Показати скорочену інформацію

dc.contributor.authorКарпеченко, А. А.uk
dc.contributor.authorБобров, М. М.uk
dc.contributor.authorЛимар, О. О.uk
dc.contributor.authorKarpechenko, A. A.en
dc.contributor.authorBobrov, M. M.en
dc.contributor.authorLymar, О. О.en
dc.date.accessioned2023-04-17T13:10:52Z
dc.date.available2023-04-17T13:10:52Z
dc.date.issued2021
dc.identifier.citationКарпеченко А. А. Електродугове напилення композиційних металополімерних покриттів [Текст] / А. А. Карпеченко, М. М. Бобров, О. О. Лимар // Вісник ВПІ. – 2021. – № 2. – С. 114-119.uk
dc.identifier.issn1997-9266
dc.identifier.issn1997-9274
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/36747
dc.description.abstractЗапропоновано спосіб формування композиційних електродугових покриттів за рахунок використання модернізованого розпилювача ЕМ-14М з вузлом безперебійної подачі порошку у вільному вигляді до високотемпературного гетерофазного струменя під час напилення. Отримано зразки металополімерного композиційного покриття з композиції сталь Св-08-Г2С-О — полімер П-ЕП-219. Експериментально встановлено необхідну зону подачі полімерного порошку для запобігання його деструкції у високотемпературній зоні дугового розряду та оптимальні режими нанесення металополімерних покриттів: сила струму 90…100 А, напруга на дузі 25 В, тиск стисненого повітря 0,4…0,6 МПа, ви-трата полімерного порошку 25 г/хв, дистанція напилення 100...120 мм. За дотримання зазначених режимів забезпечуються умови формування якісного металополімерного покриття товщиною 0,5…0,8 мм з максимальним вмістом полімерної складової 40 % (об.). За допомогою растрового електронного мікроскопа РЕММА 102-02 проведено дослідження мікроструктури сформованих покриттів. Встановлено, що пористість композиційних покриттів знижується з 13 % до 7 % у порівнянні з традиційними електродуговими сталевими покриттями. Проведено ідентифікацію фаз шляхом визначення їх мікротвердості на поперечних шліфах з навантаженням на індентор 50 г. Встановлено, що мікротвердість металевої матриці складає 1716 МПа, полімерної складової — 128 МПа. Показано, що нанесені покриття характеризуються наявністю на їх поверхні суцільної полімерної плівки товщиною від 10 до 100 мкм, що формується внаслідок того, що полімер твердне пізніше, ніж кристалізуються металеві частинки. Експериментально підтверджено, що теплопровідність металополімерних покриттів з композиції Св-08Г2С-О — П-ЕП-219 знижується на 46 % у порівнянні з теплопровідністю ненаповненого покриття з дроту Св-08Г2С-О. Запропоновані покриття рекомендовано застосовувати як антикорозійні та теплоізоляційні в різних конструкціях і спорудах завдяки тонкій поверхневій полімерній плівці та низькій теплопровідності.uk
dc.description.abstractA method for forming composite electric arc coatings by using a modernized EM-14M spraying gun with a powder feed unit of free powder to a high-temperature heterophase jet during spraying is proposed. Samples of a metal-polymer compo-site coating of the composition steel Sv-08-G2S-O — polymer P-EP-219 were obtained. Experimentally established the necessary zone for the supply of polymer powder was to prevent its destruction in the high-temperature zone of the arc discharge and the optimal modes of deposition metal-polymer coatings: current 90…100 A, arc voltage 25 V, compressed air pressure 0,4…0,6 MPa, polymer powder consumption 25 g/min, spraying distance 100...120 mm. If these modes are observed, the conditions for the formation of a high-quality metal-polymer coating with a thickness of 0.5-0.8 mm with a maximum content of the polymer component of 40 % (vol.) are provided. A scanning electron microscope REMMA-102-02 was used to investigate the microstructure of the sprayed coatings. It has been established that the porosity of composite coatings is reduced from 13 % to 7 % in comparison with convention steel coatings. The phases were identified by determin-ing their microhardness on cross sections with a load on the indenter of 50 g. It was found that the microhardness of the metal matrix is 1716 MPa; polymer component — 128 MPa. It is shown that the deposited coatings are characterized by the presence on their surface of a continuous polymer film with a thickness of 10 to 100 μm, which is formed as a result of the fact that the polymer solidifies later than the crystallization of metal particles. It has been experimentally confirmed that the thermal conductivity of metal-polymer coatings deposited from the SV-08G2S-O — P-EP-219 composition decreases by 46 % in comparison with the thermal conductivity of convention coatings from SV-08G2S-O wire. The proposed coatings are recommended to be used as anticorrosion and heat-insulating coatings on various structures due to the thin surface polymer film and low thermal conductivity.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofВісник ВПІ. № 2 : 114-119.uk
