# ПРОГНОЗИРОВАНИЕ РЕЗУЛЬТАТОВ ФУТБОЛЬНЫХ МАТЧЕЙ С ПОМОЩЬЮ НЕЧЕТКИХ МОДЕЛЕЙ С ГЕНЕТИЧЕСКОЙ И НЕЙРОННОЙ НАСТРОЙКАМИ

\*Александр Ротштайн, Мортон Познер \*\*Анна Ракитянская

\*Кафедра промышленного инжиниринга и менеджмента Технологический колледж Иерусалима — Машон Лев 21 Хаваад Халеуми, 91160, Иерусалим, Израиль rot@mail.jct.ac.il

\*\*Кафедра прикладной математики Винницкий Государственный технический университет Хмельницкое шоссе 95, 21021 Винница, Украина h rakit@hotmail.com

Предложена модель прогнозирования результатов футбольных матчей, использующая информацию о предыдущих результатах команды противника. Модель основывается на методе идентификации нелинейных зависимостей, использующем нечеткие базы знаний. Правдоподобные результаты моделирования могут быть получены с помощью настройки нечетких правил с использованием данных из турнирных таблиц. Процедура настройки предполагает выбор параметров членских функций нечетких условий и весовых коэффициентов правил методами комбинации генетической и нейронной оптимизации. Предложенная модель может быть использована в коммерческих компьютерных программах для прогнозирования результатов футбольных матчей в букмекерских конторах.

Ключевые слова: модель прогнозирования спортивной игры, нечеткие правила Если-То (If-Then), настройка нечеткой модели, генетический алгоритм, нейронная сеть.

### 1. Введение

Футбол — очень популярный вид спорта, привлекающий огромное количество поклонников этой игры. Прогнозирование результатов футбольных матчей вызывает интерес по двум причинам: демонстрации возможностей дифференциальных математических методов [5,7] на его примере и желанию получить выигрыш, делая ставки на правильные результаты матча.

Модели и компьютерные программы предсказания результатов спортивных игр разрабатываются на протяжении многих лет (например, http://dmiwww.cs.tutfl/riku). Большинство из них используют стохастические методы описания неопределенности: регрессивный и авторегрессивный анализ [4,8,20], метод Байезиана в комбинации с цепями Маркова и методом Монте Карло [2, 6, 16, 17]. Осо-

бенностями таких моделей являются: достаточно высокая сложность, большое количество допущений, потребность в наличии большого массива статистических данных. Кроме того, эти модели не всегда легко интерпретировать. Через несколько лет появляются модели, использующие нейронные сети для предсказания результатов футбольного матча [1, 9, 19]. Их можно рассматривать как универсальные аппроксиматоры нелинейных зависимостей, опробованные на экспериментальных данных. Для них также необходимо иметь массивы статистических данных, а физическое значение весов между нейронами после обучения определить нельзя.

На практике эксперты и футбольные фанаты обычно достаточно точно предсказывают результаты игры с помощью простого рассуждения, основанного на здравом смысле, например:

IF (если) команда  $T_{_1}$  постоянно выигрывала в предыдущих матчах

AND (и) команда  $T_2$  постоянно проигрывала в предыдущих матчах

AND (и) и в предыдущих матчах между командами  $T_1$  и  $T_2$  команда  $T_4$  выигрывала

THEN (то) следует ожидать выигрыша команды  $T_{\star}$ .

Эти выражения могут рассматриваться как концентрация накопленного экспертами опыта и могут быть формализованы с помощью нечеткой логики [21]. По этой причине мы использовали вышеприведенные выражения в качестве поддержки для построения модели прогнозирования.

Метод идентификации нелинейных зависимостей, основанный на нечеткой логике, был предложен в [10,11]. Различные теоретические и практические аспекты этого метода рассматриваются в [12-15]. В данной работе мы описываем применение нечетких баз знаний и метода [10,11] предсказания результатов футбольного матча.

Процесс моделирования имеет две фазы. В первой фазе определяется структуру нечеткой модели, которая объединяет искомый результат матча с результатами предыдущих игр для обеих команд. Для моделирования может использоваться обобщенный нечеткий аппроксиматор, предложенный в [10, 11]. Во второй фазе происходит настройка нечеткой модели, т.е. по доступным экспериментальным данным находятся оптимальные параметры. Для настройки используется комбинация генетического алгоритма и нейронной сети. Генетический алгоритм позволяет приблизительно определить область глобального минимального расстояния между моделью и экспериментальными результатами. Для настройки точных параметров модели и их адаптивной коррекции до появления новых экспериментальных данных используется нейронный полхол.

### 2. Нечеткая модель предсказания

### 2.1 Структура модели

Цель моделирования — расчет результата матча между командами  $T_1$  и  $T_2$ , характеризуемого разницей между забитыми и пропущенными голами y. Допустим  $y \in [y,y]=[-5,5]$ . Для построения модели предсказания определим значение y на следующих пяти уровнях:

- $d_{\star}$  большой проигрыш (BL), y = -5, -4, -3;
- $d_2$  малый проигрыш (SL), y = -2,-1;
- $d_3$  ничья (D), y=0;
- $d_{4}$  малый выигрыш (SW), y = 1,2;
- $\vec{d}_{\varepsilon}$  большой выигрыш (BW), y = 3.4.5.

Предположим, что на результат матча (у) влияют следующие факторы:

 $x_{\it 1}, x_{\it 2},\!\!\! \ldots, x_{\it 5}$  результаты пяти предыдущих игр для команды  $T_{\it i};$ 

 $x_{6}, x_{7}$ ...,  $x_{10}$  результаты пяти предыдущих игр для команды  $T_{c}$ ;

 $x_{{\scriptscriptstyle IP}}\,x_{{\scriptscriptstyle I2}}$  результаты двух предыдущих игр между командами  $T_{{\scriptscriptstyle I}}$ и  $T_{{\scriptscriptstyle J}}.$ 

Очевидно,,что значения факторов  $x_{1}$ ,  $x_{2}$ ,...,  $x_{12}$  изменяются в диапазоне от -5 до 5.

Иерархическая взаимосвязь между выходной переменной y и входными переменными  $x_{t_i}, x_{2_i},..., x_{t_2}$  представлена в виде дерева на рис. 1.

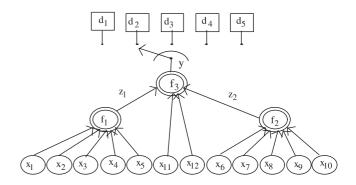



Рисунок 1. Структура модели предсказания

Это дерево можно представить в виде соотношений

$$y = f_3(z_1, z_2, x_1, x_2), \tag{1}$$

$$z_1 = f_1(x_1, x_2, ..., x_5), \tag{2}$$

$$z_2 = f_2(x_6, x_7, ..., x_{10}),$$

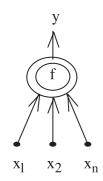
где  $z_{_1}(z_{_2})$  — предсказание результата матча для команды  $T_{_1}(T_{_2})$  на основании предыдущих результатов  $x_{_1}, x_{_2},..., x_{_n}$ 

Переменные  $x_1, x_2, x_3, x_4, x_5$ , и  $z_1(z_2)$  рассматриваются как лингвистические переменные [21], которые могут быть оценены с помощью вышеупомянутых нечетких условий: BL, SL, D, SW and BW.

Для описания соотношений (1)—(3) используется матрица знаний экспертов (таблицы 1,2). Эти матрицы соответствуют нечетким правилам Если-То (IF-THEN), выведенным в соответствии со здравым смыслом. Пример одного из таких правил представлен ниже в таблице 2:

IF 
$$(x_{11}=BW)$$
 AND  $(x_{12}=BW)$  AND  $(z_1=BW)$  AND  $(z_2=BL)$  OR  $(x_{11}=SW)$  AND  $(x_{12}=BW)$  AND  $(z_1=SW)$  AND  $(z_2=D)$  OR  $(x_{11}=BW)$  AND  $(x_{12}=D)$  AND  $(z_1=BW)$  AND  $(z_2=SL)$  THEN  $y=d_z$ .

