Огородников В. А. Деревенько И. А. Алиева Л. И.

ПАРАМЕТРЫ НАПРЯЖЕННОГО СОСТОЯНИЯ ДИАГРАММ ПЛАСТИЧНОСТИ

Обеспечение качества изделий в машиностроении является актуальной задачей современного промышленного производства. В процессах обработки металлов давлением, при которых заготовки подвергаются большим пластическим деформациям важно отслеживать накопление повреждений и обеспечивать благоприятное технологическое наследие. Прогнозирование пластичности (накопление деформаций вплоть до разрушения) дает возможность отслеживать получение качественных изделий.

В технической литературе с 60 – х годов прошлого столетия рассматриваемым вопросам уделяется внимание специалистами в области теории пластичности [1 – 4]. Развивая поставленные в указанных работах проблемы авторы обращают внимание на вопросы оценки предельных состояний пластических деформаций тел.

Целью настоящей работы является анализ различных параметров вида напряженного состояния и их соответствие различным механизмам разрушения пластичных материалов в области конечных деформаций. Для достижения указанной цели в работе поставлены задачи: 1. Проанализировать различные параметры напряженного состояния с точки зрения их соответствия механизмам разрушения в процессах обработки металлов давлением.

2. Показать целесообразность применения различных показателей напряженного состояния при оценке деформируемости заготовок в процессах обработки металлов давлением, учитывающих механизмы накопления пластических деформаций в условиях отрыва и среза.

Пластичность металлов зависит от многих факторов, среди которых кроме природы самого металла основными являются термомеханические характеристики процесса: температура, скорость деформации, вид напряженного состояния, история деформирования, градиент деформаций и др. Зависимость пластичности от вида напряженного состояния при простом деформировании фиксированных температурно – скоростных условиях характеризуется диаграммой пластичности, являющейся его механической характеристикой. Для ее построения проводят испытания материала при различных напряженных состояниях и условиях простого нагружения, которые определим как постоянное отношение некоторых инвариантов тензора и девиатора напряжений. При этом должно соблюдаться условие простого нагружения, когда инварианты тензора изменяются пропорционально одному параметру.

Параметры вида напряженного состояния, как правило, конструируются из инвариантов тензора и девиатора напряжений, они должны соответствовать физическим процессам накопления пластических деформаций.

Поскольку напряженное состояние характеризуется тремя основными инвариантами тензора и девиатора напряжений параметр вида напряженного состояния обычно описывают различными соотношениями, состоящими из инвариантов, являющимися постоянными при изменении напряжений в условиях простого нагружения. Согласно уравнениям пластического состояния простое нагружение возникает при простом деформировании, если $\frac{\sigma}{\sigma_i}$ = const. Следуя В. А. Бабичеву, это отношение обычно и принимают за один из показателей напряженного состояния:

$$\eta = \frac{3\sigma}{\sigma_i} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sigma_i},\tag{1}$$

где σ – среднее нормальное напряжение, $\sigma_{1,} \sigma_{2,} \sigma_{3}$ – главные напряжения, σ_{i} – интенсивность напряжений:

$$\sigma_{i} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2}}, \qquad (2)$$

$$\eta = \frac{I_1(1\sigma)}{\sqrt{3I_2(D\sigma)}},\tag{3}$$

где I₁ (То) – первый инвариант тензора напряжений, I₂ (Do) – второй инвариант девиатора напряжений.

Параметр η удобен при использовании диаграмм пластичности в координатах $\varepsilon_p = f(\eta)$, где ε_p – длина дуги в пространстве вектора деформаций (накопленная интенсивность деформаций к моменту разрушения):

$$\varepsilon_{\rm p} = \int d\varepsilon_{\rm ij}. \tag{4}$$

Диаграммы пластичности в указанных координатах $\varepsilon_p f(\eta)$ могут быть построены по результатам простейших испытаний: растяжение ($\eta_1 = +1$), сдвиг (кручение) ($\eta_1 = 0$), сжатие ($\eta_1 = -1$). В условиях объемного напряженного состояния учитывают также третий инвариант тензора напряжений в виде показателя [1]:

$$\chi = \frac{\sqrt[3]{I_3 (T\sigma)}}{\sqrt{3I_2 (D\sigma)}} = \frac{\sqrt[3]{\sigma_1 \sigma_2 \sigma_3}}{\sigma_i}.$$
 (5)

В таких случаях используют объемные диаграммы пластичности $\varepsilon_p = f(\eta, \chi)$.