dc.relation.urihttps://doi.org/10.31649/1997-9266-2021-155-2-114-119
dc.subjectелектродугове напиленняuk
dc.subjectкомпозиційні покриттяuk
dc.subjectтеплопровідністьuk
dc.subjectмікротвердістьuk
dc.subjectполімерuk
dc.subjectelectric arc sprayingen
dc.subjectcomposite coatingsen
dc.subjectthermal conductivityen
dc.subjectmicrohardnessen
dc.subjectpolymeren
dc.titleЕлектродугове напилення композиційних металополімерних покриттівuk
dc.title.alternativeElectric Arc Spraying of Composite Metal-Polymer Coatingsen
dc.typeArticle
dc.identifier.udc621. 793.7
dc.relation.referencesВ. О. Роянов, і І. В. Захарова, «Зниження рівня окислення матеріалу, що розпилюється, при дуговій металізації за рахунок застосування комбінованого повітряно-порошкового розпилювального струменя,» Вісник Вінницького політех-нічного інституту, № 5, с. 84-88, 2020. https://doi.org/10.31649/1997-9266-2020-152-5-84-88 .uk
dc.relation.referencesJ. Wang, G. Wang, J. Liu, L. Zhang, W. Wang, and Z. Li, “Microstructure of Ni-Al powders and Ni-Al composite coatings prepared by twin-wire arc spraying,” International Journal of Minerals, Metallurgy and Materials, vol. 23, pp. 810-818, 2016. https://doi.org/10.1007/s12613-016-1295-z .en
dc.relation.referencesQ. Li et all, “Microstructure and wear performance of arc-sprayed Al/316L stainless-steel composite coating,” Surface and Coatings Technology, vol. 374, pp. 189-200, 2019. https://doi.org/10.1016/j.surfcoat.2019.06.006 .en
dc.relation.referencesB. Wielage, H. Pokhmurska, M. Student, V. Gvozdeckii, T. Stupnyckyj, and V. Pokhmurskii, “Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures,” Surface and coatings technology, vol. 220, no. 27, pp. 27-35, 2013. https://doi.org/10.1016/j.surfcoat.2012.12.013 .en
dc.relation.referencesL. Fang, J. Huang, Y. Liu, B. Zhang, and H. Li, “Cored-wire arc spray fabrication of novel aluminium-copper coatings for anti-corrosion/fouling hybrid performances,” Surface and Coatings Technology, vol. 357, pp. 794-801, 2019. https://doi.org/10.1016/j.surfcoat.2018.10.094 .en
dc.relation.referencesВ. И. Похмурский, М. М. Студент, В. М. Гвоздецкий, и А. В. Похмурская, «Порошковые проволоки серии ФМИ для электродугового напыления покрытий,» Автоматическая сварка, № 9, с. 52-57, 2011.ru
dc.relation.referencesP. King, A. Poole, S. Horne, R. Nys, S. Gulizia, and M Jahedi, “Embedment of Copper Particles into Polymers by Cold Spray,” Surface and Coatings Technology, vol. 216, pp. 60-67, 2013. https://doi.org/10.1016/j.surfcoat.2012.11.023 .en
dc.relation.referencesJ. Affi, H. Okazaki, M. Yamada, and M. Fukumoto, “Fabrication of Aluminum Coating onto CFRP Substrate by Cold Spray,” Materials Transactions, vol. 52, pp. 1759-1763, 2011. https://doi.org/10.2320/matertrans.T-M2011807 .en
dc.relation.referencesH. Ashrafizadeh, P. Mertiny, and A. McDonald, “Determination of Temperature Distribution Within Polyurethane Sub-strates During Deposition of Flame-Sprayed Aluminum-12silicon Coatings Using Green’s Function Modeling and Experiments,” Surface and Coatings Technology, vol. 259, pp. 625-636, 2014. https://doi.org/10.1016/j.surfcoat.2014.10.020 .en
dc.relation.referencesR. Gonzalez, P. Mertiny, and A. McDonald, “Damage Detection Framework for Fiber-Reinforced Polymer Compo-sites Using Al-12Si Flame-Sprayed Coatings,” in Canadian International Conference on Composite Materials, Edmonton, AB, 2015, pp. 1-8.en
dc.relation.referencesS. Guanhong, H. Xiaodong, J. Jiuxing, and S. Yue, “Parametric Study of Al and Al2O3 Ceramic Coatings Deposited by Air Plasma Spray Onto Polymer Substrate,” Applied Surface Science, vol. 257, рp. 7864-7870, 2011. https://doi.org/10.1016/j.apsusc.2011.04.057 .en
dc.relation.referencesW. Huang et all, “Effect of Bond Coats on Thermal Shock Resistance of Thermal Barrier Coatings Deposited onto Pol-ymer Matrix Composites Via Air Plasma Spray Process,” Journal of Thermal Spray Technology, vol. 22, pp. 918-925, 2013. https://doi.org/10.1007/s11666-013-9942-7 .en
dc.relation.referencesS. Devaraj, B. Anand, M. Gibbons, A. McDonald, and S. Chandra, “Thermal spray deposition of aluminum and zinc coatings on thermoplastics,” Surface and Coatings Technology, vol. 399, pp. 114-126, 2020. https://doi.org/10.1016/j.surfcoat.2020.126114 .en
dc.relation.referencesО. М. Дубовий, А. А. Карпеченко, М. М. Бобров, і А. О. Мазуренко, «Пристрій для електродугового напилення композиційних покриттів,» Патент України, МПК C23C 26/02, B05B 7/22, № 111760, 10.06.2016.uk
dc.identifier.doihttps://doi.org/10.31649/1997-9266-2021-155-2-114-119


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію