Алгоритм методу ідентифікації моделі авторегресії – ковзного середнього, який узагальнює методику Юла–Уокера, та його програмна Python-реалізація
Author
Мокін О. Б.
Мокін В. Б.
Мокін Б. І.
Mokin O. B.
Mokin V. B.
Mokin B. I.
Date
2022Metadata
Show full item recordCollections
Abstract
Для практичної реалізації розробленого цими ж авторами нового методу ідентифікації математичної моделі авторегресії – ковзного середнього АРКС(),apkcnnпрогнозування стаціонарних часових рядів з довільними значеннями порядків ,apkcnn, який узагальнює відомий метод Юла–Уокера та вже опублікований в попередніх роботах цих же авторів, запропоновано та деталізовано 11-етапний алгоритм його практичної реалізації. Алгоритм реалізовано за умови, доведеної авторами у попередніх публікаціях, що оптимальною структурою моделі АРКС(),apkcnnє структура АРКС(3,3). Характерною особливістю цього алгоритму є те, що параметри авторегресійної складової моделі АРКС(3,3) визначаються з використанням четвертої, п’ятої та шостої автоковаріацій, що суттєво відрізняє його від традиційного алгоритму ідентифікації цього класу моделей за методикою Юла–Уокера, в якому використовуються лише автоковаріації першого, другого та третього порядків. Інша характерна особливість цього алгоритму полягає в тому, що для визначення параметрів ковзного середнього застосовується пряма процедура, яка не вимагає поновлення процедури мінімізації суми квадратів відхилень при переході до інших значень порядків авторегресії та ковзного середнього, як того вимагає процедура обчислення значень параметрів складової ковзного середнього в моделі за будь-яким з класичних методів ідентифікації цього класу моделей. Створено програму Python-реалізації запропонованого алгоритму ідентифікації та продемонстровано її ефективність у розв’язанні задачі ідентифікації математичної моделі класу АРКС(3,3) для конкретного часового ряду, заданого його експериментальною реалізацією. Визначено умови, яким повинна відповідати експериментальна реалізація часового ряду, з використанням якої здійснюється авторська ідентифікація математичної моделі цьо-го часового ряду, щоб прогнозування його наступних значень здійснювалось точніше, ніж з використан-ням математичних моделей цього ж класу, ідентифікація яких здійснювалась традиційно. The paper presents a detailed 11-step algorithm for practical implementation of a new identification method of auto-regressive–moving-average model ARMA(),apkcnn of prediction of stationary time series with arbitrary values of the orders,apkcnn. The new method, published in the previous authors' works, is a generalization of the well-known Yule–Walker method. The algorithm is implemented under the condition, proven by the authors in the previous publications, that the optimal structure of the ARMA(),apkcnn model is the ARMA(3,3). A feature of this algorithm is that the parameters of the autoregressive component of the ARMA(3,3) model are determined using the fourth, fifth, and sixth autocovariances, which significantly distinguishes it from the traditional algorithm for identifying this class of models using the Yule–Walker method, which uses only autocovariances of the first, second, and third orders. Another feature of the algorithm is a straightforward procedure of determining the parameters of the moving average that does not require renewing the minimizing the residual sum of squares procedure when moving to other orders of the autoregressive and the moving average components, unlike the traditional approaches. The article presents a Python program implementation of the proposed identification algorithm and a demonstration of its effectiveness in solving the problem of identifying the ARMA(3,3) model for a specific time series given by an experimental implementation. The paper also determines the conditions for the experimental implementation of the time series to provide more accurate forecasting compared to the traditional approach.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/37193