АВТОМОБІЛІ

Теорія експлуатаційних властивостей
Автори:
Біліченко В. В., Добровольський О. Л., Огневий В. О., Смирнов Є. В.

Рекомендовано до друку Вченою радою Вінницького національного технічного університету Міністерства освіти і науки України (протокол № 7 від 22 грудня 2016р.)

Рецензенти:
В. П. Сахно, доктор технічних наук, професор НТУ
П. П. Москвін, доктор фізико-математичних наук, професор ЖДТУ
І. О. Сивак, доктор технічних наук, професор ВНТУ

У навчальному посібнику розглянуто порядок визначення основних експлуатаційних властивостей автомобіля. Наведені методики розрахунку елементів конструкції автомобіля. Подана методика тягово-швидкісного розрахунку автомобіля. Навчальний посібник ілюстровано принциповими та розрахунковими схемами.

Навчальний посібник стане в нагоді студентам напряму підготовки 6.070106 – «Автомобільний транспорт» під час підготовки до лекційних занять з дисципліни «Автомобілі. Теорія експлуатаційних властивостей».

© ВНТУ, 2017
ЗМІСТ

ВСТУП... 5

1 ЕКСПЛУАТАЦІЙНІ ВЛАСТИВОСТІ АВТОМОБІЛІВ 6

1.1 Вимоги до конструкції автомобіля 6

1.2 Визначення понять: динамічність, паливна економічність, прохідність, надійність ... 9

2 СИЛИ, ЩО ДІЮТЬ НА АВТОМОБІЛЬ ПІД ЧАС РУХУ 12

2.1 Швидкісна характеристика двигуна 12

2.2 Зовнішні сили, що діють на автомобіль 14

2.3 Сили і моменти, що діють на ведуче колесо 18

2.4 Сила тяги на ведучих колесах 19

2.5 Тягова характеристика автомобіля 20

2.6 Сили опору коченню ... 22

2.7 Нормальні реакції дороги 24

2.8 Опір повітря ... 26

2.9 Рівняння руху автомобіля 32

2.10 Сила тяги за умовами зчеплення шин з дорогою 35

2.11 Умова можливості руху автомобіля 38

3 ТЯГОВА ДИНАМІЧНІСТЬ АВТОМОБІЛЯ 40

3.1 Силовий баланс і його графік 40

3.2 Баланс потужності і динамічна характеристика автомобіля 42

3.3 Динамічний паспорт автомобіля 45

3.4 Динамічне подолання підйомів 51

3.5 Рух автомобіля накатом ... 52

3.6 Вплив конструктивних факторів на динаміку й економічність автомобіля .. 54

3.7 Тягові властивості автопоїзда 55

4 ГАЛЬМІВНА ДИНАМІЧНІСТЬ АВТОМОБІЛЯ 60

4.1 Безпека руху й гальмівний момент 60

4.2 Сили, що діють на автомобіль при гальмуванні 61

4.3 Показники гальмівної динамічності автомобіля 63

4.4 Розподіл гальмівної сили між мостами автомобіля 69

4.5 Спосіб гальмування автомобіля й автопоїзда 71

4.6. Дорожньо-транспортна експертиза дорожньо-транспортного випадку ... 75

4.7 Визначення показників гальмівної динамічності автомобіля 78

5 ПАЛИВНА ЕКОНОМІЧНІСТЬ АВТОМОБІЛЯ 81

5.1 Показники паливої економічності 81

5.2 Паливо-економічна характеристика автомобіля 82

5.3 Паливна економічність автопоїзда 83

5.4 Вплив конструктивних і експлуатаційних факторів на витрату палива .. 85

5.5 Вплив аеродинамічного опору повітря на витрату палива 93
5.6 Поняття про норми витрати палива ... 95
6 СТИЙКІСТЬ АВТОМОБІЛЯ .. 98
 6.1 Показники стійкості автомобіля ... 98
 6.2 Занос автомобіля: умови можливості заносу, занос переднього або заднього мостів ... 105
 6.3 Вплив конструктивних і експлуатаційних факторів на поперечну стійкість автомобіля ... 107
 6.4 Поздовжня стійкість автомобіля ... 113
 6.5 Умови буксування й перекидання при русі на підйомі 118
 6.6 Методи водіння автомобіля, що запобігають заносу і перекиданню ... 118
7 КЕРОВАНАНСТЬ АВТОМОБІЛЯ .. 120
 7.1 Критичні швидкості за умовами керованості ... 121
 7.2 Відведення колеса й поворотність автомобіля 123
 7.3 Поворот задньої осі при крені кузова .. 130
 7.4 Співвідношення кутів повороту керованих коліс 131
 7.5 Власні й вимушені коливання керованих коліс 133
 7.6 Стабілізація керованих коліс ... 136
8 ПРОХІДНІСТЬ АВТОМОБІЛЯ .. 140
 8.1 Прохідність автомобіля і її геометричні показники 140
 8.2 Тягові й опорно – зчіпні показники прохідності 142
 8.3 Вплив конструкції автомобіля на його прохідність 144
 8.4 Пристосування, що підвищують прохідність автомобіля 147
9 ПЛАВНІСТЬ ХОДУ АВТОМОБІЛЯ ... 150
 9.1 Коливання кузова й основні вимоги до комфортабельності автомобілів ... 150
 9.2 Спосoby підвищення плавності ходу автомобіля 158
ЛІТЕРАТУРА ... 160
ГЛОСАРІЙ ... 161
ВСТУП

Призначення автомобіля – транспортування вантажів, пасажирів або спеціального обладнання з пункту відправлення до пункту призначення. При цьому якість і ефективність застосування автомобіля багато в чому залежить від його експлуатаційних властивостей.

