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Introduction, purpose and objectives of the work. The basis of most known
methods, algorithms and means, including models of neural networks (NNs), for the
recognition and clustering of images in the biometric, machine vision systems is to
compare two different images of the same object or its fragments [1, 2]. Discriminant

measure of compared reference and current fragments is often a mutual two-
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dimensional correlation function. To improve accuracy and probability indicators with
strong correlation obstacle-damaged image, it is desirable to use methods of
combining images based on mutual equivalently two-dimensional spatial functions,
nonlinear transformations of adaptive-correlation weighting [3]. The NNs are also
widely used for modeling associative memory, pattern recognition. Models of
equivalence (EM) of auto-associative memory (AAM) and hetero-associative memory
(HAM) and multiport AAM (MAAM) and multiport hetero-associative memory
(MHAM) were proposed in papers [4-9] and their modification in paper [10-13]. The
simulation results of such models [5-7, 10-11] confirmed that the EM has advantages.
These EM HAM studies have shown that these models allow the recognition of
vectors with 4096 components and a significant percentage (up to 30%) of damage, at
a network power that is 3 to 4 times higher than the number of neurons [10-11]. For of
analysis and recognition should be solved the problem of clustering of different
objects. This previous clustering allows organizing proper automated grouping
processed data, to cluster analysis, to evaluate on the basis of many signs each cluster
and improve subsequent learning procedures and classification. Knowing the
significant advantages of EM for creating on their basis improved neural networks [5-
8], MAAM, MHAM [7, 10, 11] it was suggested about the possibility of modifying
EM and MHAM for parallel cluster analysis of images. Hardware implementations of
these models, including equivalentors with spatial and time integration, spatially non-
invariant and non-invariant models and their implementations were considered and
examine in papers [1, 2, 7-9]. At the same time an urgent task is to study a more
general, spatially invariant (SI) equivalence models (SI EMs) that is more invariant to
spatial displacements and the possibilities of its application for image clustering [11,
13]. In addition these models are very closely related to operations of images
convolution. And the latter are basic operations in the promising paradigms of
convolutional neural networks (CNN) with deep leaning [14] and our self-learning
equivalence-convolutional NNs (SLE_CNNSs) [15-17]. The use of the aforementioned

models and their effective implementations to create new bio-induced self-learning
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methods and extract patterns from the training set and processed images for multilevel
image bitmaps was considered in [15]. In paper [16] we showed that the self-learning
concept works with directly multi-level images without processing the bitmaps. Such
equivalently neural paradigms are very perspective for processing, clustering,
recognition, storing large size and strongly correlated and highly noised images. They
are also very promising for solving the problem of creating machine uncontrolled
learning. And since the basic operational functional nodes of EM are such vector-
matrix or matrix-tensor procedures with continuous-logical operations as: normalized
operations "equivalence", "non-equivalence"”, "auto-equivalence”, we consider in this
paper new conceptual approaches to the design of scale arrays of equivalentors (Es) or
complementary non-equivalentors (N-Es) [17]. For all known convolutional neural
networks, as for our SLE_CNNSs, it is necessary to calculate the convolution of the
current fragment of the image in each layer with a large number of templates that are
used, which are a set of standards that are selected or formed during the learning
process. But, as studies show, large images require a large number of filters to process
images, and the size of the filters can also be large. Therefore, the problem of
increasing the computing performance of SLE_CNN and their NCs as basic nodes is
acute. It should be noted that the accuracy of calculations, especially for large filter
sizes and a large dynamic range (8 bits) of halftone images, is necessary for making
the right decisions for building maps and selecting neuron-winners. Therefore,
intensified work aimed at creating specialized neural accelerators. Unlike most papers,
where compute the function of comparing two 2D arrays and using the operations of
multiplication and addition-accumulation, in our works we use functions of
normalized equivalence in which there is no multiplication operation. But as our
experiments show, equivalent models also allow the construction of equivalently
convolutional structures and self-learning systems. Therefore, in this paper, using our
approaches to designing of Es (N-Es) and in order to increase the accuracy of

calculations, we consider the based FPGA digital structures of the calculators for
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processing 2D arrays. Our approach is based on the use of digital methods for
implementing the required operations.
Presenting main material. For constructing of EMs the base binary operations