Указанные диаграммы пластичности не учитывают механизм разрушения срезом, при этом накопление деформаций происходит преимущественно в условиях сдвига.

В работе [2] предлагается в случае разрушения срезом представлять диаграмму пластичности функцией $\varepsilon_p = f(\theta)$, в которой параметр вида напряженного состояния:

$$\theta = \frac{1 - k\eta}{\omega},\tag{6}$$

где

$$\omega = \frac{\tau_{\text{max}}}{\sigma_{\text{i}}}.$$
(7)

В формуле (7) τ_{max} – максимальное касательное напряжение, k – параметр материала, определяемый экспериментально. Для сталей различных марок его можно принять равным k = 0,05, для алюминиевых сплавов k = 0,1 [2]. В случае растяжения – θ = 1,8, сдвига – $\theta = \sqrt{3}$, одноосного сжатия – θ = 2,1, двухосного растяжения – θ = 1,6, двухосного сжатия – θ = 2,4.

При моделировании разрушения отрывом, когда плоскость разрушения близка к плоскости, на которой действуют максимальные нормальные напряжения в работе [2] предложено диаграммы пластичности представлять в виде единой для различных напряженных состояний функций $\varepsilon_p = f(\beta)$, где:

$$\beta = \frac{1 - s\eta}{\nu},\tag{8}$$

где η (см. формулу (3).

$$\nu = \frac{\sigma_1}{\sigma_i}.$$
(9)

Здесь σ_1 – наибольшее из главных напряжений $\sigma_1 \ge \sigma_2 \ge \sigma_3$, s – параметр материала, который обычно принимают равным k и в случае растяжения,

который обычно принимают равным k и в случае растяжения, $\sigma_i = \sigma_1$, $\sigma_2 = \sigma_3 = 0$, $\beta = \frac{[1-s\,(1)]\sigma_i}{\sigma_i} = 1 - s = 0.95$.

При сдвиге $\sigma_1 = \tau$, $\sigma_2 = 0$, $\sigma_3 = -\tau$, $\sigma_i = \sqrt{3}\tau$, $\beta = \sqrt{3}$. При сжатии $\sigma_1 = \sigma_2 = 0$, $\sigma_3 = -\sigma$, $\beta = \frac{[1-s \ (-1)]\sigma_i}{0} = \infty$.

Показатель напряженного состояния, введенный в работе [1]: $\chi = \frac{\sqrt[3]{I_3(T_{\sigma})}}{\sqrt{I_2(D_{\sigma})}} = \frac{\sqrt[3]{\sigma_1 \sigma_2 \sigma_3}}{\sigma_i}$,

где $\chi = 0$ в условиях растяжения, сжатия и кручения.

Для иллюстрации применения рассмотренных показателей напряженного состояния при построении диаграмм пластичности проведены испытания стали 20 на растяжение, сжатие и кручение. Для построения кривой течения в области конечных деформаций испытывали цилиндрические образцы на сжатие, растяжение и кручение.

На сжатие испытывали цилиндрические образцы размерами $h_0 = 15$ мм, $d_0=10$ мм. На боковую поверхность цилиндрических образцов вблизи среднего по высоте сечения наносили четыре отпечатка в виде ромба алмазной пирамидой. Подготовленный таким образом образец осаживали до разных степеней деформаций $\varepsilon_i = \ln \frac{h_0}{h_i} = 0,076$; 0,08; 0,083; 0,087; 0,09; 0,13; 0,29; 0,31; 0,40, 0,57; 0,72; 1,06; 1,22; 1,43 вплоть до появления видимых трещин, которые как правило возникают на экваторе боковой поверхности.

