
The Determination of Results of Knowledge Test Control by Means of the

Hierarchical Structures

Oleg V. Bisikalo, Robert G. Tadevosyan

Department of Economic Cybernetics and Informatics,

Vinnytsya State Agricultural University, Vynnytsya, Ukraine

E-mail: bisikalo@vsau.org, agoffice@svitonline.com

Abstract

Development of the methodology of designing of

electronic textbooks with an opportunity of individual

learning strategy’s identification is considered in the

article. In this regard a formal approach aimed at

research of knowledge testing results is suggested on

the basis of the hierarchical structures. Analytical

decision of the objective has been elaborated and

realised in practice in Common Lisp language.

Keywords: electronic textbooks, testing,

diversified lists, algebraic system, recursive algorithm,

Common Lisp.

Introduction

Providing the possibility of test results’

combination as a concluding (synthetic) evaluation and

analytical introduction of evaluation constituents aimed

at the development of prospective educational strategy

is the main objective of a test control of students’

knowledge and skills [0]. The given task actually

permits developing a dynamic model within the

knowledge base of a test complex. The knowledge base

can be regarded as a model of the subject matter area.

The efficacy of utilizing electronic textbooks (ET) in

the educational process primarily depends on the extent

of educational material adaptation towards individual

potential of a student. One can achieve a certain extent

of electronic textbook adaptation through models and

algorithms grounded on the theory of final automatons

and the Markov chains. A model for providing

management over adaptive training based on the theory

of the Moore final automatons was used in the work [2]

for the development of “Gefest” information-training

system. A scenario “I won’t let you go until teach you”

is the core of the system. The essence of adaptation can

be defined as the development of additional

explanatory materials for students in case of

shortcomings in basic knowledge and skills learned.

It should be mentioned that in the practice of the

educational process, especially distance education, one

could be faced with a problem when a student has

already gained some skills and knowledge in the

subject matter being taught. Time reduction on learning

and motivation increase to work with electronic

textbooks can be achieved for such students providing

that a preliminary general test is conducted and

individual training program is developed according to

its results [0]. The mathematic model from [0] does not

allow to do it though additional object model of the

three-level development of the educational material,

used in Gefest system, can partially facilitate to solve

the problem.

Formalization of the subject matter and dynamic

model of a student in the algebra aspect would allow

incorporating the impact of substantial parameters of

the distance education upon individual learning

strategy and synthesizing appropriate adaptive

algorithms of using ET under the conditions of real

time.

The identification of analytical evaluation of a

student test control aimed at the development of

individual learning strategy is supposed to be our major

objective.

Development of analytical evaluation

algorithm

An electronic textbook can be represented as a

combination of two constituents in the following

formula:

 Sd;SaEt , (1)

where Et – electronic textbook model;

 Sa – subject matter area model;

 Sd – student model.

mailto:bisikalo@vsau.org
mailto:agoffice@svitonline.com

Let us assume that the structure of the electronic

textbook is similar to the content-target structure of the

educational material presented in [0].

It is believed that a typical electronic textbook consists

of modules (sections) composed of topics, which in

turn demonstrate a sequel of elementary educational

doses. It is an example of the hierarchical structure as a

model of the subject matter area in the form of a non-

linear list:

 (1322))) (1321) (132 (1312)) (1311) (131 (1232))(13

 (1231) (123 (1221)) 3))(122(1212)(121 (1211) (121 (12

(1122))) (1121) (112 (1112)) (1111) (111 (11 (1 Sa 
(2)

The list (2) can be demonstrated more visually in

the form of the so-called structured print in Lisp

programming language [0] (Addition 2).

In order to develop a formula of a student model

Sd, that is to be created on the basis of the content-

target structure test control of the educational material

Sa, we will introduce the following algebraic system:

 Sign_Main;BasisSd (3)

where

 }uresListStruct{Basis  (4)

end

}OP,IF{Sign_Main  . (5)

If the hierarchical structures are regarded as the

basis of the algebraic system, then a signature

Main_Sign as a combination of predicates and

operations will be considered on two levels of

abstraction, namely: high (macro-level) and low

(micro-level). At first we will pay attention to a macro-

level. Predicates’ multiplication, determined by the

sum of data being processed

}acketLeftAtomBr,etRightBrack

,cketBalanceBra{IF 
 (6)

and for operators’ multiplication implemented data

processing

)}mbolsQuantitySy(Shift,EraseTop

,AddMeaning,CreateTop{OP 
, (7)

where Predicates:

 BalanceBracket – a true predicate if a number of open

(left) brackets is equal to a number of closed (right)

brackets in the list being analyzed;

RightBracket – a true predicate if the right bracket “)”

is the next symbol in the list being analyzed;

LeftAtomRight – a true predicate in case when the left

bracket – atom – the right bracket “(“ Atom “)” are

next symbols in the list being analyzed;

and Operators:

CreateTop – to create a stack top;

AddMeaning – to add the meaning to a stack top;

EraseTop – to erase a stack top;

Shift (QuantitySymbols) – to shift an indicator to the

right according to a number of QuantitySymbols in the

list being analyzed.

Let us examine now the two-based algebra

 Sign};OP,IF{ebralgA , (8)

where there are two bases IF і OP which determine an

operation signature Sign, the latter has been included

logic (Boolean) operations, namely disjunction,

conjunction, and negation, identified on IF base, as

well as operations of composition, alternative and

cycle, grounded on OP multiplication. The formula is

as follows

 }}A]u{[),B,A]u([{*,};Not,And,Or{Sign . (9)

where

{ Or, And, Not } – main Boolean operations;

* – composition A * B is a consecutive implementation

of operators: firstly - A, then - B;

([u] A, B) – alternative: in case of [u] operator A

implements, in other case – operator B does;

{[u] A} – cycle: operator A will conduct iterative

operation under u=0 until [u] becomes a true predicate.