Експлуатаційні властивості – це властивості автомобіля, за допомогою яких реалізуються: середні швидкості транспортування; витрата палива, пов'язана з транспортуванням; безпека руху автомобіля, що виконує свої виробничі функції; можливість руху по дорогах різної якості, а іноді і без доріг.

Найважливішими якісними показниками експлуатації автомобіля є його продуктивність і собівартість перевезень, які більшою мірою залежать від таких експлуатаційних властивостей як тягово-швидкісні і паливна економічність.

Тягово-швидкісні властивості, паливна економічність, керованість і стійкість формуються конструкцією та характеристикою практично всіх вузлів й агрегатів автомобіля, а також умовами його експлуатації.

Експлуатаційні властивості, що забезпечують рух автомобіля, істотно залежать від конструкції і технічного стану автомобіля, його систем і механізмів. Чим досконаліша конструкція автомобіля і краще його технічний стан, тим вищі експлуатаційні властивості автомобіля. Тому автомобіль, його системи і механізми конструюють таким чином, щоб він мав певні експлуатаційні властивості, необхідні для заданих умов експлуатації та забезпечували його ефективне використання.

Сьогоднішній етап розвитку теорії автомобіля характеризується системним підходом до вивчення окремих особливостей експлуатаційних властивостей, оптимізацією показників експлуатаційних і технічних параметрів. Автомобіль є частиною системи «водій – автомобіль – дорожнє середовище», і його властивості виявляються у взаємодії з елементами цієї системи.

Фахівцю, що забезпечує експлуатацію автотранспортних засобів, знання властивостей різних автомобілів допомагає вибирати ті з них, які найкращим чином відповідають характеристикам перевезеного вантажу та умовам перевезень, дає можливість розробляти оптимальні методи підтримки в експлуатації властивостей, закладених при проектуванні і виробництві та відновлення їх в процесі ремонту.

Метою навчального посібника є формування у студентів системи наукових уявлень, які забезпечують глибоке розуміння конструкції автомобілів, робочих процесів і механізму формування основних експлуатаційних властивостей автомобіля.
1.1 Вимоги до конструкції автомобіля

Кожний тип і модель автомобіля характеризуються основними конструктивними даними, які визначають місце автомобіля в параметричному ряді. Ці параметри є вихідними й визначаються на початку проектування.

Підставою для вибору вихідних параметрів служать прогнози розвитку автомобільного транспорту й суміжних галузей народного господарства, перспективний типаж автомобілів і двигунів, аналіз дорожніх і кліматичних умов, задоволення потреб населення, виконання зобов'язань щодо міжнародних договорів, планів зовнішньої торгівлі.

Вимоги, пропоновані до конструкції автомобіля, можуть бути розбиті на таких 5 груп:
1. Продуктивність автомобіля;
2. Соціальні вимоги;
3. Надійність автомобіля;
4. Техніко-економічні вимоги: зниження ваги автомобіля і його агрегатів; зменшення витрат при виготовленні й експлуатації автомобіля; зменшення витрати палива.
5. Дотримання нормативних обмежень, що ставляться до конструкції автомобіля, і зобов'язань щодо міжнародних угод.

Вимоги, викладені в пп. 1–3, стосуються властивостей автомобіля, що оцінюються за вимогами його експлуатації. Вимоги, наведені в п. 4, відносяться до властивостей автомобіля, що відносяться до властивостей технічними показниками і використовуються для економічного оцінювання. Ці властивості характеризують витрати, пов'язані з реалізацією вимог, зазначених у пп. 1–3, що висуваються при виробництві автомобілів і підтримці їх на роботоздатному рівні за допомогою обслуговування й ремонту при експлуатації. Ці властивості забезпечують:
- безпеку і комфорт для водія і пасажирів;
- підвищення середніх швидкостей руху автомобіля й скорочення часу на допоміжні операції: пусконаладка, навантаження, розвантаження;
- економічне використання вантажопідйомністі (вантажомісткості);
- схоронність вантажу при транспортуванні;
- удосконалення зовнішніх форм і додання їм сучасного стилю;
- підвищення надійності й довговічності конструкції;
- пристосованість до кліматичних умов;
- зниження трудомісткості ремонту і обслуговування;
- підвищення паливої економічності;
- зниження вартості й металоємності конструкції;
- уніфікацію агрегатів, вузлів і деталей;
ремонтопридатність конструкції;
- зменшення трудомісткості при ТО та ремонті;
- відповідність конструкцій дорогнім обмеженням і класу доріг.

Рухомий склад автомобільного транспорту розділяється на вантажний, пасажирський і спеціальний. До вантажного рухомого складу відносяться вантажні автомобілі, тягачі, причепи й напівпричепи; до пасажирського – автобуси й легкові автомобілі; до спеціального - автомобілі, причепи й напівпричепи, призначені для виконання нетранспортних операцій (пожежні автомобілі, автомобілі для прибирання вулиць і т. д.).

