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                          Abstract
    Interpretation  of  resolution  principle  which  is  able to
realize the resolution procedure for any formula of propositional
calculas during finite time and with the possibility of  parallel
computing are considered.
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                         Introduction

    Software and hardware development in the field of artificial 
intelligence  requires  a  complex  approach  in  solving  all  the 
arising problems, such as the choice of knowledge  representation 
and  processing  method,  proof  procedure  formalization,  the 
designing of the device and their production technology.
    For each of the above mentioned problems there are many known 
ways of solving them, however, there is a need to find among them 
an optimal combinational which can lead to better and new develop-
ment.
    Realization  of  predicate calculas  without  variables,  and 
resolution principle of Robinson which are able to formalize the 
inference method oriented to perspective hardware.

                    Logic inference
              in the algebra of cubic functions

    In the propositional calculas the inference rule from finite 

chain  of  formulas  (antecendents)  A1 , A2 , . . . , An  of  same  formula 

(consequent) can be put down by means of implication operator:
( A1 , A2 , . .. , A n)→C , 

(1)
which is logically equivalent to verification of unsatisfiability 
formula:

                         A1∧ A2∧ . . . ∧ An∧C ,                     (2)
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or verification of satisfiability formula:

      A1∨A2∨ . . . ∨An∨C .                     (3)

    Resolution principle uses formula (2) which is inverse to 
formula (1), however, for the process of proving both the formula 
(2) and formula (3) can be used if the necessary practical result
must be obtained as quick as possible.
    The algorithm of unsatisfiability verification of the formula 
(2) is undeterminable and work without time limitations in case 
formula  (2)  is  not  valid.  Different  modification  of  resolution 
principle use additional information for the acceleration of proof 
search, though they are complicated for the computer realization.
    Let's consider the modification  variant of resolution prin-
ciple which is used to obtain an effective hardware realization.
    The first problem which it was necessary to solve in connec- 
tion with previously mentioned, was a convenient form of presen-
tation input data.
    Having this in mind let's analise the propositional calculas 
realization with the help of boolean algebra of cubic functions 
[4]. The  suggested  algebra is isomorphous to the traditional 
algebra of logic functions.Conjunction, disjunction and negation 
operations in the algebra of logical functions correspond to the 
operations of intersection, union and difference of cubs in the 
algebra of cubic functions and to normal forms correspond cubic 
coverings. Cubic D -covering (cubic R -covering) corresponds to a 
minimal  dusjunctive  normal  form  of  same  logical  function  f  
(inverse function f ), which is represented in the cubic form, i.e.
by means the alphabet { 0,1,x }.Similarly, cubic K-covering (cubic

Q -covering)  corresponds  to  minimal  conjunctive  normal  form  of 
same
logical function f  (inverse functions f ).
    Similarly by three classes of propositional calculas formulas 
there are three classes of functions in boolean algebras: valid, 
unsatisfiable and satisfiable functions. With the help of D -cove-
ring ( Q -covering) only valid and satisfiable functions can be re-
presented where as only unsatisfiable and satisfiable functions 
can be represented with the help of R -covering ( K -covering).
    Now, from the point of view of algebra of cubic functions the 
proving according to the (2) and (3) formulas can be considered.
    Formula (2) is usually represented as a list of (n+1) dis-

juncts  A1 , A2 , . . . , An , C  between  each pair  of them  resolvents are 

formed. Then disjuncts A1 , A2 , . . . , An , C  can be placed in accordance 

with coverings D1 , D2 , . . . , Dn , Rn+1  (if Dn+1  - covering for disjunct 

C ).Coordinate number m  in coverings D1 , D2 , . . . , Dn , Rn+1  is equal to 

26



                                International Journal on Information Theories & Applications – 1996, Vol.4, No.3

the number  m  of different symbols in disjuncts  A1 , A2 , . . . , An , C , 

but the number of cubs in the covering  Di (Rn+1 )  is equal to the 

number of symbols in the disjunct Ai (C ) . The value 1 in the h -th 

coordinate of the covering Di (Rn+1 )  corresponds to the presence of 

the h -th symbol in the disjunct Ai (C ) ,and the value 0 - to the 

presence of the  h -th symbol with the inversion in the disjunct 

Ai (C) ( h=1÷m ). For example, the production rule

     (a∨b , a∨c , b∨c∨d )→d                       (4)
will be presented as the following coverings:

