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Abstract. The article considers improved mathematical models of the 

physiological process of muscle contraction based on the known hypotheses of the 

process of the human body musculoskeletal system functioning. A mathematical model 

of changing the force load of muscle tissue for the modes of isometric tetanus and 

contraction (elongation) of the muscle at a constant rate was developed according to 

the first phenomenological hypothesis of A. Hill. Based on A. Huxley's hypothesis, a 



mathematical model of muscle tissue force loading was developed, which depends on 

the distribution function of the number of transverse bridges. 

Introduction. Currently, the specialized application directions of the 

mathematical modeling functioning of living organisms constituent systems is 

developing rapidly [1]. One of such components is the system of muscle tissue, which 

provides the mechanical function of all internal organs [2]. One of the urgent problems 

is to establish adequate patterns of the functioning of muscle tissue mechanism at 

different modes of its loading (isometric, isotonic) [2, 3]. 

Providing the accuracy of muscle physiological process contraction identification 

will allow optimizing the methods of treatment, rehabilitation, and sports training [4]. 

The aim is to increase the accuracy of identification of the physiological process 

of muscle contraction by developing effective methods of mathematical modeling 

based on differential equations of these organs functioning, which will increase the 

accuracy of predicting kinematic and force parameters of the musculoskeletal system. 

Problem solving. An adequate mathematical model of real muscle tissue should 

provide the ability to describe the anisotropy of properties [5], the nonlinearity of its 

deformation, changes in mechanical characteristics upon activation of contractile 

function, and the influence of these factors on the activation process. 

To determine the function of changes in the force load on the muscle in the modes 

of isometric tetanus and muscle relaxation at a constant rate, we use the hypothesis of 

A. Hill, which uses the assumption that any material can be represented as a rheological 

model - a combination of viscous and elastic elements [5, 6]. Assuming that the force 

generated by the elastic element is a function of its length p=P(x) and using the rule of 

differentiation of a complex function, we obtain a mathematical model of the change 

in force load on the muscle in the form of a differential equation [7]: 
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where: 

l – the length of the muscle fiber contractile element; 

х – deformation (reduction) of the elastic element, muscle fiber; 

L=l+x – total muscle length. 



If the skeletal muscle is brought to a state of tetanus by periodic stimulation, then 

after a certain period the muscle will develop isometric tension. Under isometric 

conditions, during muscle contraction, its length will not change, so dL/dt = 0 and the 

solution of differential equation (1) will take the form [8]: 
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Function (2) implicitly describes the change in the force load of muscle tissue as 

a function of time (Fig. 1 a) at the values of the parameters a = 0,14 Pa, b = 1,03 cm/sec 

and the maximum load p0 = 0,031·10-5 Pa ( t → , 
0p p→ ). The result of comparing 

the obtained functional dependence (see fig. 3) by equation (2) with experimental data 

[9] allowed obtaining the adequacy index of the mathematical model in the form of the 

average approximation error, which was 5,6%. 

For the mode of releasing food at a constant speed, it should be added that the 

consumer, which is first supported in the isometric reinforcement released, and then 

reduced at a constant speed and. Then the solution of the differential level (1) is 

obtained [10]: 
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Function (3) implicitly describes the change in the force load of muscle tissue as 

a function of time (fig. 1) at the same values of parameters a and b as in equation (2), 

and the maximum load pu=1,6·10-5 Pa ( t → ,
up p→ ). 

  
а) б) 

1 – theoretical dependence, 2 – experimental dependence 

Fig. 1. The diagram of change of force loading of muscular fabric in the modes: 

а) isometric tetanus; б) muscle relaxation at a constant rate 



The result of comparing the obtained functional dependence (fig. 1 b) according 

to equation (3) with experimental data [11, 12] allowed obtaining the adequacy of the 

mathematical model in the form of the average approximation error, which amounted 

to 4,8%. 

The parameter n(x, t) indicates the fraction of bridges with an offset x that is in 

the bound state. Simplifying the mechanism of the cycling reaction (attachment-

detachment) of the bridge and introducing the assumption that the bridge can be in only 

two states – unbound or strongly bound, i.e. in a state where it generates force, then the 

transitions between states are described by the following scheme [4, 7]: 
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where: 

U, B are the rate constants of the line f (x) and g (x) of the inverse reactions are the displacement 

functions x. 

Using the kinetic equation for the fraction of attached bridges, we obtain the 

equation of the dynamics of transverse bridges according to the hypothesis of A. 

Huxley [8, 12]: 
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where: 

n(x, t) is the fraction of bridges with an offset x that is in the bound state. 

Assuming that the bridge is a linear elastic element, i.e. the force of elasticity that 

it develops, and then the force that develops the muscle is determined by the formula: 
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   –   the solution of the differential level in parts of 

the output (5); 
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Figure 2 shows comparative diagrams of 

the power load dependence on the number 

depending on the rate of reduction. The diagram 

based on the hypothesis of A. Huxley is 

constructed for the following parameters: the 

maximum distance between cities h=10-6 cm; 

the average speed of direct and reverse 

reactions of attachment of bridges, respectively 

– f1=50 sec-1; g1=230 sec-1; maximum speed of 

muscle mixing speed - υmax=1,0 cm/sec. 

A comparison of the results of the 

theoretical study of the force load on the 

mixture for Huxley's hypothesis (see fig. 2) shows a coincidence with the theoretical 

data for the Hill model with an accuracy of 4,2%. The obtained results of theoretical 

and experimental [2, 6] study of the physiological process of muscle contraction 

provide rational use of theories of sliding threads and the cycle of transition cities as 

the basis of silo generation and movement reduction. 

Conclusions. During the work were: 

- developed mathematical models of the physiological process of muscle 

contraction on the basis of known hypotheses of functioning of these types of organs, 

which allows to determine with high accuracy the physiological characteristics of 

muscle tissue at different modes of its loading. 

- in order to determine the reliability of the developed mathematical models, 

were studied  a comparative analysis of the theoretical physiological process results of 

the muscle contraction based on the developed mathematical models with the results 

 

1 –  the Hill model ; 2 –  Huxley model 

Fig. 2. Comparative diagram of the 

dependence of the force load on the 

muscle depending on the rate of 

contraction 



of experimental studies of these type organs functioning where the adequacy index 

averaged 4,5%. 
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