Вантажні автомобілі класифікують за їх основною характеристикою - номінальною вантажопідйомністю (у тоннах). За цією ознакою їх підрозділяють на п'ять класів:
- I – особливо малої вантажопідйомності....... до 1,0 т
- II – малої вантажопідйомності1,0 – 3,0 т
- III – середньої вантажопідйомності3,0 – 5,0 т
- IV – великої вантажопідйомності5,0 – 10,0 т
- V – особливо великої вантажопідйомності... понад 10 т.

Автомобіль і з'єднані з ним причепами причепи також називаються автомобільним поїздом.

Автомобілі й автопоїзди підрозділяють на дві групи. До групи А відносяться автомобілі й автопоїзди, призначені для експлуатації на дорогах I і II категорій з удосконаленим покриттям капітального типу; до групи Б – автомобілі й автопоїзди, призначені для експлуатації на всіх автомобільних дорогах інших типів.

Одним з основних критеріїв оцінювання ефективності роботи автомобільного транспорту є продуктивність, тобто транспортна робота, виконана автомобілем (автопоїздом) за 1 годину знаходження в наряді.

Оцінюється вона добутком кількості перевезеного вантажу на відстань, що проходить автомобіль за 1 год:

\[
P_u = q \cdot \gamma \cdot V_e, \tag{1.1}\]

де \(P_u\) – продуктивність, ткм;
\(q\) – номінальна вантажопідйомність автомобіля, т;
\(\gamma\) – коефіцієнт використання вантажопідйомності, дорівнює відношенню маси перевезеного вантажу до номінальної вантажопідйомності автомобіля;
\(V_e\) – експлуатаційна швидкість, км/год.

З наведеної формули випливає, що для збільшення продуктивності автомобільного транспорту необхідно:
− виробництво рухомого складу великої вантажопідйомності для перевезень масових вантажів (внаслідок вагових обмежень підвищення вантажопідйомності досягається застосуванням автопоїздів і багатовісних конструкцій);
− збільшення швидкостей руху рухомого складу, а отже, підвищення його енергооснащеності;
− можливе більш повне використання номінальної вантажопідйомності; тому для перевезення дрібних партій вантажів (торгівля, побутове обслуговування населення, зв'язок і т. д.) доцільне виробництво автомобілів малої вантажопідйомності.

Автомобілі вантажопідйомністю до 8 т звичайно є двовісними. При збільшенні вантажопідйомності осьове навантаження перевищує припустимі межі, і автомобіль доводиться робити тривісним.

Автобуси класифікують за двома ознаками: за конкретним призначенням (міські, міжміські, туристські й т. д.) і за місткістю. Як показник, що характеризує місткість, прийнята повна довжина автобуса. За цією ознакою автобуси підрозділяють на п'ять класів:

I – особливо малої місткості до 5,0 м
II – малої місткості 6,0 – 7,0 м
III – середньої місткості 8,0 – 9,5 м
IV – великої місткості 10,5 – 12,0 м
V – особливо великої місткості 16,5 м і більше

Легкові автомобілі класифікують за робочим обсягом двигуна і масою автомобіля. За цими ознаками їх підрозділяють на п'ять класів (табл. 1.1).

<p>| Таблиця 1.1 – Класифікація легкових автомобілів |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Клас</th>
<th>Група</th>
<th>Робочий об’єм двигуна, л</th>
<th>Суха маса автомобіля, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>I – особливо малий</td>
<td>1</td>
<td>До 0,9</td>
<td>До 700</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,9–1,2</td>
<td>700–850</td>
</tr>
<tr>
<td>II – малий</td>
<td>1</td>
<td>1,2–1,5</td>
<td>850–950</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,5–1,8</td>
<td>950–1150</td>
</tr>
<tr>
<td>III – середній</td>
<td>1</td>
<td>1,8–2,5</td>
<td>1150–1250</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2,5–3,5</td>
<td>1250–1500</td>
</tr>
<tr>
<td>IV – великий</td>
<td>1</td>
<td>3,5–5,0</td>
<td>1500–1700</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Більше 5,0</td>
<td>Більше 1700</td>
</tr>
<tr>
<td>V – найвищий</td>
<td>Не регламентується</td>
<td>Не регламентується</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Визначення понять: динамічність, паливна економічність, прохідність, надійність

Введемо загальнодержавні поняття, що характеризують автомобіль.

Динамічність – здатність автомобіля робити транспортну роботу з найбільшою швидкістю. Цю властивість оцінюють за швидкістю розгону й максимальною швидкістю автомобіля на прямій горизонтальній дорозі з удосконаленим покриттям і найбільшим підйомом, що автомобіль може подолати.

Паливна економічність – здатність автомобіля робити транспортну роботу з найменшою витратою палива. Її оцінюють витратою палива в літрах на 100 км пройденого шляху.

Прохідність – властивість, що характеризує можливість здійснення автомобілем транспортної роботи у важких дорожніх умовах або поза дорогами.

Комфортабельність – сукупність властивостей, що визначають зручність користування автомобілем.

Надійність – здатність автомобіля зберігати свої динамічні, економічні й інші експлуатаційні показники в заданих межах протягом необхідного пробігу автомобіля (в тисячах кілометрів) від початку його експлуатації до капітального ремонту.

Ефективність, зручність і безпека використання автомобіля залежать від експлуатаційних властивостей автомобіля.

Експлуатаційні властивості автомобіля - це його відповідність певним транспортним вимогам, а також ступінь досконалості конструкції, що відображає технічна характеристика автомобіля, до якого відносяться такі показники автомобіля.