of neurobiological (NBL) “equivalence” (~) and “non-equivalence” (+) were used of
such types, but here we use only one type of “non-equivalence’: a;b =la—b| , where

abeC,=[01], a=1-a,b=1-b and the equivalence function is: eg=a<b=1-|a-b|

Normalized equivalence of two matrices A=1{a,} = and B=i,| efol]” is

determined in the following way: A~B= ii(a Nb) , and correspondingly

i=1 j=1

I J .. -
normalized non-equivalence: A+B= ZZ( "). Operations (nj and (ﬁj are

i1 1
measures of similarity (equivalence) and difference (non-equivalence, distance) of
matrices, which are connected with Hamming distance [5, 9]. Thus, by components
operations (~) and (+) of scalar NBL are generalized on matrix case and NBL logic
becomes matrix NBL, i. e. (MNBL). Without loosing community we can consider
carrying set (for scalar case) C,=[01] and c =[0a]" (for N-dimension (vector,
matrix) case). Normalized equivalence and nonequivalence are more general new
complementary metrics in matrix space R. The variants of operations of equivalence
and nonequivalence depend on different types of operations of t-norms and s-norms
used in them and integrated operations of crossing and joining up in fuzzy logic.
Depending on type, variants of equivalent algebra (EA) [5, 8, 9], as a new algebro-
logical instrument for creation of equivalental theory of NNs on the basis of matrix
NBL. The weighing coefficients of synapse connections matrix of equivalence models
are determined through the normalized equivalence function, namely [4, 8]:

——Zﬂ (S~ =FE.F or 1f= Eﬂ;li |gl~5 ~5i ) = f(3.5y where g, is vectors
equivalence coefficient, and also it is the normalized equivalence f of vectors, that

g, =fFE5) = iz{*:l[s‘,tx:“j. In addition, it is possible to show many other formulas,
which are used in the equivalence models paradigm and based on calculations of the
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normalized equivalence or nonequivalence of vectors or matrices [5, 7, 8]. But in most
general case optoelectronic complementally dual neuron
(equivalentor/nonequivalentor), including the normalized components of vectors, has
analog homopolar encoded components. For neural networks using the functions of
normalized equivalences of matrices and tensors, generalized equivalence models have
also been developed. They use spatially dependent normalized equivalence functions

% [
sap. AFB_ 1

' = Z (@, ~b)
(SD_NEF) [1, 5], which are defined as: o I'xJ lii=“=1(ag’ : where

é _ |:ng”] c [O,l](N_I+1)X(M_J+1)

, and symbol (*) indicates a spatial convolution, but with an
element-wise operation of not multiplication, but "equivalence". Therefore

interpretation method for spatially invariant case requires the calculation of spatial

features convolution-type e"-wr&x, whereg”, =1—mean(‘submatrix(x,k,k+r0—1,|,|+r0-1)-wm'),

nonlinear processing by the expression ENkm,:G(a,Ekm,)zo,s[u(zEkm, _1)1 and comparing

each other to determine the winners for indexing expressions:

MAX, , = max (ENJ?, ENJELEND ) @nd ey = g (eny, max, ). From the above formulas it follows

h nonlinear
index m

that it is necessary to calculate the average value of the component-wise difference of
two matrices. Similarly, normalized nonequivalent functions for all filters are
calculated. For implementation of new proposed subclass of neural computers,
MAAM [4, 6], MHAM [7, 10], and SLE_CNN [15-17], we need certain new or
modified known devices [17, 18] capable of calculating normalized spatial
equivalence functions (NSEgFs) with the necessary speed and performance. Such
specialized devices were previously called "image equivalentor” [4, 5, 8, 9, 12], (IE).
In one particular case, the image equivalentor is essentially a doubled correlator or a
doubled convolver. But there are many types of equivalents due to the large variety of
equivalences. Thus, in the generalized SI EM [11, 13] and SLE_CNNSs [15-16], for the

input images, , learning array-matrix A, which is a set of K*L reference images, it is