Интенсивность деформаций для степени деформации, при которой не образуется бочкообразование:

$$\varepsilon_{i} = 2\ln \frac{d}{d_{0}},\tag{10}$$

интенсивность напряжений:

$$\sigma_{i} = \frac{P}{F_{0} \exp(\varepsilon_{i})}.$$
(11)

При появлении «бочки» накопленная интенсивность деформации :

$$\overline{t_{i}} = \frac{2}{\sqrt{3}} \int_{0}^{\delta} \sqrt{\left(\frac{d\varepsilon_{z}}{d\delta}\right)^{2} + 2\frac{d\varepsilon_{z} d\varepsilon_{\varphi}}{d\delta d\delta} + \left(\frac{d\varepsilon_{\varphi}}{d\delta}\right)^{2}} d\delta,$$
(12)

где параметр $\delta = \frac{h_0 - h}{h_0}$ – характеризует стадию деформации цилиндра. Если «бочка» незначительна:

$$\varepsilon_{i} = \frac{2}{\sqrt{3}} \sqrt{\varepsilon_{z}^{2} + 2\varepsilon_{z}\varepsilon_{\varphi} + \varepsilon_{\varphi}^{2}}.$$
(13)

Интенсивность напряжений σ_i рассчитывают по (11). В случае существенного бочкообразования:

$$\sigma_{1} = \sigma_{\varphi} = \frac{2}{3} \frac{\sigma_{i}}{\varepsilon_{i}} (\varepsilon_{\varphi} - \varepsilon_{r}) \sigma_{2} = \sigma_{r} = 0 \sigma_{3} = \sigma_{z} = \frac{2}{3} \frac{\sigma_{i}}{\varepsilon_{i}} (\varepsilon_{z} - \varepsilon_{r}),$$
(14)

интенсивность напряжений по формуле (2).

В соотношениях (14) $\varepsilon_{\varphi} = \ln \frac{d_i}{d_0}$, $\varepsilon_z = \ln \frac{a_0}{a_i}$, $\varepsilon_z = \varepsilon_{\varphi} - \varepsilon_r$, a_0, a_i -размеры ромба по оси z до и после осадки.

На рис. 1 показана построенная по этой методике кривая течения стали 20. Кривая течения аппроксимирована уравнением Людвига:

$$\sigma_i = A \varepsilon_i^n, \tag{15}$$

где A и n – коэффициенты аппроксимации имеющие физический смысл – A – интенсивность напряжений при $\varepsilon_i = 1$, n – показатель степени равный интенсивности деформаций на условной диаграмме растяжения при максимальной силе (момент локализации пластической деформации).

Рис. 1. Кривая течения стали 20

В нашем случае A = 673 МПа, n = 0,15.

Кривую течения $\sigma_i = f(\varepsilon_i)$ строили по разработанной нами методике [3]:

1. Предварительно измеряют l_0 , d_0 , $d_{yct.}$, d_m , $R_{m.}$, где l_0 , d_0 – длина и диаметр образца до испытания, $d_{yct.}$ – диаметр образца за пределами шейки, $R_{m.}$ – радиус шейки, d_m – минимальный диаметр образца в зоне шейки.

2. Рассчитывают d_{min} і – минимальный текущий диаметр образца в месте наибольшей локализации деформаций и последующего разрыва:

$$d_{\min i} = \frac{\left(d_{ycT} - d_{ii}\right)\Delta l_i + d_{ii}\Delta l_{ycT} - d_{ycT}\Delta l_{pa3p}}{\Delta l_{ycT} - \Delta l_{pa3p}} .$$
(16)