Номінальна вантажопідйомність, тобто максимальне корисне навантаження (у тоннах) для вантажних автомобілів; число місць (включаючи місце водія) і маса багажу (у кілограмах) для пасажирських автомобілів.

Суха маса (у кілограмах) – маса ненавантаженого, незаправленого й неспорядженого автомобіля.

Власна маса (у кілограмах), тобто маса автомобіля, заправленого паливом, маслом, охолоджувальною рідиною й спорядженого комплектом інструмента, запасним колесом і додатковим устаткуванням, але не завантаженого.

Повна маса (у кілограмах), тобто маса спорядженого автомобіля з максимальним корисним навантаженням.

Коефіцієнт використання маси, що являє собою відношення номінальної вантажопідйомності автомобіля до його власної маси. Він характеризує досконалість конструкції вантажного автомобіля з погляду раціонального використання застосованих при його виготовлennі матеріалів.
Контрольна витрата палива в літрах на 100 км шляху, що визначають при русі автомобіля з повним навантаженням і постійною швидкістю (30 – 40 км/год для вантажних і 50 – 60 км/год для легкових автомобілів) по горизонтальній дорозі із сухим покриттям, що має невеликі короткі підйоми.

Питома потужність – потужність двигуна в кіловатах, що доводиться на 1 т повної маси автомобіля. Цей показник характеризує енергооснащеність автомобіля й визначає його динамічність.

Геометричні показники (у міліметрах): габаритні розміри автомобіля, база (відстань від передньої до задньої осі, для тривісних автомобілів - до осі візка); колія передніх і задніх коліс, тобто відстань між середніми площинами одинарних або площинами стику здвоєних коліс однієї осі, і ін.

Габаритними розмірами називають крайні, найбільші розміри автомобіля по довжині, ширині й висоті (рис. 1.1).

Легкові і вантажні автомобілі різноманітні за компонуванням.

Рисунок 1.1 – До визначення габаритів

Чим сучасніший автомобіль, тим більшу частину його загальної довжини займає пасажирське приміщення або платформа для вантажу, тим більше посунено ці корисні площі автомобіля вперед. Відношення бази автомобіля і його висоти до довжини стає все меншим, а корисна довжина, використовувана за прямим призначенням (для пасажирів, багажу або вантажу), усе більша.

Відношення корисної довжини легкового автомобіля L_K до його загальної довжини L або корисної площі платформи вантажного
автомобіля S_K до його загальної площі S називають показником використання габариту η (індекс «дл» – довжина або «пл» – площа):

$$\eta_{дл} = \frac{L_K}{L_1};$$
$$\eta_{пл} = \frac{S_K}{S_1}.$$

Чим більший показник η, тим досконаліше компонування автомобіля.

Відношення ваги корисного навантаження G_e до власної ваги автомобіля G_0 називають питомою вантажопідйомністю автомобіля η_{p}:

$$\eta_{p} = \frac{G_e}{G_0}.$$

Питома вантажопідйомність вантажних автомобілів близька до одиниці, тобто автомобіль важить приблизно стільки ж, скільки він може перевезти вантажу. У легкових автомобілів цей показник коливається між 0,20 і 0,40, тому що пасажири розміщуються в кузові вільно, причому в маленьких автомобілях показник нижчий ніж у більших.

До повної ваги в окремих випадках приймають ваговий стан автомобіля, що умовно називають ходовим, коли на автомобілі перебуває водій, але немає ні пасажирів, ні вантажу.

Контрольні запитання

1. Основні експлуатаційні властивості автомобіля.
2. Вимоги, що висуваються до конструкції автомобіля.
3. Що таке тягова властивість, динамічність?
4. Як визначається паливна економічність?
5. Що таке прохідність?
6. Зміст поняття надійності.
7. Які якості називають експлуатаційними властивостями?
8. Чому дорівнює питома вантажопідйомність вантажних автомобілів?
9. Що таке номінальна вантажопідйомність транспортного засобу?
10. Як визначається коефіцієнт використання маси автомобіля?
11. Як класифікуються легкові автомобілі?
12. Що таке динамічність автомобіля?
2 СИЛИ, ЩО ДІЮТЬ НА АВТОМОБІЛЬ ПІД ЧАС РУХУ

2.1 Швидкісна характеристика двигуна

Зовнішньою швидкісною характеристикою називають залежність ефективної потужності \(N_e \), ефективного крутного моменту \(M_t \), годинної і ефективної питомої витрати палива від числа обертів при повністю відкритій дросельній заслінці в карбюраторному двигуні або при положенні рейки паливного насоса, що відповідає максимальній установлений подачі палива, в дизелі. При знятті характеристики реєструються й інші показники двигуна (рис. 2.1).

Рисунок 2.1 – Швидкісні характеристики карбюраторного двигуна: 1 – зовнішня швидкісна характеристика; 2 – часткова характеристика при включенному економайзері; 3 і 4 – часткові характеристики при різних положеннях дросельної заслінки.

Автомобільний двигун не може сприймати навантаження при дуже малих числах обертів колінчатого вала. Це пояснюється тим, що при занадто малих числах обертів зростає віддача теплоти, пропуски газів через поршневі кільця й невідповідність фаз газорозподілу приводять до
різкого зниження наповнення циліндра й неможливості здійснення процесу згоряння. Тому існує нижня межа числа обертів колінчатого вала при якому двигун може стійко працювати у всьому діапазоні зміни навантажень.

