• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Науково-технічна бібліотека
  • Публікації співробітників бібліотеки
  • JetIQ
  • View Item
  • Frontpage
  • Науково-технічна бібліотека
  • Публікації співробітників бібліотеки
  • JetIQ
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Concurrent extreme learningbased demand response optimizer for blockchainenabled peer-to-peer energy trading in residential microgrids

Author
Singh, A. R.
Kumar, R. S.
Ballireddy, T. R. R.
Khadse, C. B.
Bajaj, M.
Rubanenko, O.
Рубаненкo, О.
Date
2025
Metadata
Show full item record
Collections
  • JetIQ [219]
Abstract
Residential microgrids (MGs) increasingly rely on decentralized energy sources and peer-to-peer energy trading mechanisms to maintain uninterrupted power distribution. However, ensuring concurrency between dynamic energy demands and supply responses remains a critical challenge, especially under fluctuating load and availability conditions. This study proposes a novel Demand Response Optimizer Model (DROM), leveraging Concurrent Extreme Learning (CEL), and blockchain (BC)-based verification to enhance fairness, responsiveness, and efficiency in energy allocation within residential MGs. The proposed DROM incorporates a feed-forward neural network architecture, in demand biasing and trading weights are adaptively computed to optimize energy dispatch. A BC framework is employed for decentralized storage and validation of transactional records, preserving system transparency, data integrity, and facilitating real-time energy trading decisions. The model operates across two user categories—Type 1 (building/peer-level) and Type 2 (residential individual)—and dynamically balances demand and response by minimizing bias while maximizing weight assignments across energy requests. The system is evaluated using real-world MG simulation data. Empirical results demonstrate that the proposed model achieves a 14.62% increase in optimal energy trading efficiency and a 14.77% improvement in demand coverage for Type 2 users. Furthermore, the framework delivers a 16.11% enhancement in power distribution and a 14.01% gain in trading reliability compared to benchmark methods. These findings underscore the effectiveness of the CEL-based BC-integrated framework in addressing concurrency, demand suppression, and equitable energy sharing in decentralized smart energy networks.
URI:
https://ir.lib.vntu.edu.ua//handle/123456789/50037
View/Open
187688.pdf (3.296Mb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