Интенсивность деформаций:

$$\varepsilon_{\rm i} = 2\ln \frac{\rm d_0}{\rm d_{\rm min \ i}},\tag{17}$$

интенсивность напряжений:

$$\sigma_{i} = \frac{4 P_{i}}{\pi d_{\min i}^{2} \left(1 + \frac{d_{\min i}}{8R_{i}}\right)}.$$
(18)

На рис. 1 показана построенная таким способом кривая течения на растяжение, сжатие и кручение. Треугольными точками обозначены экспериментальные данные на сжатие, круглыми точками – на кручение, квадратными точками – на растяжение. Исходя из рис. 1 можно сделать вывод о близком расположении кривых на растяжение, сжатие и кручение. При аппроксимации использовали метод наименьших квадратов и степенную функцию в виде (15). Некоторое расхождение связано с влиянием сил трения при сжатии цилиндрических образцов и принятыми допущениями.

Диаграмму пластичности $\varepsilon_p = f(\eta)$ строили по результатам испытаний на растяжение $\varepsilon_p(\eta = 1)$, кручение $\varepsilon_p(\eta = 0)$, и сжатие $\varepsilon_p(\eta = -1)$. На участке шейкообразования $\varepsilon_p(\eta = 1)$, ε_p расчитывали по формуле:

$$\varepsilon_{\rm p}(\eta=1) = 2\ln \frac{d_0}{d_{\rm ycr.}},\qquad(19)$$

где $d_{yct.} = \frac{d_0 + d_{iii}}{2}$.

На рис. 2 построена диаграмма пластичности стали 20. Экспериментальные точки $\varepsilon_p(\eta = 1), \varepsilon_p(\eta = 0), \varepsilon_p(\eta = -1)$. Диаграмма аппроксимирована формулой [1]:

$$\varepsilon_{\rm p}(\eta) = \varepsilon_{\rm p}(\eta = 0)\exp(-\lambda_{\rm i}\eta),$$
 (20)

где $\varepsilon_p(\eta)$ – на степень деформации к моменту разрушения при любом η , $\varepsilon_p(\eta = 0)$ – степень деформации при сдвиге, λ_i – коэффициенты чувствительности пластичности к изменению показателя η . Для участка диаграммы $1 \ge \eta \ge 0$:

$$\lambda_1 = \ln \frac{\varepsilon_p(\eta = 0)}{\varepsilon_p(\eta = 1)}.$$
(21)

(22)

Для участка диаграммы $0 \ge \eta \ge -1$:

Рис. 2. Диаграмма пластичности стали 20

Построенные таким образом диаграммы в последующем могут быть использованы для оценки использованного ресурса пластичности в процессах обработки металлов давлением, где механизмом разрушения предполагается преимущественно разрушение отрывом, когда плоскость разрушения близка к плоскости по которой действуют максимальные нормальные напряжения. Удобство этих диаграмм диктуется параметром η нормированом на единицу в условиях растяжения $\eta = 1$, сжатия $\eta = -1$ и на ноль в условиях сдвига ($\eta = 0$ при сдвиге)

В случае изучения технологических процессов обработки металлов давлением, в которых преобладают механизмы разрушения срезом, целесообразно использовать диаграмму пластичности в координатах $\varepsilon_n(\theta)$. При этом аппроксимация таких диаграмм пластичности имеет вид [2]:

$$\varepsilon_{\rm p}(\theta) = \frac{\varepsilon_{\rm p}^{+} {\rm sh}[f(\theta - \theta^{-})] + \varepsilon_{\rm p}^{-} {\rm sh}[f(\theta^{+} - \theta^{-})]}{{\rm sh}[f(\theta^{+} - \theta^{-})]},$$
(23)

где $\theta^+ = f(1 - 2\kappa)$ – параметр θ при двухосном равномерном растяжении, $\theta^- = f(1 + 2\kappa)$ параметр θ при двухосном равномерном сжатии, ε_p^+ – деформация разрушения при двухосном равномерном растяжении, ε_p^- – деформация разрушения при двухосном равномерном сжатии.