**Таблица 1.** Знание о соотношениях (2) и (3)


| $X_1(X_6)$ | $x_2(x_7)$ | $x_3(x_8)$ | $X_4(X_9)$ | $x_{5}(x_{10})$ | $z_{1}(z_{2})$ |
|------------|------------|------------|------------|-----------------|----------------|
| BL         | BL         | BL         | BL         | BL              |                |
| BW         | SL         | BL         | SL         | BW              | BL             |
| SW         | BL         | SL         | SL         | SW              |                |
| SL         | SL         | SL         | SL         | SL              |                |
| D          | SL         | SL         | D          | D               | SL             |
| SW         | D          | SL         | SL         | SW              |                |
| D          | D          | D          | D          | D               |                |
| SL         | SW         | SW         | D          | SL              | D              |
| D          | D          | SW         | SW         | D               |                |
| SW         | SW         | SW         | SW         | SW              |                |
| D          | BW         | BW         | SW         | D               | SW             |
| SL         | SW         | SW         | BW         | SL              |                |
| BW         | BW         | BW         | BW         | BW              |                |
| SL         | BW         | SW         | BW         | SL              | BW             |
| BL         | SW         | BW         | SW         | BL              |                |

**Таблица 2.** Знание о соотношении

| $x_{11}$ | $x_{12}$ | $z_1$ | $Z_2$ | y                          |
|----------|----------|-------|-------|----------------------------|
| BL       | BL       | BL    | BW    |                            |
| BW       | D        | BL    | D     | $d_{\tau}$                 |
| SW       | BL       | SL    | SL    | ,                          |
| SW       | SL       | D     | SL    | $d_2$                      |
| D        | SL       | SL    | D     | -                          |
| SW       | D        | SL    | SL    |                            |
| D        | D        | D     | D     |                            |
| SL       | SW       | SW    | D     | $d_{_3}$                   |
| SL       | D        | SW    | SW    | _                          |
| SL       | SW       | SW    | BW    |                            |
| D        | BW       | BW    | SW    | $d_{\scriptscriptstyle A}$ |
| SL       | SW       | SW    | BW    | ,                          |
| BW       | BW       | BW    | BL    |                            |
| SW       | BW       | SW    | D     | $d_{5}$                    |
| BW       | D        | BW    | SL    | _                          |

### 2.2 Нечеткий аппроксиматор

Для применения баз нечетких правил (таблицы 1,2) используется обобщенный нечеткий аппроксиматор (рис. 2), предложенный в [10,11].



# **Рисунок 2.** Обобщенный нечеткий аппроксиматор

Этот аппроксиматор описывает зависимость  $y=f(x_1,x_2,...,x_n)$  между входными  $x_1,x_2,...,x_n$  и выходным y c помощью матрицы знаний экспертов (таблица 3).

**Таблица 3.** Матрицы знаний экспертов

| 1                   | IF <inputs></inputs>           |                                |  |                                | THEN <output></output> | Weight of rule       |
|---------------------|--------------------------------|--------------------------------|--|--------------------------------|------------------------|----------------------|
|                     | $x_1$                          | x <sub>2</sub>                 |  | x <sub>n</sub>                 | у                      |                      |
| 11                  | $a_1^{11}$                     | a <sub>2</sub> <sup>11</sup>   |  | a <sub>n</sub> <sup>11</sup>   |                        | $w_{l1}$             |
| 12                  | a <sub>1</sub> <sup>12</sup>   | a <sub>2</sub> <sup>12</sup>   |  | a <sub>n</sub> <sup>12</sup>   | $d_1$                  | w <sub>12</sub>      |
| <br>1k <sub>1</sub> | $a_l^{lk_l}$                   | $a_2^{1k_1}$                   |  | a <sub>n</sub> lk <sub>l</sub> |                        | <br>w <sub>lk1</sub> |
|                     |                                |                                |  |                                |                        |                      |
| m1                  | a <sub>1</sub> <sup>ml</sup>   | $a_2^{ml}$                     |  | a ml                           |                        | w <sub>m1</sub>      |
| m2                  | a <sub>l</sub> <sup>m2</sup>   | a <sub>2</sub> <sup>m2</sup>   |  | a <sub>n</sub> <sup>m2</sup>   | d <sub>m</sub>         | w <sub>m2</sub>      |
| mk <sub>m</sub>     | a <sub>l</sub> <sup>mk</sup> m | a <sub>2</sub> <sup>mk</sup> m |  | a <sub>n</sub> mk <sub>m</sub> |                        | <br>w <sub>mkm</sub> |

Нижеприведенная база нечетких знаний соответствует этой матрице:

IF 
$$[(x_i = a_i^{jt}) \text{ AND } ...(x_i = a_i^{jt}) \text{ AND } ...(x_n = a_n^{jt})]$$
 (c becom  $w_{ji}$ )... ... OR  $[(x_1 = a_i^{jkt}) \text{ AND } ...(x_i = a_i^{jkt}) \text{ AND } ...(x_n = a_n^{jkn})]$  (c becom  $w_{jkj}$ ),

THEN y=dj, j=1,m (4)

где  $a_i^{\ p}$  – лингвистическое условие для оценки переменной  $x_i$  в ряду с номером  $p\!=\!kj;$ 

kj — номер рядов сочетания, соответствующий классу dj оf выходной переменной y;

 $w_{ip}$  — число в интервале [0,1], характеризующее субъективное измерение уверенности эксперта по отношению к утверждению под номером p=kj.

Классы dj, j=1,m формируются переводом в однозначные числа диапазона [у,] выходной переменной в следующие m уровней:

$$[\ \underline{y},\overline{y}\ ] = [\ \underline{\underline{y},y_1}\ ) \cup \ldots \cup [\ \underline{y_{j-1},y_j}\ ] \cup \ldots \cup [\ \underline{y_{m-1},\overline{y}}\ ]\ .$$

Как показано в [10-12], нижеследующая аппроксимация объекта соответствует нечеткой базе знаний (4):

$$y = \frac{y m^{d_1}(y) + y_1 m^{d_2}(y) + ... + y_{m-1} m^{d_m}(y)}{m^{d_1}(y) + m^{d_2}(y) + ... + m^{d_m}(y)},$$
(5)

$$\mathbf{m}^{\mathsf{d}} \mathsf{j} \left( \mathsf{y} \right) = \max_{\mathsf{p}=\mathsf{l},\mathsf{k}_{\mathsf{i}}} \left\{ w_{\mathsf{j}\mathsf{p}} \min_{\mathsf{i}=\mathsf{l},\mathsf{n}} \left[ \mathbf{m}^{\mathsf{j}\mathsf{p}} \left( \mathsf{x}_{\mathsf{i}} \right) \right] \right\}, \tag{6}$$

$$m^{jp}(x_i) = \frac{1}{1 + \left(\frac{x_i - b_i^{jp}}{c_i^{jp}}\right)^2}, \quad i = \overline{1, n}, \quad j = \overline{1, m}, \quad p = k_j,$$

$$(7)$$

где  $\mu^{ij}(y)$  – членская функция выходной переменной y класса dj є $[y_{i,.}$ -, $y_{i}$  ] ;

 $\mu^{jp}(x_i)$ — членская функция переменной  $\mathbf{x}_i$ , по условию  $a^p_i$ ,  $b^{jp}_i$ ,  $c^{jp}_i$ — параметры членской функции настройки для переменной  $x_i$  со следующей интерпретацией: b —координаты максимума,  $\mu^{jp}(b^{jp}_i)$ =1; с — параметр концентрации (компрессия — расширение).

