• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Факультет інформаційних електронних систем
  • Кафедра мовознавства
  • Наукові роботи каф. МЗ
  • View Item
  • Frontpage
  • Факультет інформаційних електронних систем
  • Кафедра мовознавства
  • Наукові роботи каф. МЗ
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Analysis of Deep Learning Methods in Adaptation to the Small Data Problem Solving

Author
Krak, Iu.
Kuznetsov, V.
Kondratiuk, S.
Azarova, L.
Barmak, O.
Padiuk, P.
Азарова, Л. Є.
Date
2023
Metadata
Show full item record
Collections
  • Наукові роботи каф. МЗ [519]
Abstract
This paper discusses a specific problem in the study of deep neural networks – learning on small data. Such issue happens in situation of transfer learning or applying known solutions on new tasks that involves usage of particular small portions of data. Based on previous research, some specific solutions can be applied to various tasks related to machine learning, computer vision, natural language processing, medical data study and many others. These solutions include various methods of general purpose machine and deep learning, being successfully used for these tasks. In order to do so, the paper carefully studies the problems arise in the preparation of data. For benchmark purposes, we also compared “in wild” the methods of machine learning and identified some issues in their practical application, in particular usage of specific hardware. The paper touches some other aspects of machine learning by comparing the similarities and differences of singular value decomposition and deep constrained auto-encoders. In order to test our hypotheses, we carefully studied various deep and machine learning methods on small data. As a result of the study, our paper proposes a set of solutions, which include the selection of appropriate algorithms, data preparation methods, hardware optimized for machine learning, discussion of their practical effectiveness and further improvement of approaches and methods described in the paper. Also, some problems were discussed, which have to be addressed in the following papers.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/36316
View/Open
107288.pdf (10.03Mb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