У дизелях зміна навантаження досягається пересуванням рейки паливного насоса. З підвищенням числа обертів характеристика паливопідкачувальної апаратури забезпечує деяке збільшення циклової подачі палива g_u (рис. 2.2). При зниженні навантаження коефіцієнт наповнення η_v трохи зростає.

Рисунок 2.2 – Швидкісні характеристики дизеля:
1 – зовнішня швидкісна характеристика; 2, 3 і 4 – часткові характеристики; AB – регуляторна гілка швидкісних характеристик

У результаті цього при зменшенні навантаження розносне число обертів набагато перевищує номінальне число обертів і виникає небезпека розносу двигуна. Для запобігання аварії двигуна у зв'язку з можливим різким збільшенням числа обертів при раптовому зниженні навантаження в дизелі необхідно встановлювати регулятор, що обмежує число обертів холостого ходу $n_{\text{ххмакс}}$. Наявність регулятора полегшує також керування дизелем при його експлуатації на режимі, близькому до номінального. Характеристика, що знимається при постійному положенні органу керування регулятором і збільшенні навантаження від холостого ходу до максимального, називається регуляторною (рис. 2.2).
Якщо відсутні експериментальні залежності, то використовують емпіричні формули, які дозволяють за відомим значенням координат однієї точки (наприклад, \(n_{max} \) і \(N_{max} \)) побудувати всю криву:

\[
N_e = N_{max} \left[a_N \frac{n_e}{n_{max}} + b_N \left(\frac{n_e}{n_{max}} \right)^2 + c_N \left(\frac{n_e}{n_{max}} \right)^3 \right],
\]

де \(a_N, b_N, c_N \) – коефіцієнти, обчислені емпірично.

Для карбюраторних двигунів всі вони рівні 1, а для дизельних двигунів \(a_N = 0.53; b_N = 1.558; c_N = 1.1 \). Якщо у формулу (2.1) підставити різні значення частоти обертання колінчатого вала в \(\text{c}^{-1} \), то отримані відповідні значення \(N_e \), нанесені на графік, дауть швидкісну характеристику даного двигуна. Звідки відповідно можна розрахувати й зміну ефективного моменту.

\[
M_e \approx \frac{N_e}{n_e}.
\]

Якщо \(N_e \) – в Вт, а \(n_e \) – у рад/с, то \(M_e \) – у Н·м.

2.2 Зовнішні сили, що діють на автомобіль

У загальному випадку при прискореному русі автомобіля на підйомі діють три групи сил (рис. 2.3).

Першу групу становлять сили \(P_T \), що рухають автомобіль:
- сила тяги, що виникає в результаті взаємодії ведучих коліс автомобіля з дорогою.

Другу групу становлять сили, що чинять опір руху автомобіля. До них відносяться:
- сили опору коченню передніх \(P_{k1} \) і задніх \(P_{k2} \) коліс, що діють у площині дороги;
- сила опору підйому \(P_a \), що спрямована паралельно площині дороги, складова сили ваги \(G_a \) автомобіля;
- сила опору повітря \(P_v \), прикладена в центрі парусності автомобіля;
- сила опору розгону, або сила інерції \(P_i \), прикладена в центрі ваги автомобіля.

Третю групу сил становлять:
- нормальні реакції дороги на передні \(Z_1 \) і задні \(Z_2 \) колеса, викликані складовою, перпендикулярною до площини дороги;
- сила ваги \(G_a \) автомобіля.

Через \(G_a \) позначається сила ваги спорядженого автомобіля з повним навантаженням.
Розглянемо дію сил на передню вісь автомобіля в той момент, коли ліве колесо потрапило на бугор, а праве – у вибій (рис. 2.4). На кінці осі діють протилежно спрямовані сили. Залежно від величини нерівностей, швидкості руху й інших факторів ці сили можуть бути різними.

Відповідно до умови рівноваги системи сила, що діє на ліве колесо, у 10 разів більша сили, що діє на праве колесо \(B = 0,1 A \), якщо колію автомобіля прийняти рівною 1400 мм.

З умови рівноваги рівновідчуття сила рівна:

\[
R_A = A - 0,1A = 0,9A.
\]

(2.2)

Відстань \(X \) від цієї сили до більшої обчислюється із пропорції
Напрямок дороги часто змінюється. Тому навіть при русі по якісній дорозі на автомобіль крім зустрічних і попутних сил діють бічні сили. Таким чином, руху автомобіля завжди протистоять два фронти сил: поздовжні сили і бічні сили. Розглянемо бічні сили (рис. 2.5).

Рисунок 2.5 – Дія сил на автомобіль при русі на косогорі

Перший вид бічних сил виникає внаслідок нахилу дороги. При русі на сухій горизонтальній прямій дорозі, але з невеликим поперечним ухилом, єдиною бічною силою є сила \(Y_a \), що виникає в результаті розкладання спрямованої вертикально сили тяжіння (ваги) автомобіля \(G_a \) на складові. Одна зі складових \(Y_a \) спрямована паралельно, інша – перпендикулярно до поверхні дороги. Ці сили прикладені до центра ваги автомобіля. Позначимо кут між горизонтальною площиною й площиною дороги грецькою буквою \(\beta \).

\[
Y_a = G_a \cdot \sin \beta, \\
Z_a = G_a \cdot \cos \beta.
\] (2.4)

Якщо припустити, що автомобіль може перекинутися, то це відбудеться навколо лінії \(XX \), що з'єднує точки торкання лівих переднього і заднього коліс із дорогою. У такому випадку сила \(Y_a \) прикладена на відстані \(h_g \) (висота центра ваги) від лінії \(XX \), а сила \(Z_a \) – на відстані, рівній половині колісної колії, тобто \(B/2 \).

