• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Факультет менеджменту та інформаційної безпеки
  • Кафедра менеджменту, маркетингу та економiки
  • Наукові роботи каф. ММЕ
  • View Item
  • Frontpage
  • Факультет менеджменту та інформаційної безпеки
  • Кафедра менеджменту, маркетингу та економiки
  • Наукові роботи каф. ММЕ
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Similarity Metric оf Categorical Distributions for Topic Modeling Problems with Akin Categories

Author
Shtovba, S. D.
Petrychko, M.
Shtovba, O. V.
Штовба, С. Д.
Штовба, О. В.
Петричко, М. В.
Date
2023
Metadata
Show full item record
Collections
  • Наукові роботи каф. КСУ [205]
  • Наукові роботи каф. ММЕ [368]
Abstract
Estimating a level of similarity of two objects is a common problem in pattern recognition, clustering, and classification. Among these problems can be reviewer recommendation, similar text documents analysis, human pose detection in video, species distribution clustering, recommendation in internet-shops etc. In case of categorical attributes an object is described as a distribution of membership degrees over categories. Similarity metrics of such distributions are usually defined as a superposition of objects` similarities for each category. Most often it is a sum of similarities in separate categories. In addition to that each category is considered independently and in isolation the others. Some practical problems have categories that are akin. Therefore, it is expedient to consider objects` similarity not only directly, as a similarity between equivalent categories, but it is also necessary to consider an indirect similarity, cross-similarity through akin categories. It is such similarity metric of two categorical distributions that accounts for the kinship of different categories is proposed in this paper. The metric has two components. The first component is defined as Czekanowski metric. It defines a direct similarity of categorical distributions as a sum of intersection of distributions` membership degrees of two objects. After the intersection the remaining residuals are accounted for in the second component of the metric. The second metric`s component is defined as element-wise product of two matrices: matrix of residuals composition memberships of two categorical distributions and matrix of categories` paired kinship. It is assumed that kinship indices for each pair of categories are known. As a result, with a large number of categories the overall noisy contribution weakly akin categories is prominent. Therefore, it is proposed to filter the noise and account only for contribution strongly akin categories.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/41361
View/Open
145688.pdf (1.510Mb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