THERMOEMF OF GE_{1-X}SI_X SINGLE CRYSTALS UNDER HYDROSTATIC PRESSURE

Chernysh V.V.¹, Burdeynyi V.M.², Melnyk M.D.²

¹Eduardo Mondlane University, Maputo, Mozambique ²Vinnytsia National Tecnical University, Ukraine

Keywords:

Energy structure, deformation potential, Ge-Si alloy, diffusion thermoemf.

Abstract:

The energetic structure of the conduction band of Ge and Si are well known [1] and at the atmospheric pressure the four lowest L₁ germanium conduction band valleys are occupied by electron in pure Ge. In pure Si at the same conditions are occupied Δ_1 silicium valleys. Under strong elastic pressure the Δ_1 valleys of Ge must be involved in consideration. For this reason energy structure of strained Ge_{1-x}Si_x alloy single crystal must involve four L₁ and six Δ_1 -germanium valleys and six Δ_1 - silicium valleys. Under sufficiently high pressure practically all electrons will be localized in both type of Δ_1 -valleys. Under these condition the Δ_1 -valleys becomes accessible for direct experimental measurement [2,3] e, consequently, theoretical considerations of transport phenomena is no purely artificial. In this communication we try to analyze the thermoemf under high hydrostatic pressure. The theory of anisotropic scattering has been used to calculate diffusion thermoemf. The intraband scattering of electrons by acoustic phonons and impurity ions and interband nonequivalent electron scattering between L_1 - and Δ_1 – valleys as well as interband equivalent f - and g - scattering between Δ_1 - valleys have been considered [4-7]. Particular cases strainless crystals and strongly strained crystals are considered as well as the case of band crossover of L_1 - and Δ_1 – valleys.

References

- 1. Anatychuk L.I., *Physics of Thermoelectricity*, v.1, Institute of Thermoelectricity, Kyiv, Chernivtsi, 1998, 376p.
- 2. W. Fawcett, E.G.S. Paige Negative differential mobility of electrons in germanium J.Phys. C: Solid St. Phys., 1971, Vol. 4. p 1801-1821.
- 3. Ahmad C., Adams A. and Pitt G. Temperature dependence of the electron mobility in the $\frac{\Delta_{1c}}{\Delta_{1c}}$ minima of Germanium. I. Phys. C: Sol. State Phys. 1979, v.12, N.10, p.1379,
- the $^{\Delta_{1c}}$ minima of Germanium . J. Phys. C: Sol. State Phys., 1979, v.12, N 10, p L379 L383.
- 4. V.Chernysh, V.Burdeynyy, F.Tomo. *Peculiarity of Piezoresistance in L*₁-Δ₁ *Model of Germanium, Proceedings of SPIE*, *Vol.4425*, p. 362-368, 2001, USA.
- 5. Chernysh V.V., Cuamba B.C., Thermoemf in L_1 - Δ_1 model of Germanium, J. of Themoelectricity, 2007, v.3, p.29-44.
- 6. Chernysh V.V., Cuamba B.C., Thermoemf in L_I - Δ_I model of Germanium under high hydrostatic pressure, J. of Themoelectricity, 2009, v.1, p.30-40.
- 7. Chernysh V.V., A.G.Samoilovich and investigations of transport phenomena in elastically deformed germanium, J. of Thermoelectricity, v.3, 2006, p.14-24.