  D1=
a b c d

[1 x x x
x 0 x x ] ; D2=

a b c d

[0 x x x
x x 1 x ] ; D3=

a b c d

[
x 1 x x
x x 0 x
x x x 1 ] ; R4=

a b c d
[ x x x 0 ]

 (5)

    In the algebra of cubic function analogous procedure of define

resolvent disjunct between disjuncts Ai  and A j  is the operation 

of cubic intersection ( ¿ -operation) of corresponding  coverings:

                     Di , j=Di∩D j , i , j=1÷n, i≠ j .                 (6)

    Formal definition of cubic intersection operation is presented
in  [5].  For  example,  for  two  pairs  of  cubs  ( 0 x 1 x 1 ),  (

x 1 x x 1 ) and ( x 1 0 x x ), ( 1 0 x 0 1 ) the results of 
their  intersection will be following:

             ¿ 0 x 1 x 1
0 1 1 x 1

            ¿ x 1 0 x x
1 0 x 0 1

 

               ----------               ----------
               0 1 1 x 1                    ∅ ,   i.e empty.

    The covering Di , j  obtained as a result of operation (6) which 

will be called resolvent may either contain new cubs or be empty.
    The class of formulas (1) and (2) can be defined by means of 
following theorem.
    THEOREM 1: Let the following coverings correspond to the 

formulas A1 , A2 , . . . , An , C :

                          D1 , D2 , . . . , Dn , Rn+1 ,                    (7)

and D '  is the result of coverings (7) intersections:

                      D '
=D1∩D2∩ , . . . , ∩Dn∩ Rn+1                   (8)

    Then formula (1) is valid and the formula (2) is unsatisfiable
if:
                            D '

=∅ ,

and both formulas (1) and (2) are satisfiable if:

                            D '
≠∅ .

    In the same way the class of formulas (1) and (3) can be defi-
ned by means of the following theorem.

THEOREM 2: Let the following coverings correspond to the for-
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mulas A1 , A2 , . . . , An ,C :

                          R1 , R2 , . . . , Rn , Dn+1 ,                    (9)

and D ' '  is the result of coverings (9) intersections:

                      D ' '
=R1∩R2∩ , . . . , ∩Rn∩ Dn+1                  (10)

    Then formula (1) is valid and the formula (3) is valid if:
                            D ' '

=I ,

and both formulas (1) and (3) are satisfiable if:

                   D ' '
≠I , where I=[ x x … x ]  - m -cub.

    The verification of the formula of propositional calculas for 
satisfiability,  as  in  [4],will  be  called  resolution  procedure 
(RP).
    Traditional RP based on the resolution principle can be end- 
less as it does not have a simple indicator of terminate for the 
satisfiable formulas. Theorems 1 and 2 given above allow us to 
work out RP which is effective and can be terminate during finite 
number of steps for any class of formulas. Without any loss of 
generability let's confine ourselves to finding of RP only on the 
basis of theorem 1.
    As it is shown in [3], the RP can be substituted to a classic 
problem of search. In fact, RP can be considered as a process of 

search at least of one cub covering  D '  or  D ' ' . The presence of 

such  cub  will  be  evidence  that  formulas  (1),(2)  and  (3)  are 
satisfiable.
    Let's consider two RP: serial RP (on the basis of the serial 
search problem) and binary RP (on the basis of the binary search 
problem).
    Serial RP is realized by means of iterative definitions of 
resolvent covering in the following way:

         D1,2=D1∩D2 , D1,2,3=D1,2∩D3 , … , D '
=D1,2 , . . . ,n∩Rn+1 .