Гиперболический синус в (23):

$$sh = \frac{e^x - e^{-x}}{2}.$$
 (24)

Для сталей различных марок коэффициент k можно принять равным k = 0,05 [2]. На рис. 3 показана диаграмма пластичности стали 20 построенная с помощью аппроксимации (23). Экспериментальные точки расположились вблизи расчетной кривой. $\varepsilon_{p}(\theta)$

Рис. 3. Диаграмма пластичности срезом стали 20

Анализ представленных диаграмм пластичности позволяет сделать следующие выводы. В случае изучения технологических процессов обработки металлов давлением, где наблюдается механизм разрушения отрывом, когда плоскость разрушения близка к плоскости, на которой действуют максимальные нормальные напряжения, целесообразно пользоваться известными диаграммами пластичности $\varepsilon_p = f(\eta)$, в которых показатель $2 \ge \eta \ge -5$ меняется в широком диапазоне и охватывает практически все известные технологические процессы обработки металлов давлением, включая такие экзотические, как процессы интенсивной пластической деформации, в частности процесс винтовой экструзии – процессы накопления деформаций [4]. В таких процессах параметр напряженного состояния η может принимать значительное отрицательное значение. К тому же параметр η удобен для решения практических задач, он нормирован на единицу при растяжении и сжатии. Однако, при изучении технологических процессов обработки давлением листовых материалов нас будет интересовать участок диаграммы пластичности, на котором параметр напряженного состояния меняется в пределах $1 \ge \eta \ge 3$. В этом случае диаграмма пластичности стали 20 имеет вид представленный на рис. 4.

На рис. 5 показана диаграмма пластичности, построенная в координатах $\varepsilon_p(\eta)$. Из рис. 5 следует, что ε_p (деформация разрушения) изменяется существенно при незначительном

изменении параметра η (от 1,73 до 2) . Введение параметра β решает указанную проблему. На рис. 6, 7 представлены монотонные кривые предельных деформаций.

Рис. 5. Диаграмма пластичности стали 20 в координатах $\epsilon_p=f(\eta)$

Рис. 6. Диаграмма пластичности стали 20 в координатах $\varepsilon_{\rm p} = f\left(\alpha = \frac{\varepsilon_2}{\varepsilon_1}\right)$

Рис. 7. Диаграмма пластичности стали 20 в координатах $\varepsilon_{\rm p}={\rm f}(\beta)$

В случае изучения технологических процессов, в которых механизм разрушения преимущественно «срез», целесообразно использовать диаграмму пластичности представленную на рис. 3, рис. 7.

Это касается, главным образом, процессов обработки металлов давлением листовых материалов. В процессах обработки давлением заготовок, сопровождающихся объемной схемой напряженного состояния, в которых возможно разрушение срезом, можно применять диаграмму пластичности представленную на рис. 2 и на рис. 3. (В зависимости от диапазона изменения показателей напряженного состояния).

выводы

1. Проанализированы модели пластичных материалов и рассмотрены параметры модели отказов (разрушение отрывом и срезом).

2. Показано, что в случае изучения предельного состояния заготовок, обрабатываемых давлением, в которых преобладает механизм разрушения отрывом целесообразно воспользоваться известными диаграммами пластичности в координатах $\varepsilon_p(\eta)$, где параметр η – соотношение гидростатического давления к интенсивности напряжений. Параметр η нормирован на единицу (растяжение, сжатие) и не зависит от свойств материала.

3. При обработке листовых материалов целесообразно воспользоваться параметром вида напряженного состояния в виде β (8), который позволит получить монотонную функцию зависимости ε_p от β .

4. Показано также, что в случае изучения процессов обработки давлением листовых материалов, а также процессов с объемной схемой напряженного состояния, в которых наблюдается механизм разрушения в виде среза физически более оправдано пользоваться диаграммами пластичности $\varepsilon_n f(\theta)$.

ЛИТЕРАТУРА

1. Огородников В. А. Оценка деформируемости металлов при обработке давлением. / В. А. Огородников. – К.: Вища шк., 1983. – 175 с.