Соотношения (5)-(7) определяют общую модель нелинейной функции  $y = f(x_p, x_2, ..., x_n)$  таким образом

$$y = F(X, W, B, C), \tag{8}$$

где  $X = (x_1, x_2, ..., x_n)$  – вектор входных переменных,

 $W = (w_p, w_2, ..., w_n)^{-}$  весовой вектор нечетких правил,

 $B = (b_p b_p ..., b_n)$  и  $C = (c_p c_p ..., c_n)$  – векторы параметров членской функции,

N – общее количество правил,

q – общее количество нечетких условий,

F — оператор связи вход-выход, соответствующий формулам (5)-(7).

### 2.3. Нечеткая модель предсказания

С использованием нечеткого аппроксиматора (8) (рис.2) и дерева предсказаний (рис.1), модель предсказания может быть представлена в следующем виде:

$$Y = F_{ij}(x_{1}, x_{2}, ..., x_{1}, W_{1}, B_{1}, C_{1}, W_{2}, B_{2}, C_{2}, W_{3}, B_{3}, C_{3})$$
(9)

где  $F_y$  — оператор связи вход-выход, соответствующий формулам (1)- (3),

$$W_1 = ((w_1^{11}, ..., w_1^{13}), ..., (w_1^{51}, ..., w_1^{53})),$$

$$W_2 = ((w_2^{11},...,w_2^{13}),...,(w_2^{51},...,w_2^{53})),$$

$$W_3 = ((w_3^{11}, ..., w_3^{13}), ..., (w_3^{51}, ..., w_3^{53})),$$

векторы весов правил в формулах (2), (3), (1), соответственно;

$$B_{\rm l} = (b_{\rm l-5}^{\rm BL}, b_{\rm l-5}^{\rm SL}, b_{\rm l-5}^{\rm D}, b_{\rm l-5}^{\rm SW}, b_{\rm l-5}^{\rm BW}) \ B_{\rm 2} = (b_{\rm 6-10}^{\rm BL}, b_{\rm 6-10}^{\rm SL}, b_{\rm 6-10}^{\rm D}, b_{\rm 6-10}^{\rm SW}, b_{\rm 6-10}^{\rm BW})$$

 $B_3=(b_{11-12}^{BL},b_{11-12}^{SL},b_{11-12}^{D},b_{11-12}^{SW},b_{11-12}^{BW})$  — векторы центров переменных  $x_p,x_2,...,x_s,x_6,x_7,...,x_{10}$ , и  $x_{11},x_{12}$ — членская функция условий BL,SL,...,BW.

$$C_{1} = (c_{1\!-\!5}^{\mathit{BL}}, c_{1\!-\!5}^{\mathit{SL}}, c_{1\!-\!5}^{\mathit{D}}, c_{1\!-\!5}^{\mathit{SW}}, c_{1\!-\!5}^{\mathit{BW}}, c_{1\!-\!5}^{\mathit{BW}}, \quad C_{2} = (c_{6\!-\!10}^{\mathit{BL}}, c_{6\!-\!10}^{\mathit{SL}}, c_{6\!-\!10}^{\mathit{D}}, c_{6\!-\!10}^{\mathit{SW}}, c_{6\!-\!10}^{\mathit{BW}})$$

 $C_3 = (c_{11-12}^{BL}, c_{11-12}^{SL}, c_{1}^{D}, c_{1}^{C}$  – векторы параметров концентрации для переменных  $x_{17}x_{2},...,x_{5}, x_{6}x_{7},...,x_{10}ux_{11},x_{12}$  – членская функция условий BL, SL,...,BW.

В модели (9) мы допускаем, что для всех переменных  $x_p x_2,...,x_5$  нечеткие условия BL, SL,...,BW имеют одинаковую членскую функцию. Такое же допущение справедливо для переменных  $x_6, x_7,...,x_{10}$  И переменных  $x_{11}, x_{12}$  (см. рис.6).

### 3. Постановка задачи настройки нечеткой модели

Обучающие данные в форме пар M экспериментальных данных предположительно получены с помощью турнирных таблиц:

$$\langle \hat{X}_l, \hat{y}_l \rangle$$
,  $l=\overline{1,M}$ ,

где – 
$$\hat{X_l} = \left\{ (\hat{x}_1^l, \hat{x}_2^l, ..., \hat{x}_5^l), (\hat{x}_6^l, \hat{x}_7^l, ..., \hat{x}_{10}^l), (\hat{x}_{11}^l, \hat{x}_{12}^l) \right\}$$

результаты предыдущих матчей команд  $T_{_{\it f}}$ и  $T_{_{\it 2}}$  в опыте под номером l, у $_{_{\it 1}}$  – результат матча между командами  $T_{_{\it f}}$  и  $T_{_{\it 2}}$  в опыте под номером l.

Сущность настройки модели предсказания состоит в нахождении таких параметров членских функций (b-, c-) и весов нечетких правил (w-), которые обеспечивают минимальное расхождение между теоретическими и экспериментальными результатами:

$$\sum_{l=1}^{M} \left( F_{y}(\hat{x}_{1}^{l}, \hat{x}_{2}^{l}, ..., \hat{x}_{12}^{l}, W_{i}, B_{i}, C_{i}) - \hat{y}_{l} \right)^{2} = \min_{W_{i}, B_{i}, C_{i}}, \quad i = 1, 2, 3$$

Для решения нелинейной оптимизационной задачи (10) предлагается комбинация генетического алгоритма и нейронной сети. Генетический алгоритм обеспечивает приблизительное офф-лайновое нахождение области глобального минимума; а нейронная сеть используется для он-лайнового улучшения неизвестных значений параметров.

### 4. Генетическая настройка нечеткой модели

### 4.1 Структура алгоритма

Для реализации генетического алгоритма решения оптимизационной задачи (10) необходимо определить следующие главные операции и понятия [3, 11]: хромосома – кодированная версия решения, популяция — первоначальный набор версий решений, функция соответствия — критерий выбора версий; кроссовер — операция генерирования вариантов-потомков от вариантов-родителей; мутация — случайное изменение элементов хромосом.

Если P(f)- хромосомы –родители и C(t) – хромосомыпотомки в t -й итерации, то общая структура генетического алгоритма будет иметь такую форму:

### begin

t = 0

Определить начальную популяцию как P(t) Оценить P(t) используя функцию соответствия while ( условие завершения не соблюдено) do Генерировать C(t) операцией кроссовера с P(t) Выполнить мутацию C(t)

Оценить C(t) используя функцию соответствия Выбрать популяцию P(t+1) из P(t) и C(t) t:=t+l

end;

end.

### 4.2. Кодирование

Определим хромосому как вектор-ряд бинарных кодов параметров членской функции и весов правил (Рис.3).



Рисунок 3. Структура хромосомы

### 4.3 Кроссовер и мутация

Операция кроссовера определена в рис. 4. Она состоит в обмене частями хромосом в каждом их векторов параметров членских функций ( $B_p$ ,  $C_p$ ,  $B_p$ ,  $C_2$ ,  $B_3$ ,  $C_3$ ) и каждом их векторов весов правил ( $W_p$ ,  $W_p$ ,  $W_p$ ). Точки кроссовера, показанные пунктирными линиями, выбираются случайным образом. Верхние индексы (1 и 2) в векторах параметров соответствуют первой и второй хромосоме-родителям.

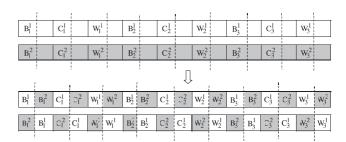



Рисунок 4. Структура операции кроссовера

Мутация ( Mu ) предполагает случайное изменение (с некоей вероятностью) элементов хромосом:

$$\begin{split} & \text{Mu}\!\left(\mathbf{w}_{jp}\right) \!\! = \text{RANDOM}\left(\left[0,\!1\right]\right), \\ & \text{Mu}\!\left(\mathbf{b}_{i}^{\,jp}\right) \!\! = \text{RANDOM}\left(\left[\left[\underline{y},\overline{y}\right]\right)\right), \\ & \text{Mu}\!\left(\mathbf{c}_{i}^{\,jp}\right) \!\! = \text{RANDOM}\!\left(\left[\left[\underline{c}_{i}^{\,jp},\overline{\mathbf{c}}_{i}^{\,jp}\right]\right)\right), \end{split}$$

где  $RANDOM([\underline{x}, x])$  — операция нахождения случайного числа, равномерно распределенного в интервале  $[\underline{x}, x]$ .