It should be stressed upon, that operators

OPB,A  (10)

and a predicate

IFu (11)

are meant for the above-mentioned Sign signature. Sign

signature includes classic programming structures,

which have been supplemented by Dijkstra E. W. in the

technology of structured programming.

Algorithm idea on micro-level

А list is analyzed with the assistance of Shift ()

operator from the left to the right from the beginning to

the end, i.e. until the moment when a number of open

(left) brackets becomes equal to a number of closed

(right) brackets. Algorithm’s operation based on the

use of the two-element n-address stack. As the

recursive analysis goes, subordinate sublists are

submitted to a stack in order to evaluate them on the

basis of appropriate atoms and/or sublists included.

The recursive evaluation is finished with corresponding

extraction of a stack element at the time when only

atoms are left to be subordinate on the given hub.

Algorithm’s operation based on the use of the

classic two-element n-address stack is shown in figure

1. The first element of the stack is used for atoms’

preservation, the second one for recursive identification

of their evaluation on the basis of sublists included

and/or subordinate atoms.

 LS

 PLS

 Sn-2

 S2

 S1

Figure 1. View of two-element n-address stack.

A recursive evaluation algorithm of the subject

matter tree having seven terminal tops can be expressed

by the structured scheme

)}mbolsQuantitySy(Shift*

))CreateTop,AddMeaning]ghtLeftAtomRi([

,EraseTop]etRightBrack([

]cketBalanceBra{[::LIST_EVAL 

. (12)

If SoSuS  (13)

is regarded as a system of algebra constituents, where

OPSo,IFSu  (14)

then EVAL_LIST algorithm represents itself a

composed operator in the form of term – superposition

of elements with S and operations with Sign. The

recursive algorithm can be graphically demonstrated

the operation tree in figure 1.

Figure 2. Recursive evaluation algorithm.

Macro-operators (7) can be in turn represented on

the micro-level as elementary operators of processing

hierarchical list structures

}()cketBalanceBra

()cketBalanceBra*Atom

()mbolsQuantitySy*ALSAtom*LS

)Atom(Ev*Push{::CreateTop

1

1









, (15)

where

Push – moving a stack down;

Ev(Atom) – atom evaluation identification (educational

dose) according to test control results;

→ – operator for meaning transfer while working with

stack fields;

LS – field with a stack top meaning;

ALS – field with a stack top address;

QuantitySymbols () – function for identifying a number

of symbols while shifting;

BalanceBracket () – function for identifying balance

brackets;

}Atom()mbolsQuantitySy

*)Atom(EvLSLS

:)Atom(Ev{::AddMeaning

2





; (16)

}()cketBalanceBra()cketBalanceBra

*()mbolsQuantitySy*Pop*LS

PLSPLS*)Atom(EVLSLS

:)Atom(Ev*AtomALS{::EraseTop

1

1









 (17)

where Pop – moving a stack up.

Analytical solution of the assignment obtained in

the view of EVAL_LIST algorithm permits to

synthesize individual learning strategies by means of

incorporating the obtained assessment for each hub of

the hierarchical ListStructures in the framework of the

introduced Sd formal algebraic system.

Conclusion

General analytical decision of the objective

concerning the determination of test control

constituents (a student model development) according

to the hierarchical structure of the educational material

(a model of the subject matter area) has been

elaborated in the work. It lays down the foundations of

a synthesis of algorithm for developing individual

learning strategy.

Algorithm’s practical realization in Common Lisp

programming language is demonstrated in Addition 1.

The result of algorithm’s work is shown in Addition 2.

References

[1] F. T. Tschang and T. Della Senta (eds.): Access to

Knowledge: New Information Technologies and the

Emergence of the Virtual University. Amsterdam: Elsevier

Science and International Association of Universities, 2001,

167-206.

[2] Sh. Minasov, S.V. Tarkhov. Gefest Project as a Variant

of Practical Implementation of E-Learning Technology at a

Higher Educational Institution within Integration of

Traditional and Distance Education / Educational

Technology & Society, 8(1) 2005, p. 134-147 (in Russian).

[3] O.V. Bisikalo. Approach to the Development of

Electronic Textbooks with Test Constituents Based on a

Model of Adaptive Education. “Control and Management in

Complicated Systems” (CMCS - 2003) Collected Articles.

Materials of VII International Research Conference.

Vinnytsia, October 8-11, 2003. – Vinnytsia: UNIVERSUM –

Vinnytsia, 2003. Pp. 227-234 (in Ukrainian).

[4] E. Khiuvenen, Y. Seppianen. The World of Lisp. 2

volumes. Volume I: Introduction to the Lisp Language and

Functional Programming. Translated from the Finnish

language. – M.: Mir, 1990. – 447p (in Russian).

Addition 1

(defun dft (tree n)

 (cond ((null tree) ())

 ((not (consp tree)) (format t "~a~%" (pad n

tree)))

 (t (dft (car tree) (1+ n))

 (dft (cdr tree) n))))

(defun pad (n s)

 (format nil "~a~a" (make-string n :initial-element

#\Space) s))

(defparameter *tt* '(1 (11 (111 (1111) (1112)) (112

(1121) (1122))) (12 (121 (1211) (1212) (1213)) (122

(1221)) (123 (1231) (1232))) (13 (131 (1311) (1312))

(132 (1321) (1322)))))

Addition 2

CL-USER> (dft *tt* 0)

 1

 11

 111

 1111

 1112

 112

 1121

 1122

 12

 121

 1211

 1212

 1213

 122

 1221

 123

 1231

 1232

 13

 131

 1311

 1312

 132

 1321

 1322

NIL

CL-USER>