necessary to calculate element-wise equivalence convolution and nonlinear

transformations of elements in the first and second steps of the iteration algorithm. As
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metrics, we use generalized normalized vector equivalence functions. Research of the
generalized SI EM confirmed their advantages and improved characteristics. Method
of clustering based on the use of MAAM and MHAM and simultaneous calculation of
the corresponding distances between all cluster neurons and all training vectors gives
good convergence and high speed [10, 11, 13]. The model describes an iterative
learning process that consists in computing the optimal set of weight vectors for a
cluster neuron using the training matrix. We specify the number of templates and their
size. The calculation of optimal patterns is formed by an iterative procedure based on
extracting similarity and features in fragments of objects that are in the image or in
their learning set. The works [15-16] show great promise of the SLE_CNNSs for self-
learning-recognition of images, including multilevel and color images. But for their
work in real time, taking into account the large requirements for performance and the
amount of calculations, it is necessary to have appropriate high-performance and
energy-efficient image processors with parallel principles of operation and multi-
inputs-multi-outputs, whose design was partially considered in papers [10, 11, 13].
Structure, listings, simulation results. The structural diagram of four parallel-
working neuron-equivalents, which calculate the nonequivalence of the input current
fragment with four reference standards (filters), is shown in Fig.1. Values of pixels of
the filters (reference standards) in byte format are fed successively to the four inputs
F1[7..0], F2 [7..0], F3 [7..0], F4 [7..0], and pixel values of a selected current image
fragment is fed sequentially to the fifth input A [7..0]. The sizes of filters and
fragments can be arbitrary, but we designed for a size of 15x15, since for smaller
sizes, the problem of speeding up the calculations is not so acute. The output of the
scheme is the port Win [1..0], on which the winner’s filter number is indicated, with
which the current fragment has the greatest match, that is, their normalized
nonequivalence is minimal. On the second output port min [15..0], the nonequivalence
value between the winner and the current fragment is formed. This value is necessary
for use in multilayer self-learning equivalence convolutional neural structures. Inside,

the circuit contains four nodes Blockl: instl - inst4 of the definition of the normalized
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nonequivalence of the compared fragment and filters, the interconnection circuit
conect3: inst5 - inst8 and the winner selection node min: inst4. The circuit is
implemented on Altera FPGA chip from the MAXII family EPM570M100C5. 550
logical elements (96% of 570 available) and 59 conclusions (78% of 76 available)
were used. Clock frequency is 50 MHz, supply voltage 2.5V, power consumption
50mW.
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Fig. 1. Block diagram of four parallel neuron-equivalentors

The processor: inst node finds the sum of the modules of the difference in pixel
values of the fragment being processed and the filter. Rationing is implemented on
three nodes: multiplication multiplacation: inst2, division conect: inst3, summation
add:inst4. Thus, we find the value of the normalized nonequivalence. On the output

through the node conect2: inst5, 8 higher and 8 lower order bits of the result are fed.
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Fig. 2. Functional diagram of four non-equivalence calculation units

The functional diagram of the processor: inst node is shown in Fig. 3. The

functional diagram of the min: inst4 winner selection node is shown in Fig. 4. These

nodes are designed by the Verilog language. Listing of the design of these nodes is

shown in Fig. 5.
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Fig. 4. Functional diagram of the min: inst4 winner selection node




Marepianu 1V HaykoBo-npaktiHyHOI iHTepHeT-KOH(epeHuil «[IpodaeMn Moe/IloBaHHsI Ta po3pod ieHHs iHopMaiiiHuX cucTeM»
15 tpaBns 2019 p., M. [Iporobny

Figures 6, 7 show the time diagrams of the work of the developed neuron-
calculator. In fig. 6, and it can be seen that in the first period the values of all pixels of
the current fragment are 25, and the values of all pixels are the same in each of the

four filters and are 9, 8, 175 and 99, respectively in the first, second, third and fourth.