# 4.4 Выбор

Выбор хромосом-родителей для операции кроссовера не должен выполняться случайным образом. Используем процедуру выбора, отдавая предпочтение лучшим решениям. Чем больше функция пригодности некоторых хромосом, тем больше вероятность получения такой хромосо-

мой потомков [3, 11]. Используем критерий (10) со знаком минус в качестве функции пригодности, т.е., чем выше степень адаптируемости хромосомы к выполнению критерия оптимизации, тем больше функция пригодности. При выполнении генетического алгоритма размеры популяции остаются неизменными. Поэтому важно удалять хромосомы с худшей функцией пригодности их полученной популяции после операций кроссовера и мутации.

### 5. Нейронная настройка нечеткой модели

### 5. Нейро- нечеткая сеть предсказания

Для он-лайновой настройки нечеткой модели предсказания введем нечеткий правила Если-То (IF-THEN) в специальную нейронную сеть, построенную с использованием элементов таб. 4 [14].

Элементы нейро-нечеткой сети.

| Узел сети        | Имя узла                    | Функция<br>узла           | Узел сети                                            | Имя узла                                                      | Функция<br>узла                                                          |
|------------------|-----------------------------|---------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|
| <u>u</u>         | Ввод<br>Нечетное<br>условие | $v=u$ $v=m^{T}(u)$        | $u_1$ $v$                                            | Класс<br>правил                                               | $v = \sum_{i=1}^{l} u_i$                                                 |
| U <sub>1</sub> V | Нечетное<br>правило         | $v = \prod_{i=1}^{l} u_i$ | u <sub>1</sub> · · · · · · · · · · · · · · · · · · · | Устранение нечетности $(\bar{d}_j)$ центр класса $\bar{d}_j)$ | $v = \frac{\sum_{j=1}^{m} u_{j} \overline{d}_{j}}{\sum_{j=1}^{m} u_{j}}$ |

Полученная таким образом нейро-нечеткая сеть показана на рис.5.

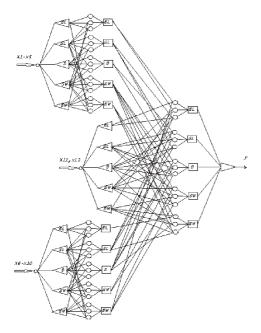



Рисунок 5. Нейро-нечеткая сеть предсказания

### 5.2 Рекурсивные соотношения для настройки

Следующая система рекурсивных соотношений используется для он-лайнового обучения модели предсказания:

$$w_{jp}(t+1)=w_{jp}(t)-h\frac{\partial E_{t}}{\partial w_{jp}(t)},$$

$$c_{i}^{jp}(t+1)=c_{i}^{jp}(t)-h\frac{\partial E_{t}}{\partial c_{i}^{jp}(t)},$$

$$b_{i}^{jp}(t+1)=b_{i}^{jp}(t)-h\frac{\partial E_{t}}{\partial b_{i}^{jp}(t)},$$
(12)

$$c_{i}^{jp}(t+1)=c_{i}^{jp}(t)-h\frac{\partial E_{t}}{\partial c_{i}^{jp}(t)}, \qquad (12)$$

$$b_{i}^{jp}(t+1)=b_{i}^{jp}(t)-h\frac{\partial E_{t}}{\partial b_{i}^{jp}(t)},$$
(13)

минимизируя критерий

 ${
m E_t} = \!\! \frac{1}{2} (\hat{y}_{
m t} - y_{
m t})^2$  , используемый для теории нейронных сетей, где  $y_{
m t}$  и  $y_{
m t}$  – теоретическая и экспериментальная разница забитых и

Таблица 4. пропущенных голов на г-м шаге обучения;

 $w_{jp}(t), \; c_i^{\; jp}(t), \; b_i^{\; jp}(t) \; - \;$ веса правил и параметры членских функций на t-м шаге обучения; η – параметр обучения, который может быть выбран в соответствии с рекомендациями [18].

Формулы для расчета частичных производных в рекурсивных соотношениях (11-13) представлены в Приложении.

# 6. Результаты компьютерного эксперимента

Для настройки нечеткой модели использовались результаты турнирных таблиц Финского футбольного чемпионата, принесшего минимальное количество сюрпризов. Данные обучения включают результаты 1056 матчей последних 8 лет с 1994 до 2001. Результаты настройки нечеткой модели представлены в таблицах 5-8 и на рис.6.

Таблица 5. Веса нечетких правил в соотношении (2)

| Генетический алгоритм | Нейро-нечеткая модель |
|-----------------------|-----------------------|
| 1.0                   | 0.989                 |
| 1.0                   | 1.000                 |
| 1.0                   | 1.000                 |
| 0.8                   | 0.902                 |
| 0.5                   | 0.561                 |
| 0.8                   | 0.505                 |
| 0.6                   | 0.580                 |
| 1.0                   | 0.613                 |
| 0.5                   | 0.948                 |
| 1.0                   | 0.793                 |
| 0.9                   | 0.868                 |
| 0.6                   | 0.510                 |
| 0.6                   | 0.752                 |
| 0.5                   | 0.500                 |
| 0.5                   | 0.500                 |

Таблица 6. Веса нечетких правил в соотношении (3)

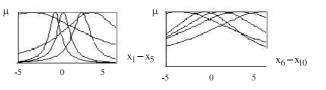

| Генетический алгоритм | Нейро-нечеткая модель |
|-----------------------|-----------------------|
| 0.7                   | 0.926                 |
| 0.9                   | 0.900                 |
| 0.7                   | 0.700                 |
| 0.9                   | 0.954                 |
| 0.7                   | 0.700                 |
| 1.0                   | 1.000                 |
| 0.9                   | 0.900                 |
| 1.0                   | 1.000                 |
| 0.6                   | 0.600                 |
| 1.0                   | 1.000                 |
| 0.7                   | 0.700                 |
| 1.0                   | 1.000                 |
| 0.8                   | 0.990                 |
| 0.5                   | 0.500                 |
| 0.6                   | 0.600                 |

Таблица 7. Веса нечетких правил в соотношении (1)

| Генетический алгоритм | Нейро-нечеткая модель |
|-----------------------|-----------------------|
| 0.7                   | 0.713                 |
| 0.8                   | 0.782                 |
| 1.0                   | 0.996                 |
| 0.5                   | 0.500                 |
| 0.5                   | 0.541                 |
| 0.5                   | 0.500                 |
| 0.5                   | 0.500                 |
| 0.5                   | 0.522                 |
| 0.6                   | 0.814                 |
| 1.0                   | 0.903                 |
| 0.6                   | 0.503                 |
| 1.0                   | 0.677                 |
| 1.0                   | 0.515                 |
| 0.5                   | 0.514                 |
| 1.0                   | 0.999                 |