Бічна сила \(Y_a \) створює перекидний момент \(Y_a h_g \), а сила \(Z_a \) – момент \(Z_a h_g \), що притискає автомобіль до дороги.

Перекидання може відбутися, якщо лінія дії сили \(G_a \) вийде за межі опорної площі, тобто якщо:

\[
Y_a \cdot h_a > z_a \frac{B}{2},
\] (2.5)
Підставляючи в нерівність (2.5) значення Y_a і Z_a з рівнян (2.4), одержуємо:

$$\frac{\sin \beta}{\cos \beta} = \tan \beta > \frac{B}{2h_g}. \quad (2.6)$$

Отже, перекидання автомобіля можливе за умови:

$$G_a \cdot \sin \beta \cdot h_g > G_a \cdot \cos \beta \cdot \frac{B}{2}, \quad (2.7)$$

de $\tan \beta$ – бічний ухил дороги, виражений у відсотках.

У легкових автомобілях висота h_g приблизно дорівнює $B/2$, у вантажних (з навантаженням) h_g приблизно в 1,5 раз більше за $B/2$, а у деяких автомобілів підвищеної прохідності висота h_g досягає величини B.

З урахуванням цих значень h_g можна вважати, що умова перекидання під впливом бічного уклону має вигляд:
- легкові автомобілі.........................$Y_a > Z_a$
- вантажні автомобілі.........................$1.5 Y_a > Z_a$
- автомобілі підвищеної прохідності........2$Y_a > Z_a$

Поперечний уклон автомобільних доріг звичайно не перевищує 3 %, тобто:

$$\tan \beta = 0,33;$$
$$\sin \beta = 0,33;$$
$$\cos \beta = 0,99.$$

Неважко переконатися, що на такій дорогі жоден автомобіль не перекинеться, тому що навіть у найгіршому випадку, наприклад, коли $h_g = B$, ліва частина нерівності (2.7) буде в 16 разів менша правої (0,03 і 0,5).

Щоб не було бічного ковзання, сила Y_a не повинна перевищувати сили зчеплення із ґрунтом. Для сучасних шин коефіцієнт зчеплення шини із сухою дорогою близько 0,8, із зледенілою дорогою – близько 0,2.

Таким чином, умову ковзання можна записати так:

$$Y_a > Z_a \varphi, \quad (2.8)$$
$$\tan \beta > \varphi.$$
У дійсних умовах ліва частина нерівності (2.8) в 5 – 10 разів менша правої, тому ковзання не відбувається.

Сила Y_a значно зростає, а сила Z_a, зменшується зі збільшенням кута β. Уже на твердому сухому косогорі з ухилом в 27° автомобіль, що має високо розташований центр ваги ($h_g = B$), може перекинутися під дією власної ваги, а на зледенілій дорозі з ухилом в 12° будь-який автомобіль буде сковзати вбік.

Із цієї причини варто рекомендувати водіям проявляти особливу обережність при їзді по нерівній дорозі з високими вантажами.

2.3 Сили і моменти, що діють на ведуче колесо

Енергія від двигуна до ведучих коліс передається через трансмісію: зчеплення, коробку передач, карданну передачу, головну передачу, диференціал і півосі (рисунок 2.6).

![Рисунок 2.6 – Схема класичної трансмісії автомобіля з гібридним силовим агрегатом](image)

1 - двигун; 2 – привід переднього моста; 3 – коробка передач; 4 – роздавальна коробка; 5 – привід оборотної електричної машини; 6 – оборотна електрична машина; 7 – електричні накопичувачі енергії; 8 - передній міст; 9 – привід заднього моста; 10 – система керування тяговим електроустаткуванням; 11 – задній міст

При цьому частина енергії затрачається на подолання тертя й на перемішування масла в агрегатах трансмісії. Для визначення втрати енергії вводять поняття коефіцієнта корисної дії трансмісії $\eta_{тр}$ Він дорівнює відношенню сумарної потужності N_K на ведучих колесах до ефективної потужності двигуна N_e:
\[\eta_{тр} = \frac{N_k}{Ne} \]
(2.9)

Коефіцієнт корисної дії \(\eta_{тр} \) приймають для:

- легкових автомобілів 0,88 – 0,92;
- вантажних автомобілів 0,80 – 0,90;
- автомобілів підвищеної прохідності 0,78 – 0,85.

Менші значення \(\eta_{тр} \) відповідають руху автомобіля при включений проміжній передачі коробки передач, а більші при включений прямій передачі.

Завдяки наявності в трансмісії коробки передач і головної передачі сумарний крутний момент \(M_K \) на ведучих колесах автомобіля більший момента \(M_e \) двигуна:

\[M_K = \eta_{тр} \cdot M_e \cdot U_{КП} \cdot U_{ГП}, \]
(2.10)

de \(U_{КП} \) і \(U_{ГП} \) – передаточні числа відповідно коробки передач і головної передачі.

