitative changes in the service and mechanical 
properties of materials but also makes them more sus-
ceptible and quite sensitive to the type of stress-strain 
state. Porous materials have a number of properties 
that are not inherent in solid bodies. In particular, the 
dependence of the flow stress on hydrostatic pressure, 
dilatancy, multi-resistance during tension and compres-
sion, etc. These features are reflected in mechanical 
models of porous bodies. However, research in the field 
of mechanics of porous media should also be aimed at 
further creating theories focused on solving the prob-
lems of compaction and shaping of porous materials, 
determining the boundary states that characterise the 
structural properties of powder materials.
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Анотація. Одним із ефективних способів отримання виробів з необхідними експлуатаційними характеристиками 
є холодна пластична деформація пористих заготовок. Актуальність досліджуваної теми обумовлена необхідністю 
підвищення достовірності оцінки напружено-деформованого стану при пластичній обробці пористих заготовок 
шляхом уточнення функцій пористості. Метою дослідження є розробка методики описання механічних 
характеристик пористих тіл єдиними функціями, характер яких визначається властивостями матеріалу основи 
і не залежить від початкової пористості. Для дослідження процесів пластичної деформації використані 
аналітичні, числові, експериментально-розрахункові методи із застосуванням сучасних спеціалізованих 
програмних систем. В статті представлена методика описання механічних характеристик пористих тіл 
єдиними функціями. Сукупність взаємопов’язаних способів та прийомів базується на основних положеннях 
механіки пластичної деформації пористих тіл і дозволяє отримувати достовірні функції пористості для даного 
матеріалу, шляхом уточнення теоретичних залежностей експериментальними дослідженнями. Водночас 
експериментальні дані отримували в дослідах на осесиметричну осадку циліндричних зразків без тертя на 
торцях. Ґрунтуючись на проведених теоретичних дослідженнях отримано функції пористості для матеріалів 
на основі заліза. Для досліджень використовували зразки п’яти різних початкових пористостей. В результаті 
обробки експериментальних даних отримані остаточні вирази для функцій пористості матеріалу заготовки з 
порошку на основі заліза. Також в статті представлена методика розрахунку накопиченої деформації матеріалу 
основи. Побудовано криві течії для порошкових матеріалів на основі заліза. Отримані результати досліджень 
дозволять сформулювати практичні рекомендації з розробки технологічних процесів пластичної обробки 
порошкових матеріалів тиском для одержання виробів із заданими фізико-механічними властивостями
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