Таблица 8. b- и c- параметры членских функций после настройки

| Усло- | Гене                             | тич | неский                                           | алі | горит:                           | M                | Нейро-нечетская сеть |       |                                   |                  |                                  |       |  |  |
|-------|----------------------------------|-----|--------------------------------------------------|-----|----------------------------------|------------------|----------------------|-------|-----------------------------------|------------------|----------------------------------|-------|--|--|
| вия   | X <sub>1</sub> ,X <sub>2</sub> , | ,X5 | X <sub>6</sub> ,X <sub>7</sub> ,,X <sub>10</sub> |     | x <sub>11</sub> ,x <sub>12</sub> | $X_{11}, X_{12}$ |                      | ,X5   | X <sub>6</sub> , X <sub>7</sub> , | ,X <sub>10</sub> | X <sub>11</sub> ,X <sub>12</sub> |       |  |  |
| вия   | b-                               | C-  | b-                                               | C-  | b-                               | C-               | b-                   | c-    | b-                                | c-               | b-                               | C-    |  |  |
| BL    | 4.160                            | 9   | -5.153                                           | 9   | -5.037                           | 3                | -4.244               | 7.772 | -4.524                            | 9.303            | -                                | 1.593 |  |  |
|       |                                  |     |                                                  |     |                                  |                  |                      |       |                                   |                  | 4.306                            |       |  |  |
| SL    | -2.503                           | 1   | -2.212                                           | 5   | -3.405                           | 1                | -1.468               | 0.911 | -1.450                            | 5.467            | -2.563                           | 0.555 |  |  |
| D     | -0.817                           | 1   | 0.487                                            | 1   | 0.807                            | 1                | -0.331               | 0.434 | 0.488                             | 7.000            | 0.050                            | 0.399 |  |  |
| SW    | 2.471                            | 3   | 2.781                                            | 9   | 2.749                            | 7                | 1.790                | 1.300 | 2.781                             | 9.000            | 2.750                            | 7.000 |  |  |
| BW    | 4.069                            | 5   | 5.749                                            | 9   | 5.238                            | 3                | 3.000                | 4.511 | 5.750                             | 9.000            | 3.992                            | 1.234 |  |  |



BL SL D SW BW

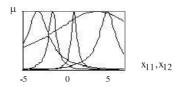



Рисунок. 6. Членские функции после настройки

Для тестирования модели предсказания использовались результаты 350 матчей с 1991 до 1993. Фрагмент тестовых данных и результатов предсказания показан в таблице 9, где:

 $T_{p}$   $T_{2}$  —названия команд, y,d — реальные (экспериментальные) результаты,

 $y_{_{G^{\prime}}}\,d_{_{G}}$  – результаты предсказания после генетической настройки нечеткой модели,

 $\mathbf{y}_{\scriptscriptstyle N}d_{\scriptscriptstyle N}$ -результаты предсказания после нейронной настройки нечеткой модели.

Символ \* указывает на несовпадения теоретических и экспериментальных результатов.

Фрагмент результатов предсказания

Таблица 9.

| 1  | $T_{1}$ | $T_2$   |      | x1 | x2 | х3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | Резуль-<br>тат | $\hat{y}$ | $\hat{d}$ | $y_{_{ m G}}$ | $d_{\scriptscriptstyle G}$ | $y_{_{ m N}}$ | $\mathrm{D}_{\scriptscriptstyle N}$ |
|----|---------|---------|------|----|----|----|----|----|----|----|----|----|-----|-----|-----|----------------|-----------|-----------|---------------|----------------------------|---------------|-------------------------------------|
| 1  | Kuusysi | Reipas  | 1991 | 2  | 1  | 2  | 0  | 1  | -1 | 0  | 1  | -2 | -3  | 2   | 1   | 2-0            | 2         | d4        | 1             | d4                         | 1             | d4                                  |
| 2  | lives   | PPT     | 1991 | 1  | 3  | -1 | 1  | 0  | 0  | 2  | -1 | -2 | 0   | 0   | 0   | 2-1            | 1         | d4        | 0             | d3*                        | 0             | d3*                                 |
| 3  | Haka    | Jaro    | 1991 | -1 | 2  | 0  | -1 | 1  | 1  | 0  | -2 | -1 | -2  | -1  | 1   | 1-1            | 0         | d3        | 0             | d3                         | 0             | d3                                  |
| 4  | MP      | OTP     | 1991 | 3  | 1  | 2  | 0  | 2  | -1 | -2 | 1  | -2 | -3  | 1   | 3   | 4-0            | 4         | d5        | 3             | d5                         | 3             | d5                                  |
| 5  | KuPS    | НЈК     | 1991 | -1 | -3 | -4 | 1  | -3 | 1  | 0  | 2  | 0  | 0   | -2  | 0   | 1-3            | -2        | d2        | -1            | d2                         | -1            | d2                                  |
| 6  | IPS     | RoPS    | 1991 | 3  | 1  | 2  | -2 | 0  | 2  | 0  | 1  | -1 | 1   | 0   | -1  | 1-0            | 1         | d4        | 0             | d3*                        | 0             | d3*                                 |
| 7  | PPT     | Jaro    | 1991 | 0  | -5 | -1 | 0  | 1  | 1  | 2  | -2 | -1 | 1   | 1   | -3  | 0-1            | -1        | d2        | -1            | d2                         | -1            | d2                                  |
| 8  | Haka    | Reipas  | 1991 | 2  | -1 | 3  | 1  | 4  | 2  | -2 | 0  | -1 | 0   | -1  | 2   | 3-0            | 3         | d5        | 2             | d4*                        | 2             | d4*                                 |
| 9  | OTP     | Kuusysi | 1991 | -1 | -2 | -3 | -2 | 0  | 1  | 3  | 4  | -1 | 2   | -2  | -1  | 1-4            | -3        | d1        | -3            | d1                         | -3            | d1                                  |
| 10 | НЈК     | TPS     | 1991 | 1  | 1  | 1  | 0  | 2  | 0  | 1  | -1 | 2  | -3  | 0   | 2   | 2-0            | 2         | d4        | 2             | d4                         | 2             | d4                                  |
| 11 | МуРа    | Jaro    | 1992 | -3 | 1  | 2  | 1  | 0  | 2  | 1  | -2 | -1 | 0   | -2  | 0   | 0-0            | 0         | d3        | 0             | d3                         | 0             | d3                                  |
| 12 | Jazz    | lives   | 1992 | 2  | 2  | 1  | -1 | 0  | 3  | 4  | -1 | 0  | 1   | 1   | -1  | 2-1            | 1         | d4        | 0             | d3*                        | 1             | d4                                  |
| 13 | Haka    | RoPS    | 1992 | -2 | -2 | 0  | 1  | 1  | -1 | 1  | 1  | 1  | 0   | 1   | 3   | 1-1            | 0         | d3        | 1             | d4*                        | 1             | d4*                                 |
| 14 | НЈК     | Oulu    | 1992 | 2  | 3  | 0  | 0  | 1  | 0  | -5 | 1  | -2 | -1  | -1  | 2   | 4-0            | 4         | d5        | 2             | d4*                        | 3             | d5                                  |
| 15 | MP      | Kuusysi | 1992 | 0  | 1  | -2 | -1 | -1 | 3  | 1  | 2  | 0  | 1   | 0   | -2  | 0-3            | -3        | d1        | -3            | d1                         | -3            | d1                                  |
| 16 | KuPS    | HJK     | 1992 | -2 | -1 | -3 | 1  | -2 | 4  | 2  | 1  | 2  | 1   | -2  | -3  | 0-5            | -5        | d1        | -4            | d1                         | -4            | d1                                  |
| 17 | Kuusysi | MP      | 1992 | 0  | -1 | 3  | 2  | -1 | -3 | 2  | -1 | -2 | 0   | 1   | 0   | 3-1            | 2         | d4        | 1             | d4                         | 1             | d4                                  |
| 18 | IPS     | Haka    | 1992 | -1 | 2  | 3  | -1 | -2 | 0  | -1 | 0  | 3  | 1   | -1  | 1   | 2-2            | 0         | d3        | 0             | d3                         | 0             | d3                                  |
| 19 | RoPS    | МуРа    | 1992 | -2 | -1 | 2  | 0  | -1 | 1  | -1 | 1  | 1  | -2  | 1   | -1  | 1-2            | -1        | d2        | 0             | d3*                        | 0             | d3*                                 |
| 20 | Jazz    | lives   | 1992 | -2 | 1  | -3 | 5  | -1 | 1  | 1  | -2 | 0  | -1  | 2   | 0   | 1-0            | 1         | d4        | 1             | d4                         | 1             | d4                                  |
| 21 | TPS     | Jaro    | 1992 | -2 | -1 | 2  | -1 | -3 | 1  | 0  | 2  | -1 | 3   | 1   | -2  | 0-2            | -2        | d2        | -1            | d2                         | -1            | d2                                  |