Крутний момент \(M_K \) викликає в місці контакту колеса з дорогою дотичну реакцію дороги, що рухає автомобіль, тобто силу тяги.

2.4 Сила тяги на ведучих колесах

Сила тяги \(P_T \) дорівнює:

\[P_T = \frac{M_K}{r_k}, \]
(2.11)

de \(r_k \) – радіус колеса.

Величина \(r_k \) внаслідок пружності пневматичної шини не залишається постійною, а змінюється під впливом діючих на колесо сил. Однак для простоти розрахунків вважають величину \(r_k \) постійною і рівною відстані від осі нерухомого колеса навантаженого нормальною силою до поверхні дороги. Ця відстань називається статичним радіусом колеса \(r_{ст} \). Він вказується в технічних характеристиках шин. При русі автомобіля шини нагріваються, відповідно збільшується тиск повітря в них, що приводить до збільшення радіуса колеса; крім того, від дії відцентрових сил радіус колеса теж злегка збільшується. При передачі крутного моменту, навпаки, відбувається його зменшення. Однак ці величини (3 – 6 мм) незначні в порівнянні із \(r_k \) і тому ними нехтують, вважаючи, що
Стік $r_{cm} = r_k$.

Слід зазначити, що взаємодія колеса з дорогою відбувається на площині відбитка шини на поверхні дороги (плямі контакту) (рис. 2.7).

Якщо навантаження, що діє на одне колесо автомобіля, дорівнює 300 кг, а поверхня дотичної з дорогою частини шини дорівнює 150 см², тоді питомий тиск шини на ґрунт становить $300 : 150 = 2$ кг/см².

У такий спосіб сила P_T (рис. 2.8) на ведучих колесах автомобіля може бути підрахована за формулою:

$$P_T = \frac{M_e \cdot U_{КП} \cdot U_{ГП} \cdot \eta_{Тр}}{r_k}. \quad (2.12)$$

![Рисунок 2.7 – Навантаження шини на ґрунт](image1)

![Рисунок 2.8 – Тягова сила на ведучих колесах](image2)

Різноманітний зв’язок між колінчастим валом двигуна й ведучими колесами автомобіля, що характеризується передаточними числами $U_{КП}$ і $U_{ГП}$, обумовлює залежність швидкості V_a руху автомобіля від частоти обертання n вала двигуна:

$$V_a = \left[\frac{2\pi r_k n}{U_{КП} \cdot U_{ГП}} \right] \cdot \frac{60}{1000} = 0.377 \left[\frac{2\pi r_k n}{U_{КП} \cdot U_{ГП}} \right]. \quad (2.13)$$

2.5 Тягова характеристика автомобіля

При дослідженні тягово-швидкісних якостей автомобіля припускають, що двигун працює при повністю відкритій дросельній заслінці або
максимальній подачі палива (для дизеля). Це означає, що зі зміною опору руху частота обертання \(n \) вала двигуна й крутний момент \(M_e \) змінюються за зовнішньою швидкісною характеристикою (рис. 2.1 і 2.2), і, як наслідок, залежно від швидкості руху автомобіля \(V_a \) змінюється сила тяги \(P_T \).

Залежність \(P_T = f(V_a) \) зображується графічно (рис. 2.9). Сукупність кривих, побудованих для всіх передач коробки передач, називається тяговою характеристикою автомобіля.

![Рисунок 2.9 – Тягова характеристика автомобіля із чотириступінчастою коробкою передач](image)

Тягову характеристику можна побудувати, склавши попередньо для кожної передачі таблицю за простою формою (табл. 2.1):

<table>
<thead>
<tr>
<th>(V_a)</th>
<th>(n)</th>
<th>(M_e)</th>
<th>(P_T)</th>
</tr>
</thead>
</table>

Значення \(M_e \) знаходять за зовнішньою швидкісною характеристикою двигуна для отриманих величин \(n \). Силу тяги \(P_T \) обчислюють за формулою:

\[
P_T = \frac{M_e}{\eta_T} = \frac{\eta_T \cdot M_e \cdot U_{KP} \cdot U_{IP}}{r_k}.
\]

(2.14)

Під час руху автомобіля з прискоренням \(j \) виникає сила інерції \(P_i \) і момент інерції обертових мас, що протидіють прискоренню, або розгону автомобіля.

Сила інерції:
де \(m_a \) — маса автомобіля, кг,
\(j \) — прискорення автомобіля, \(\text{м/с}^2 \).

Вплив моменту інерції обертових мас (маховика, коліс) враховується коефіцієнтом обертових мас \(\delta_{\text{обр}} \). Цей коефіцієнт показує у скільки разів сила, необхідна для прискорення автомобіля, більша сили інерції його поступального руху. Отже, сила опору розгону \(P_n \):

\[
P_n = \frac{P'}{\delta_{\text{обр}}} = m_a \cdot \delta_{\text{обр}}.
\]

(2.16)

Коефіцієнт \(\delta_{\text{обр}} \) можна розрахувати за емпіричною формулою:

\[
\delta_{\text{обр}} = 1.05 + 0.05U_{\text{кн}}^2.
\]

(2.17)

Потужність, що витрачається на подолання сили інерції автомобіля,

\[
N = P_n \cdot V_a = m_a \cdot \delta_{\text{обр}} \cdot j \cdot V_a.
\]

(2.18)

2.6 Сили опору кочення

Задні колеса при повороті обкатуються по іншому сліду, чим передні, і середне число обертів передніх коліс більше, ніж задніх. Якщо в повнопривідному автомобілі обидві осі з'єднані твердим валом, то колеса пробуксовують. Виникаюча при повороті сила за величиною може бути більшою тягової сили й залежить від коефіцієнта зцеплення шини з поверхнею дороги і від навантаження на колеса. Зі збільшенням шорсткості поверхні дороги ця сила й опір коченю ростуть. Ця сила виникає також і при наявності диференціалів на обох осях і усувається лише за допомогою міжосьового диференціала. Такий диференціал виконує також функції дільника моменту, якщо на одній з осей установлені одинарні, а на іншій здвоєні шини.