    The procedure is ended  after an  empty  resolvent  covering

Di , j  has been obtained during one of the iterations, because then:

                           D '
=Di , j=∅ .

    For the verification of any valid or unsatisfiable formula set
by coverings (7) from 1 to n iterations may be required and for 
the verification of a satisfiable formula always n iterations  are
necessary.
    So  in  the  worst  case  the  serial  RP  is  substituted  to 
exhaustive search, however such RP will always be completable with 
concrete result in finite number of steps.
    The fastest procedure of propositional calculas formula class 
defining is a binary RP. It can be graphically drawn as a binary 
search tree  G(V , E ) , consisting of the set of nodes  V  and the 
set of edges E (Fig.1).
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    Every leaf node v1
1 , … , vn+1

1 , ( vi
1∈V , i=1÷n+1 )of the tree G(V , E )  

is maped to one of the coverings  D1 , D2 , . . . , Dn , Rn+1 , and the root 

v 0  of that tree is maped to covering D' . The internal node vi , j
2  of 

the second level, connected with the nodes vi
1  and v j

1  by edges is 

maped to the resolvent covering Di , j  (6). Similarly every internal 

node  of  the  k -th  level  is  in  the  same  way  is  maped  to  the 
resolvent  covering,  obtained  as  a  result  of  the  intersection 
operation of two resolvent coverings from ( k−1 )-th level.
    Such a tree is maped to the  recursive algorithm, which builds
binary search tree in the opposite direction that is from the leaf
node to the root. From the theoretic point of view, the binary RP 
requires the same quantity of iterations, as the serial, but the 
use  of  cubic  presentation  properties  may  give  an  essential 
practical gain in time.
    PROPERTY 1: If there are only 'x' and '1' or 'x' and '0' 
values  in  h -th  coordinate,  then  formulas  (1)  and  (2)  are 
satisfiable ( h=1÷m ).
    PROPERTY 2: If there are values 'x', '0' and '1' in all 
coordinates of all coverings  then formula (1) may be  satisfiable 
or valid and formula (2) may be satisfiable or unsatisfiable.
    PROPERTY 3: Formula (1) will be unsatisfiable and formula (2) 
will be valid, if resolvent covering is empty and corresponding to
any internal node of tree G(V,E).
    Properties like properties 1-3, can be formalized in regard to
coverings  (9),  in  order  to  distinguish  satisfiable  and valid 
formulas.
    PROPERTY 4: The  operation  of  cubic  intersection  for  cub 

a=(a1 a2…am )  and cub  b=(b1 b2…bm )  consists of  m  elementary cubs 

components intersection operations  ah∩bh , (h=1÷m ) , the results of 

which are independent of each other.
    The fourth property defines the most important advantage of 
cubic  data  presentation,  allowing  to  organize  parallel  data 
processing.
    As a result the next algorithm for the definition of the class
of  formulas  (1)  and  (2)  on  the  basis  of  theorem  1  can  be 
suggested. The initial data for such algorithm is the set M  which 
consists of the coverings (7).
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     Algorithm of resolution procedure

    1. Create two empty sets M 1  and M 2 . Let h =1.

    2. Select from set M  any covering D(h )  which contains ones 

(zeros) in h -th coordinate. If such coverings do not exist, then 
go to 3, otherwise go to 4.
    3. Let h=h+1 . If h≤m  then return 2, otherwise go to 6.

    4. Select from set M  any covering D(h )  which contains zeros

(ones) in h -th coordinate. If such coverings do not exist then re-
turn to 3, otherwise go to 5.

    5. Transfer covering D(h )  from set M  to set M 1  and covering 

D(h )  from set M  to set M 2 . Return to 3.

    6. If set M  is empty, then go to 8, otherwise go to 7.

    7. Transfer remained coverings from set M  to set M 1  and M 2  

and distribute them between M 1  and M 2  so that ∣M1∣=∣M 2∣ . (It is 

admited that sets M 1  and M 2  may be crossable).