# Продолжение таблицы 9.

|    |          | -                                   |      |    |    |    |    |    |    |    |    |    |     |     |     | D              |           |           |               | i -                        | 1                   |         |
|----|----------|-------------------------------------|------|----|----|----|----|----|----|----|----|----|-----|-----|-----|----------------|-----------|-----------|---------------|----------------------------|---------------------|---------|
| 1  | $T_{_1}$ | $\mathrm{T}_{\scriptscriptstyle 2}$ |      | x1 | x2 | х3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | Резуль-<br>тат | $\hat{y}$ | $\hat{d}$ | $y_{_{ m G}}$ | $d_{\scriptscriptstyle G}$ | $y_{_{\mathrm{N}}}$ | $D_{N}$ |
| 22 | Haka     | MyPa                                | 1992 | 1  | 1  | -1 | 0  | 1  | 0  | 3  | 2  | 1  | -1  | -1  | -3  | 0-1            | -1        | d2        | -2            | d2                         | -2                  | d2      |
| 23 | HJK      | RoPS                                | 1992 | 1  | 2  | 0  | -1 | 1  | -1 | 2  | 2  | -1 | 1   | 0   | 0   | 2-1            | 1         | d4        | 0             | d3*                        | 0                   | d3*     |
| 24 | MP       | Kuusysi                             | 1992 | 1  | -1 | -2 | -3 | 1  | 1  | -1 | -2 | 2  | 3   | -2  | 1   | 0-2            | -2        | d2        | -1            | d2                         | -1                  | d2      |
| 25 | lives    | Kups                                | 1992 | 3  | 0  | -2 | 2  | -2 | 1  | 1  | -1 | 0  | -2  | 1   | 0   | 1-0            | 1         | d4        | 1             | d4                         | 1                   | d4      |
| 26 | Haka     | HJK                                 | 1992 | 0  | -2 | -1 | -1 | 0  | 2  | 3  | -1 | 0  | 3   | -1  | -2  | 0-3            | -3        | d1        | -3            | d1                         | -3                  | d1      |
| 27 | Jaro     | MyPa                                | 1992 | -1 | -1 | 1  | 2  | 1  | -3 | 1  | 2  | 1  | 0   | 1   | 1   | 1-1            | 0         | d3        | 1             | d4*                        | 0                   | d3      |
| 28 | RoPS     | TPS                                 | 1992 | -1 | 1  | -1 | 1  | 4  | -5 | -2 | 3  | -1 | -2  | 5   | 1   | 2-0            | 2         | d4        | 2             | d4                         | 1                   | d4      |
| 29 | MP       | lives                               | 1992 | 1  | 2  | -1 | 1  | 0  | 0  | 1  | 0  | 0  | -1  | 1   | -2  | 2-3            | -1        | d2        | -1            | d2                         | -1                  | d2      |
| 30 | Kuusysi  | KuPS                                | 1992 | 2  | 2  | 0  | 3  | 1  | -1 | -1 | 1  | -3 | 0   | 2   | 3   | 4-1            | 3         | d5        | 3             | d5                         | 3                   | d5      |
| 31 | Jazz     | MP                                  | 1993 | 2  | 2  | 2  | 0  | 3  | -2 | -1 | 0  | -1 | -3  | 4   | 3   | 5-0            | 5         | d5        | 4             | d5                         | 4                   | d5      |
| 32 | Kuusysi  | TPS                                 | 1993 | 1  | -1 | 0  | -1 | 1  | -2 | 2  | 0  | -1 | 1   | 0   | 1   | 0-0            | 0         | d3        | 0             | d3                         | 0                   | d3      |
| 33 | MyPa     | RoPS                                | 1993 | -1 | -1 | 2  | 2  | 3  | 2  | -1 | 1  | 2  | -2  | 3   | -1  | 2-0            | 2         | d4        | 1             | d4                         | 1                   | d4      |
| 34 | Haka     | HJK                                 | 1993 | -3 | -1 | -2 | 1  | 0  | 1  | 4  | 1  | 2  | 0   | -1  | -2  | 1-3            | -2        | d2        | -1            | d2                         | -1                  | d2      |
| 35 | Jaro     | lives                               | 1993 | 2  | 0  | -1 | 0  | -1 | -2 | -1 | -2 | 2  | 1   | 2   | 0   | 2-1            | 1         | d4        | 1             | d4                         | 1                   | d4      |
| 36 | lives    | HJK                                 | 1993 | 1  | -2 | -1 | -1 | 1  | 3  | 1  | 2  | 0  | 1   | -1  | -1  | 0-2            | -2        | d2        | -1            | d2                         | -1                  | d2      |
| 37 | Jazz     | Jaro                                | 1993 | 2  | 1  | 0  | 1  | 5  | -1 | -2 | -2 | 1  | -1  | 2   | 1   | 3-0            | 3         | d5        | 2             | d4*                        | 2                   | d4*     |
| 38 | MyPa     | MP                                  | 1993 | 1  | 3  | 1  | -1 | 1  | -1 | 0  | 2  | -1 | 1   | 1   | 0   | 1-0            | 1         | d4        | 1             | d4                         | 1                   | d4      |
| 39 | Kuusysi  | Haka                                | 1993 | -1 | -2 | 1  | 1  | 2  | -1 | -3 | 1  | -5 | 2   | 3   | -1  | 3-1            | 2         | d4        | 1             | d4                         | 1                   | d4      |
| 40 | TPS      | RoPS                                | 1993 | -1 | 1  | -2 | 1  | 2  | 1  | 2  | -1 | 1  | -2  | 1   | 1   | 1-0            | 1         | d4        | 1             | d4                         | 1                   | d4      |
| 41 | MP       | HJK                                 | 1993 | -1 | -1 | 0  | 2  | -1 | 2  | 3  | 1  | -1 | 1   | -2  | 1   | 1-2            | -1        | d2        | 0             | d3*                        | 0                   | d3*     |
| 42 | Kuusysi  | Jaro                                | 1993 | 2  | 2  | -2 | 1  | 2  | 0  | -1 | 2  | -2 | 0   | 1   | 2   | 2-1            | 1         | d4        | 1             | d4                         | 1                   | d4      |
| 43 | Jazz     | Haka                                | 1993 | 2  | 3  | 2  | -1 | 1  | -1 | -3 | -4 | -2 | 0   | 2   | 2   | 4-0            | 4         | d5        | 3             | d5                         | 3                   | d5      |
| 44 | FinnPa   | MyPa                                | 1993 | -1 | 1  | -2 | -1 | 2  | 1  | -2 | -1 | 1  | 0   | -1  | -1  | 1-2            | -1        | d2        | -1            | d2                         | -1                  | d2      |
| 45 | TPS      | lives                               | 1993 | 2  | 1  | 2  | 1  | -1 | 2  | 2  | -2 | 1  | -3  | 0   | 2   | 2-0            | 2         | d4        | 1             | d4                         | 1                   | d4      |
| 46 | RoPS     | Jazz                                | 1993 | -1 | -1 | 2  | -2 | -1 | 4  | 1  | 5  | 0  | 2   | 1   | -3  | 2-5            | -3        | d1        | -3            | d1                         | -3                  | d1      |
| 47 | МуРа     | lives                               | 1993 | 5  | 0  | 2  | 1  | 1  | -3 | -1 | -2 | 1  | -2  | 3   | 0   | 5-1            | 4         | d5        | 3             | d5                         | 3                   | d5      |
| 48 | TPV      | Kuusysi                             | 1993 | -2 | -1 | 0  | 1  | 0  | -1 | 0  | 2  | -1 | 0   | 0   | 1   | 0-0            | 0         | d3        | 0             | d3                         | 0                   | d3      |
| 49 | RoPS     | HJK                                 | 1993 | -1 | -1 | 1  | -2 | 0  | 3  | 1  | -2 | 1  | 1   | -2  | 1   | 0-2            | -2        | d2        | 0             | d3*                        | -1                  | d2      |
| 50 | TPS      | Jaro                                | 1993 | -1 | -1 | 1  | 2  | 2  | -2 | -1 | 1  | -2 | 1   | 3   | 1   | 1-0            | 1         | d4        | 1             | d4                         | 1                   | d4      |

Характеристики эффективности алгоритмов настройки нечеткой модели для тестовых данных размещены в таблице 10.