1 Emwodule processor 1 Bmwodule min 34 end
2 = (input [7:0] A, B, 2z = (input [15:0] 50, S1, 52, 53, //MO, Mi, Mz, M3, |25 if (S0==min_}
3 input CLE, 3 output [15:0] min, 26 fo=1;
4 output [15:0] O SUE): 4 output [1:0] winner): 27 else f0=0;
5 reg [7:0] 3IUE; - 5 reg [15:0] min_, winl, minZ; 28 if (F1==min ]
[ reg [15:0] SUE_OUT=0: [ reg [1:0] winner : 29 fi=1;
7 reg [7:0] countl=0; 7 reg [0:0] £0, £1, £2, £3: 30 else f1=0;
=) regy [15:0] ZIUB_OUTS: g alvays B+ 31 if (SZ==min )
3 =always B(L or B) s = begin 3z fz=1;
10 Bbegin 10 if (30<351) 33 else f£2=0;
i if  ((A-B)>=0] 11 = begin wminl=50;//F1=0; 34 if [(S3==min )
12 SUB=A-F: 12 end 35 fa=1;
23 slse 13 = else begin minl=51; //Fi=1; 36 else £3=0;
14 SUE=E-A4: .
15 ond 14 end 37 if (f0==1)
16 aluays B (posedge CLE) 15 if (52<33) 38 winner =0;
17 HEbegin 16 = begin minz=32; //Fi=2: 39 if (fi==1)
15 if (countl==&'dzz5) 17 end 40 winner =1:
19 = hegin 15 = else begin min2=33; //FZ=3; 41 if (f2==1)
20 countl=0; 18 end 42 winner =Z:
21 SUB_OUTS<=SUE_OUT; 20 if (minl<minz) 43 if (£3==1)
22 SUB_OUT=0; zl = hegin win =minl; //F=F1; 44 winner =3:
23 end zz end - 45 end
21 ountl=countl+1; 23 = else hegin min =minz; //F=F2: 45 assign min=min :
25 SUB_OUT=530B_OUT+3UE? 24 end - 47 assign winner=winner ;
26 end 25 if (S0==min_) 45 Endmodule
;; Ei;gguTESUB=SUB_OUTS: 26 fO=1: 40
= 27 else f0=0; 50
1 Emodule wultiplication 1 Bmodule conect I Ewmodule add L Snodule conect2
Zz  E(input [15:0] A&, 2 B (input [23:0] &, 2 = (imput [15:0] A, e o
3 output [23:0] C); 3 putput [15:0] C): g lovoc (S0l D 4 ourpur [7:0] om;
- i :0] = : output : : 5 assign C[7:0]-&[16:8];
3 assign C=A+ATZ+ATIZ; - : :i;gzuEéIS Dl=af23:8] il s assSgn é:g +}3; : & asmgn C}[iL[T]:U] £A[7:]El]:
5 endmodule 5 5 endmodule : endrodule
- AL y 7

Fig. 5. Unit design listings: processor (left); min winner selection node (center and right),
multiplication node and others

Therefore, the modulus of the difference in pixel values is the same within each
compared pair (filter fragment) for all pixels and will be equal to: 16, 17, 150, 74,
respectively. After summing up for 225 cycles of these modules for each filter, the
sum of modules of element-wise (pixel-by-pixel) differences is formed, which needs
to be normalized by dividing by 225 (the number of pixels). We propose replacing the
complex division operation by 225 by dividing the increased amount of modules with
the calculated required coefficient by 256. For example, to divide by 225 we use the
multiplication of the sum of the modules by 3 and the addition of the sum of the
modules multiplied by 32 (actually shifted by 5 digits). The result obtained is divided
into two parts, in which the upper 8 digits correspond to the integer part of the result,

45



Marepianu 1V HaykoBo-npaktiHyHOI iHTepHeT-KOH(epeHuil «[IpodaeMn Moe/IloBaHHsI Ta po3pod ieHHs iHopMaiiiHuX cucTeM»
15 tpaBns 2019 p., M. [Iporobny

and the younger ones - the fractional part of the result. Therefore, the result of
processing, which appears at the output in the second cycle, shows that for the winner
filter 0, for which the minimum pixel difference was 16 and was the smallest, the
result is 16 bit binary code. Since in time diagrams, displaying a code of this length is
inconvenient, the result is represented as a decimal number, actually multiplied by
256. Therefore, we get the number 4092, which can be seen in Fig. 6a, which, after
dividing by 256, should be taken as the number 15.98. In Fig. 6b, to represent the
integer and fractional parts when using a hexadecimal coding system, we see the
displayed result OFFC, which has the integer part OF (in decimal form 15) and the
fractional part FC / 256, which corresponds to 0.98 in decimal form. Similarly, the
neuron-calculator works in the following periods. Fig. 7 shows the timing diagrams of
the functioning of the circuit for the case when the pixel values of the filter are
constant, and the pixel values of the current fragment are arbitrary. The results also
confirm the normal operation and computations with digital accuracy of the required

