• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Факультет будівництва, цивільної та екологічної інженерії
  • Кафедра будівництва, міського господарства та архітектури
  • Наукові видання каф. БМГА
  • View Item
  • Frontpage
  • Факультет будівництва, цивільної та екологічної інженерії
  • Кафедра будівництва, міського господарства та архітектури
  • Наукові видання каф. БМГА
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Predicting volume and composition of municipal solid waste based on ANN and ANFIS methods and correlation-regression analysis

Author
Dudar, I. N.
Yavorovska, O.
Zlepko, S.
Vinnichuk, A.
Kisala, P.
Shortanbayeva, A.
Borankulova, G.
Дудар, І. Н.
Яворська, О. В.
Злепко, С. М.
Date
2021
Metadata
Show full item record
Collections
  • Наукові видання каф. БМГА [59]
Abstract
This chapter deals with the methods of predicting the volume and composition of municipal solid waste (MSW). After reviewing the existing methods of predicting the volume of MSW production, the authors classified four groups based on time series methods, deterministic correlations methods, GIS cluster analysis, and statistical learning theory. The suggested classification takes into account the morphological composition of MSW and the on-going changes in household behavior. The indirect and direct impact factors were determined with the formal-logistic method. Three mathematical models were compared to find an effective prediction model, namely, Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems, and correlation-regression models. The models were compared in order to find the most accurate one and describe measurement errors – the determination coefficient. The ANN and ANFIS models are significantly more precise than traditional correlation-regression models. The advantage of the models is that they are not as sensitive to non-standard input conditions as the correlation-regression model. However, ANN and ANFIS are more labor-intensive, requiring complex development and interpretation. We found that the ANFIS model outperforms the other two models in predictive accuracy at the beginning; however, the testing showed that it has a higher error margin than the ANN model. In addition, the learning process takes a long time for the ANFIS model, making it inapplicable in cases a quick response is required. Therefore, the high accuracy of MSW prediction characterizing ANN makes it a valuable tool in determining strategies for optimization of MSW processing for a better circular economy.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/38430
View/Open
105034.pdf (1.057Mb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