Таблица 10. Алгоритмы настройки характеристик эффективности

| Характеристин | и               | Генетическая     | Нейронная       |  |  |  |  |
|---------------|-----------------|------------------|-----------------|--|--|--|--|
| эффективности | 1               | настройка        | настройка       |  |  |  |  |
| Время настрой | ки              | 52 мин           | 7 мин           |  |  |  |  |
| Количество ит | ераций          | 25000            | 5000            |  |  |  |  |
| Вероятность   | $d_I$ - большой | 30/35=0.857      | 32/35=0.914     |  |  |  |  |
| правильного   | проигрыш        |                  |                 |  |  |  |  |
| предсказания  | $d_2$ -малый    | 64/84 = 0.762    | 70 / 84 = 0.833 |  |  |  |  |
| для разных    | проигрыш        |                  |                 |  |  |  |  |
| решений       | $d_3$ -ничья    | 38/49 = 0.775    | 43/49 = 0.877   |  |  |  |  |
|               | $d_4$ — малый   | 97 / 126 = 0.770 | 106/126 = 0.841 |  |  |  |  |
|               | выигрыш         |                  |                 |  |  |  |  |
|               | $d_5$ - большой | 49/56 = 0.875    | 53 / 56 = 0.946 |  |  |  |  |
|               | выигрыш         |                  |                 |  |  |  |  |

Таблица 10 показывает, что лучшие результаты предсказания получаются для предельных классов решения (большой выигрыш и проигрыш  $d_1$  и  $d_5$ ), а худшие результаты предсказания — для небольшого выигрыша и проигрыша ( $d_2$  и  $d_4$ ).

### Приложение

Частные производные в соотношениях (11) – (13) характеризуют чувствительность ошибки ( $E_t$ ) к изменению параметров нейро-нечеткой сети и рассчитываются следующим образом:

$$\begin{split} &\frac{\partial E_t}{\partial w_3^{jp}} = e_1 e_2 e_3 \, \frac{\partial m^{lj}\left(y\right)}{\partial w_3^{jp}}, \quad \frac{\partial E_t}{\partial c_{11,12}^{jp}} = e_1 e_2 e_3 e_4 \, \frac{\partial m^{jp}\left(x_i\right)}{\partial c_{11,12}^{jp}}, \\ &\frac{\partial E_t}{\partial b_{11,12}^{jp}} = e_1 e_2 e_3 e_4 \, \frac{\partial m^{jp}\left(x_i\right)}{\partial b_{11,12}^{jp}}, \quad \frac{\partial E_t}{\partial w_1^{jp}} = e_1 e_2 e_3 e_5 e_6 \, \frac{\partial m^{jp}\left(z_1\right)}{\partial w_1^{jp}}, \\ &\frac{\partial E_t}{\partial c_{1-5}^{jp}} = e_1 e_2 e_3 e_5 e_6 e_8 \, \frac{\partial m^{jp}\left(x_i\right)}{\partial c_{1-5}^{jp}}, \quad \frac{\partial E_t}{\partial b_{1-5}^{jp}} = e_1 e_2 e_3 e_5 e_6 e_8 \, \frac{\partial m^{jp}\left(x_i\right)}{\partial b_{1-5}^{jp}}, \\ &\frac{\partial E_t}{\partial b_{2-5}^{jp}} = e_1 e_2 e_3 e_5 e_7 \, \frac{\partial m^{jp}\left(z_2\right)}{\partial w_2^{jp}}, \quad \frac{\partial E_t}{\partial c_{6-10}^{jp}} = e_1 e_2 e_3 e_5 e_7 e_9 \, \frac{\partial m^{jp}\left(x_i\right)}{\partial c_{6-10}^{jp}}, \end{split}$$

$$\frac{\partial E_{t}}{\partial b_{6-10}^{jp}} = e_{1}e_{2}e_{3}e_{5}e_{7}e_{9} \; \frac{\partial \textit{m}^{jp}\left(x_{i}\right)}{\partial b_{6-10}^{jp}}, \label{eq:equation:equation:equation:equation}$$

где

$$e_1 = \frac{\partial E_t}{\partial y} = y_t - \widehat{y}_t, \quad e_2 = \frac{\partial y}{\partial \textbf{\textit{m}}^{dj}(y)} = \frac{\overline{d}_j \sum\limits_{j=1}^m \textbf{\textit{m}}^{dj}(y) - \sum\limits_{j=1}^m \overline{d}_j \textbf{\textit{m}}^{dj}(y)}{\left(\sum\limits_{j=1}^m \textbf{\textit{m}}^{dj}(y)\right)^2}$$

$$\begin{split} e_{3} &= \frac{\partial \textit{m}^{lj}(y)}{\partial \left( \textit{m}^{jp}(z_{1}) \textit{m}^{jp}(z_{2}) \textit{m}^{jp}(x_{11}) \textit{m}^{jp}(x_{12}) \right)} = w_{3}^{jp} \ , \\ e_{4} &= \frac{\partial \left( \textit{m}^{jp}(z_{1}) \textit{m}^{jp}(z_{2}) \textit{m}^{jp}(x_{11}) \textit{m}^{jp}(x_{12}) \right)}{\partial \textit{m}^{jp}(x_{i})} = \\ &= \frac{1}{\textit{m}^{jp}(x_{i})} \textit{m}^{jp}(z_{1}) \textit{m}^{jp}(z_{2}) \textit{m}^{jp}(x_{11}) \textit{m}^{jp}(x_{12}), \ i = 11,12 \ , \\ e_{5} &= \frac{\partial \left( \textit{m}^{jp}(z_{1}) \textit{m}^{jp}(z_{2}) \textit{m}^{jp}(x_{11}) \textit{m}^{jp}(x_{12}) \right)}{\partial \textit{m}^{jp}(z_{i})} = \\ &= \frac{1}{\textit{m}^{jp}(z_{i})} \textit{m}^{jp}(z_{1}) \textit{m}^{jp}(z_{2}) \textit{m}^{jp}(x_{11}) \textit{m}^{jp}(x_{12}) \ , \ i = 1,2 \ , \end{split}$$

$$\begin{split} &e_{6} = \frac{\partial \textit{m}^{jp}\left(z_{1}\right)}{\partial \left(\prod_{i=1}^{5} \textit{m}^{jp}\left(x_{i}\right)\right)} = w_{1}^{jp} \; , \qquad e_{7} = \frac{\partial \textit{m}^{jp}\left(z_{2}\right)}{\partial \left(\prod_{i=6}^{10} \textit{m}^{jp}\left(x_{i}\right)\right)} = w_{2}^{jp} \; , \\ &e_{8} = \frac{\partial \left(\prod_{i=1}^{5} \textit{m}^{jp}\left(x_{i}\right)\right)}{\partial \textit{m}^{jp}\left(x_{i}\right)} = \frac{1}{\textit{m}^{jp}\left(x_{i}\right)} \prod_{i=1}^{5} \textit{m}^{jp}\left(x_{i}\right), \quad i = 1, 2, \dots, 5, \\ &e_{9} = \frac{\partial \left(\prod_{i=6}^{10} \textit{m}^{jp}\left(x_{i}\right)\right)}{\partial \textit{m}^{jp}\left(x_{i}\right)} = \frac{1}{\textit{m}^{jp}\left(x_{i}\right)} \prod_{i=6}^{10} \textit{m}^{jp}\left(x_{i}\right), \quad i = 6, 7, \dots, 10, \\ &\frac{\partial \textit{m}^{d\ j}\left(y\right)}{\partial \textit{w}^{jp}} = \textit{m}^{jp}\left(z_{1}\right) \textit{m}^{jp}\left(z_{2}\right) \textit{m}^{jp}\left(x_{11}\right) \textit{m}^{jp}\left(x_{12}\right), \end{split}$$