nonequivalence values to make the right decision regarding the choice of the winner.
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Fig. 6. The timing diagrams of the simulation results of the circuit of four parallel-working neuron-
equivalentors for constant values of signals inside the filters and a fragment: a) the values of the
signals are shown in decimal code; b) shows the signal values in the hex code; the comparison time

of the current fragment and the reference is 4.5 us
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Given the limitations on the size of the article, here we do not show the design
and simulation results for other filter sizes (3x3, 5x5, 7x7, 9x9, etc.). Processing time
Is proportional to the total number of pixels in the filter. We also investigated and
modeled the neuron-calculator node using a more powerful Altera FPGA chip
EP3C16F484 Cyclone 11l family, which has 15408 logical elements, RAM 516096
bits, 346 1/0O pins. Taking into account the complexity of the one neuron-calculator
and the resources of this chip, it would be possible to implement 64 neuron-
calculators, but given the availability of available pins, it is possible to implement only
32 neuron-calculators. For performance evaluation, for filter size 15x15 = 225, clock
frequency 225MHz, (4.44ns clock cycle), total processing time 225x4.44 = lus, we
define the number of operations performed per cycle as 2.22 compare-subtract-
accumulate operations (lower modest estimate) that gives for each NCs 500 operations
during filter processing, and 32 channels operating in parallel, respectively, 500x32 =
16000 operations per 1ps. Thus, the performance of the proposed node will be 16x10°
operations per second, and its energy efficiency, taking into account the power
consumption of 0.2 watts, is estimated at 8x10° operations per second per watt.

Conclusions. We show the results of design and modeling the proposed new
FPGA-implementations of neuron-calculators as hardware accelerators of self-learning
equivalently-convolutional neural networks (SLE_CNNs). Simulation results show
that processing time in such circuits does not exceed units of microseconds, and for
some variants 500 nanoseconds. Circuits are simple, have low supply voltage (2.5V),
low power consumption (50mW), digital accuracy, integrated construction, satisfy the
problem of interconnections and cascading. Signals at the output of such neurons can
be both can be digital with increased accuracy and also with two additional
complement outputs, that indicate winning neurons and their activity. The presence of
digital outputs encoding the normalized equivalence of the matrices being compared
and represented by the whole and fractional parts allows determining the neuron-
winner with increased accuracy and displaying its intensity. Thus, a simplified

matching of neuron-calculators node with other digital nodes is implemented, and a
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simple selection of the corresponding memory elements into which the calculated
results are written, which form the maps for their subsequent convolutions with the

image.
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Fig. 7. Time diagrams of simulation results for the circuit of four parallel-working neuron-
equivalents: a) for constant values of the signals of the standards and different signals of the
fragments at the same intensity of the pixel values; b) for different values of the signals within the
standards and the fragment in cycles within the processing cycle. The comparison time of the current

fragment and the reference is 4.5 us. Time of one clock cycle is 20ns

Research confirms the possibility of creating 32 components array of neuron-
calculators on 8 Altera FPGA chips EPM570M100C5 MAXII family. And in each
chip it is possible to implement four NCs for a window size (filter) of 15x15. And for
smaller sizes, their number can be increased, but the efficiency of using the resources
of the scheme is limited by the number of pins. The processing time of the current
image fragment does not exceed Sus. Calculations show that when using an Altera
FPGA chip EP3C16F484 Cyclone Il family, it is possible to implement 32 neuron-
calculators in the one chip. For the chip for 2.5V and clock frequency 200MHz the

power consumption will be at the level of 200mW, and the calculation time for filters
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with a size of 15x15 will be 1us. The performance of such a node will be 16x10°
operations per second, and its energy efficiency 8x10' operations per second per watt.
The obtained results confirm the correctness of the chosen concept and the possibility

of creating NCs and MIMO structures on their basis.
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