2. Dell, H.; Gese, H.; Kepler, L.; Werner, H. and Hooputra, H.: Continuos Failure Prediction Model for Nonlinear Load Paths in Successive Stamping and Crash Processes, SAE – Paper 2001 – 01-1131, New Sheet Steel Produkts and Steet Metal Stamping (SP – 1614), SAE 2001 world Congress, Michigan, march 5-8,2001, pp. 113 – 122.

3. Построение кривых течения материалов с учетом шейкообразования / О. В. Грушко, В. А. Огородников, В. И. Музычук // Кузнечно – штамповочное производство «Обработка металлов давлением». – 2007. - №8. - С 16 - 20.

4. Бейгельзимер Я. Ю. Винтовая экструзия – процесс накопления деформаций. / Я. Ю. Бейгельзимер, В. Н Варюхин., Д. В Орлов, С. Г. Синков – Донецк : Фирма ТЕАН, 2003. – 87 с.

Огородников В. А. – д – р техн. наук, проф., зав. кафедрой ВНТУ; e-mail: <u>vaogorodnikov@ukr.net</u> 0432465775 дом., 0432598465 служ., 0675897115 моб.

Деревенько И. А. – ассистент ВНАУ; e-mail:ohnevo@i.ua

Алиева Л. И. – канд. техн. наук, доцент ДГМА

ВНТУ – Винницкий национальный технический университет, г. Винница;

ВНАУ – Винницкий национальный аграрный университет, г. Винница;

ДГМА – Донбасская государственная машиностроительная академия, г. Краматорск.

АННОТАЦИИ

Огородников В. А., Деревенько И. А., Алиева Л. И. Параметры напряженного состояния диаграмм пластичности // Вестник ДГМА. – 2012. – №

Дан анализ моделей пластичных материалов и рассмотрены параметры моделей отказов. Показано, что в процессах обработки металлов давлением наблюдаются различные механизмы разрушения – разрушение отрывом и разрушение срезом. В первом случае для процессов объемного деформирования целесообразно применять известные диаграммы пластичности в координатах $\varepsilon_p(\eta)$, где параметр η – отношение гидростатического давления к интенсивности напряжений. При обработке давлением листовых материалов в области изменения параметра η от единицы до трех, когда реализуется механическое разрушение «срезом» целесообразно воспользоваться параметром, который равен отношению функции η к величине главного напряжения.

Огородніков В. А., Деревенько І. А., Алієва Л. І. Параметри напруженого стану діаграм пластичності / / Вісник ДДМА. - 2012. - №

Дано аналіз моделей пластичних матеріалів і розглянуто параметри моделей відказів. Показано, що в процесах обробки металів тиском спостерігаються різні механізми руйнування - руйнування відривом і руйнування зрізом. У першому випадку для процесів об'ємного деформування доцільно застосовувати відомі діаграми пластичності в координатах $\varepsilon_p(\eta)$, де параметр η - відношення гідростатичного тиску до інтенсивності напружень. При обробці тиском листових матеріалів в області зміни параметра η від одиниці до трьох, коли реалізується механічне руйнування «зрізом» доцільно скористатися параметром, що дорівнює відношенню функції η до величини головної напруги.

Ogorodnikov V. A., Dereven'ko I. A., Alieva L. I. Parameters of the tense state of diagrams of plasticity // Herald of the DSEA. – 2012. – №

The analysis of models of plastic materials and parameters of the models considered failures. It is shown that in metal forming processes, there are various mechanisms of destruction - the destruction of separation and destruction of the cut. In the first case, the volume deformation processes appropriate to apply the well-known diagram of plasticity in the coordinates $\epsilon_p(\eta)$, where the parameter η - the ratio of hydrostatic pressure to the stress intensity. When handling the pressure of sheet materials in the range of the parameter η from one to three, when implemented by mechanical disruption of the "cut" it is expedient to use a parameter which is the ratio of the function η to the value of principal stress.