$$\frac{\partial \boldsymbol{m}^{jp}\left(\boldsymbol{z}_{1}\right)}{\partial \boldsymbol{w}_{1}^{jp}} = \prod_{i=1}^{5} \boldsymbol{m}^{jp}\left(\boldsymbol{x}_{i}\right), \qquad \frac{\partial \boldsymbol{m}^{jp}\left(\boldsymbol{z}_{2}\right)}{\partial \boldsymbol{w}_{2}^{jp}} = \prod_{i=6}^{10} \boldsymbol{m}^{jp}\left(\boldsymbol{x}_{i}\right),$$

$$\frac{\partial m^{jp}(x_i)}{\partial c_i^{\ jp}} = \frac{2c_i^{\ jp} \left(x_i - b_i^{\ jp}\right)^2}{\left(\left(c_i^{\ jp}\right)^2 + \left(x_i - b_i^{\ jp}\right)^2\right)^2} \ ,$$

$$\frac{\partial \boldsymbol{m}^{jp}\left(\boldsymbol{x}_{i}\right)}{\partial b_{i}^{\ jp}} = \frac{2\left(c_{i}^{\ jp}\right)^{2}\left(\boldsymbol{x}_{i} - b_{i}^{\ jp}\right)}{\left(\left(c_{i}^{\ jp}\right)^{2} + \left(\boldsymbol{x}_{i} - b_{i}^{\ jp}\right)^{2}\right)^{2}}, \quad i = 1, 2, ..., 12...$$

### Заключение

Предложенная модель обеспечивает предсказание результата футбольного матча с использованием информации о результатах игр обеих команд. Модель предсказания базируется на методе идентификации нелинейных зависимостей "прошлое — будущее" нечеткими правилами Если-То (IF-THEN).

Правдоподобные результаты моделирования могут быть получены благодаря настройке нечетких правил Если-То (IF-THEN) с использованием данных турнирных таблиц. Процедура настройки заключается в нахождении параметров нечетких условий членских функций и весов нечетких правил при использовании комбинации генетических (офф-лайновых(off-line) и нейронных (онлайновых (on-line) оптимизационных методов.

В будущем нечеткая модели предсказания может быть усовершенствована посредством принятия в расчет при формировании нечетких правил некоторых дополнительных факторов, например таких, как: игра на своем/чужом поле, количество игроков с травмами, различные психологические эффекты.

Представленная в работе модель может быть использована при разработке коммерческих компьютерных программ предсказания результатов матчей для букмекерских контор. Кроме того, методология разработки и настройки данной нечеткой модели может быть использована для разработки нечетких экспертных систем в других областях.

## Литература

- [1] E. Condon, B. Golden, and E. Wasil, Predicting the Success of Nations at the Summer Olympic using Neural Networks, Computers & Operations Research 26 (13) (1999), 1243-65.
- [2] M. Dixan, and S. Coles, Modeling Association Football Scores and Inefficiencies in the Football Betting Market, Applied Statistics 46 (2) (1997), 265-280.
- [3] M. Gen, and R. Cheng, Genetic Algorithms and Engineering Design, John Wiley & Sons, 1997,352 p.
- [4] M. Glickman, and H. Stem, A State-space Model for National Football League Scores, Journal of the American Statistical Association 93 (1998), 25-35.
- [5] A. Ivachnenko, and V. Lapa, Forecasting of random processes, Naukova dumka, Kiev, 1971, 416 p. (In Russian)
- [6] R Koning, Balance in Competition in Dutch Soccer, The Statistician 49 (2000), 419-431.
- [7] S. Markidakis, S. Wheelwright, and R. Hindman, Forecasting: Methods and Applications, 3 Ed., John Wiley & Sons, USA, 1998,386 p.
- [8] J. Mingers, Rule Induction with Statistical Data A Comparison with Multiple Regression, J. Operation Research Society 38 (1987), 347-351.
- [9] M. Purucker, Neural Network Quarterbacking, IEEE Potentials 15 (3) (1996), 9-15.

- [10] A. Rotshtein, Design and Tuning of Fuzzy Rule-Based Systems for Medical Diagnosis, hi N.-H. Teodorescu, A. Kandel, L. Gain (ed): Fuzzy and Neuro-Fuzzy Systems in Medicine, CRC Press, 1998, pp. 243-289.
- [11] A. Rotshtein, Intellectual Technologies of Identification: Fuzzy Sets, Genetic Algorithms, Neural Nets, UNTVERSUM, Vinnitsa, 1999,320 p. (in Russian)
- [12] A. Rotshtein, and D. KateFnikov, Identification of Non-linear Objects by Fuzzy Knowledge Bases, Cybernetics and Systems Analysis 34 (5) (1998), 676-683.
- [13] A. Rotshtein, E. Loiko, and D. KatePnikov, Prediction of the Number of Diseases on the basis of Expert-linguistic Information, Cybernetics and Systems Analysis 35 (2) (1999), 335-342.
- [14] A. Rotshtein, and Y. Mityushkin, Neurolinguistic Identification of Nonlinear Dependencies, Cybernetics and Systems Analysis 36 (2) (2000), 179-187.
- [15] A. Rotshtein, and S. Shtovba, Control of the Dynamic System based on Fuzzy Knowledge Base, Automatic and Calculating Technique 2 (2001), 23-30. (In Russian)
- [16] H. Rue, and O. Salvensen, Prediction and Retrospective Analysis of Soccer Matches in a League, The Statistician 49 (2000), 399-418.
- [17] H. Stern, On Probability of Winning a Football Game, The American Statistician 45 (1991), 179-183.
- [18] TsypkinYa, Information Theory of Identification, Nauka, Moscow, 1984, 320 p. (in Russian)
- [19] S. Walczar, and J. Krause, Chaos, Neural Networks and Gaming, Proc. Of Third Golden West International Conference, Intelligent Systems, Las Vegas, NV, USA, Eds: E.A. Dordrecht, Kluwer, 1995, pp. 457-66.
- [20] K. Willoughby, Determinants of Success in the CFL: a Logistic Regression Analysis, Proc. Of National Annual Meeting to the Decision Sciences, Atlanta, USA, Decision Sci. hist Vol.2, 1997, pp. 1026-1028.
- [21] Zadeh LA. Outline of a New Approach to the Analysis of Complex Systems and Decision Process. IEEE Transactions SMC 3,1 (1973), 28-44.

Александр Ротштайн. Доктор технических наук, профессор кафедры промышленного инжиниринга и менеджмента Технологического колледжа Иерусалима — Machon Lev.

21 Havaad Haleumi, 91160, Jerusalem, Israel

E-mail: rot@mail.jct.ac.il

**Мортон Познер.** Профессор кафедры промышленного инжиниринга и менеджмента Технологического колледжа Иерусалима— Machon Lev

21 Havaad Haleumi, 91160, Jerusalem, Israel

E-mail: posner@mail.jct.ac.il

E-mail: h rakit@hotmail.com

Анна Ракитянская. Кадидат тех-

нических наук, кафедра прикладной

математики Винницкого государ-

ственного технического университета