• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Факультет інформаційних електронних систем
  • Кафедра інфокомунікаційних систем і технологій
  • Наукові роботи каф. ІКСТ
  • View Item
  • Frontpage
  • Факультет інформаційних електронних систем
  • Кафедра інфокомунікаційних систем і технологій
  • Наукові роботи каф. ІКСТ
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Designing of array neuron-equivalentors with a quasi-universal activation function for creating a self-learning equivalent- convolutional neural structures

Author
Krasilenko, V. G.
Lazarev, A. A.
Sheremeta, A. P.
Красиленко, В. Г.
Лазарєв, О. О.
Шеремета, О. П.
Date
2019-03
Metadata
Show full item record
Collections
  • Наукові роботи каф. ІКСТ [457]
Abstract
In the paper, we consider the urgent need to create highly efficient hardware accelerators for machine learning algorithms, including convolutional and deep neural networks, for associative memory models, clustering, and pattern recognition. We show a brief overview of our related works the advantages of the equivalent models (EM) for designing bio-inspired systems. Such EM-paradigms are very perspective for processing, clustering, recognition, storing large size, strongly correlated, highly noised images and creating of uncontrolled learning machine. And since the basic nodes of EM are such vector-matrix (matrix-tensor procedures with continuous-logical operations as: normalized vector operations "equivalence", "nonequivalence", and etc., we consider in this paper new conceptual approaches to the design of full-scale arrays of such neuron-equivalentors (NEs) with extended functionality, including different activation functions. Our approach is based on the use of analog and mixed (with special coding) methods for implementing the required operations, building NEs (with number of synapsis from 8 up to 128 and more) and their base cells, nodes based on photosensitive elements and current mirrors. Simulation results show that the efficiency of NEs relative to the energy intensity is estimated at a value of not less than 1012 an. op. / sec on W and can be increased. The results confirm the correctness of the possibility of creating NE and MIMO structures on their basis.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/25889
View/Open
Krasylenko V.G., Lazariev A.A., Sheremeta A.P._ Designing of array neuron-equivalentors with a quasi-universal activation function for creating a self-learning equivalent- convolutional neural.pdf (1.294Mb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