• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Факультет електроенергетики та електромеханіки
  • Кафедра загальної фізики
  • Наукові роботи каф. ЗФ
  • View Item
  • Frontpage
  • Факультет електроенергетики та електромеханіки
  • Кафедра загальної фізики
  • Наукові роботи каф. ЗФ
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Convolutional neural networks for early computer diagnosis of child dysplasia

Author
Bilynsky, Yosyp
Nikolskyy, Aleksandr
Revenok, Viktor
Pogorilyi, Vasyl
Smailova, Saule
Voloshina, Oksana
Kumargazhanova, Saule
Білинський, Й. Й.
Date
2023
Metadata
Show full item record
Collections
  • Наукові роботи каф. ЗФ [242]
Abstract
The problem in ultrasound diagnostics hip dysplasia is the lack of experience of the doctor in case of incorrect orientation of the hip joint and ultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classify and recognize ultrasound imaging of the hip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosis of pediatric dysplasia. CNN`s such as GoogleNet, SqueezeNet, and AlexNet were ed for the study. The most optimal for the task is the use of CNN GoogleNet showed. In this CNN used transfer learning. At the same time, fine-tuning of the network and additional training on the database of 97 standards of ultrasonic images of the hip joint were applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performed the lower layers of the structure CNN, in which 5 classes are allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, position of the ultrasound sensor head and of the hip joint in ultrasound diagnostics are incorrect orientation. It was found that the authenticity of training and testing is the highest for the GoogleNet network: when classified in the training group accuracy is up to 100%, when classified in the test group accuracy – 84.5%.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/37649
View/Open
131005.pdf (4.694Mb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