    8. Let t =1 and s=∣M 1∣=∣M 2∣ .

    9. Select t -th pair coverings Di , D j  from sets M 1  and M 2  and 

define resolvent covering Di , j :

                     Di , j=Di∩D j , Di∈M1 , D j∈M2 .

    10. If Di , j=∅ , then go to 14, otherwise put covering Di , j  into

set M  and go to 11.
    11. Let t=t+1 . If t>s , then go to 12, otherwise go to 9.
    12. If set M  contains one covering then go to 13, otherwise 
go to 1.
    13. Formula 1 is satisfiable. Go to 15.
    14. Formula 1 is valid.
    15. End.

    This algorithm builds the binary search tree during  w  (

w=log2(n+1) )  steps,  whereas  at  k -th  step  set  M  contains 

coverings which  correspond to  the nodes  k -th level  of tree  (

k=1÷w ). Algorithm stops its work when empty resolvent covering is 
obtained for  the first time (if formula (1) is valid) or when it 
builds full  tree (if formula (1) is satisfiable).
    During the first partitioning of the set  M  into two equal 

sets M 1  and M 2  not more than one unit or one zero can be marked 

on each coordinate of input coverings. Several ones are zeros can 
appear on one coordinate of resolvent coverings, whereas ones and 
zeros can appear simultaneously. In the last case, when items 2 
and  4  of  the  algorithm  are  fulfiled,  the  choice  of  necessary 
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covering on h -th coordinate is performed according to the majority 
of ones or zeros.
    Let's consider the implementation of the algorithm for the 
definition of the class formula, which are set by covering (5). At 

the beginning set  M  contains input coverings:  M={D1 , D2 , D3 , R4} . 

According  to  the  first  coordinate  (coordinate  'a')  following 

coverings will get into the created sets M 1  and M 2 :

                        M 1={D1} , M 2={D2} .

    Further the remained coverings will be distributed between two

sets  M 1  and  M 2  according  to  the  last  coordinate  (coordinate 

'd'):

                      M 1={D1 , D3} , M 2={D2 ,R4} .

    After that we find two resolvent coverings:

          D1,2=D1∩D2=

a b c d

[
1 x 1 x
0 0 x x
x 0 1 x ] ,   D3,4=D3∩R4=

a b c d

[x 1 x 0
x x 0 0 ] .

    The obtained resolvent coverings get into the opposite sets:

              M={D1,2 , D3,4} , M 1={D1,2} , M 2={D3,4} .

    At last we find the new resolvent covering:

                      D1,2∩D3,4=
a b c d

[1 1 1 0
0 0 0 0 ] .

    As soon as  one not empty resolvent covering is  obtained, 
consequently the formula, which is discussed here, is satisfiable.
    The  folloving  ways  of  accelerating  RP  execution  can  be 
proposed.
    1.By the inspection of the original coverings (7) or (9)  the 
situation is looked for when there are only 'x' and '1' values or 
'x' and '0' values on one of the coordinates. Then according to 
the  property  1  such  formula  will  be  satisfiable  and  the 
application of the algorithm will be unnecessary.
    2.Three kinds of parallelism are used:
      - parallel fulfilment of elementary intersection operations 
between separate cub's components according to the property 4; 
      - parallel fulfilment of intersection operations between 
pairs of cubs, when resolvent covering is found;
      - parallel defining of resolvent coverings on each level of 
binary search tree.
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                            Summary
    The  use  of  cubical data  representation  allows  to  solve 
different  special  problems  of  artificial  intelligence  from  the 
same approach.
    Firstly,the propositional calculas obtains a very convenient 
presentation from computer realization.In the cubs  language  the 
logic of predicates with variables can be also easily expressed, 
though it is the topic for another paper.
    Secondly, RP has been worked out from which overcyclings are 
excluded and  getting an answer about the class of the studed 
formula is guaranted during the smallest number of steps.
    Thirdly, the cubical coverings make it possible to organize 
parallel  pipelining  (systolic  processing)  for  them.  A  more 
detailed description of this question is given in [6], where the 
advantages  of  new  class  of  processing  elements  –  programmable 
systolic structures - are considered.
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