Сили, що викликають втрати енергії, завжди виникають у випадку використання здвоєнихшин. При повороті кожна із шин повинна рухатися з різною лінійною швидкістю, чого не відбувається внаслідок твердого кріплення здвоєних коліс. Тому на повороті хоча б одне з коліс має пробуксовку, що усувається при відриві одного з коліс від нерівностей дороги. Таким чином, на нерівній дорогі ця проблема вирішується простіше, ніж на шосе з гарним покриттям. Збільшення опору руху за
рахунок виникнення додаткових сил відбувається також, якщо тиск у здвоєних шинах різній і якщо неоднакове їх зношування.

Опір коченню автомобільного колеса залежить від режиму, у якому воно працює (ведене або ведуче), і є наслідком трьох явищ:
- деформації шини;
- деформації поверхні, по якій котиться колесо;
- і тертя в підшипниках.

Через складність розрахунку всіх цих факторів опір коченню автомобіля в цілому визначають експериментально за сумарними витратами енергії. За аналогією із силою опору ковзання вважають, що сила опору коченню автомобіля визначається за формулою:

\[P_K = f \cdot G_n, \]

де \(f \) – коефіцієнт опору коченню.

Він чисельно дорівнює відношенню сили, що викликає рівномірне кочення автомобіля (за величиною, рівною \(P_K \)), до нормальної складової сили ваги автомобіля, тобто:

\[f = \frac{P_K}{G_n}. \] (2.19)

Останнє положення використовується для експериментального визначення коефіцієнта \(f \). За допомогою тягача буксирують автомобіль, що котиться з малою швидкістю по горизонтальній дорозі. Записують показання динамометра, поміщеною в буксирному пристрої, і знаючи силу ваги випробуваного автомобіля одержують шукане значення коефіцієнта.

При швидкостях до 50 км/год. коефіцієнт \(f \) вважають постійним. При більших швидкостях зростання внутрішніх втрат у шині приводить до помітного збльшення коефіцієнта \(f \). Для визначення його з урахуванням впливу швидкості використовують емпіричну формулу.

\[f = f_0 \left(1 + 4.5 \cdot 10^{-5} V_a^2 \right), \] (2.20)

де \(f_0 \) – коефіцієнт опору коченню при русі з малою швидкістю.

Наведемо значення коефіцієнта \(f_0 \) для доріг з різним покриттям:
- з асфальтобетонним або цементобетонним покриттям..0,014 – 0,018
- з гравійним покриттям..0,020 – 0,025
- для грунтових у сухому й укоченому стані...............0,025 – 0,035
- для піску...0,10 – 0,30
- для укоченого снігу..0,07 – 0,10

23
Потужність, необхідна для подолання опору коченню при русі автомобіля зі швидкістю \(V_a \), дорівнює:

\[
N_K = f \cdot G \cdot V_a , (Bm),
\]

де \(G \) у ньотонах (Н), а \(V_a \) у (м/с).

Сила опору підйому, що є складовою сили ваги автомобіля, і спрямована паралельно дорозі (рис. 2.3), дорівнює:

\[
P_n = G_a \cdot \sin \alpha .
\]

Сила опору коченню при русі автомобіля на підйомі:

\[
P_K = f \cdot G_n = f \cdot G_a \cdot \cos \alpha .
\]

Вона діє одночасно із силою \(P_n \) і становить загальну силу опору дороги:

\[
P_D = P_K + P_n .
\]

Оскільки кути поздовжніх ухилів автомобільних доріг малі, то приймають:

\[
\sin \alpha \approx \tan \alpha = \frac{h}{l} = i, \quad \cos \alpha = 1 .
\]

Тоді:

\[
P_D = G \cdot (f \cdot \cos \alpha + \sin \alpha) \approx G_a (f + i) = \psi \cdot G_a ,
\]

де \(\Psi \) – коефіцієнт опору дороги.

Потужність, необхідна для подолання опору дороги:

\[
N_D = P_D \cdot V_a = \psi \cdot G_a \cdot V .
\]

2.7 Нормальні реакції дороги

Сила тиску колеса на дорогу, рівна за абсолютною величиною нормальній реакції дороги на колесо і забезпечує надійність контакту (зчеплення) шини з дорожнім покриттям. Це є неодмінною умовою руху
автомобіля. За аналогією із силою тертя сила зчеплення $P_{\text{ш}}$ ведучих коліс пропорційна нормальній реакції Z на колеса однієї осі:

$$P_{\text{ш}} = \varphi \cdot Z. \quad (2.23)$$

Коефіцієнт пропорційності φ називають коефіцієнтом зчеплення. Він залежить у першу чергу від типу й стану дорожнього покриття і для різних доріг становить:

- з цементобетонним покриттям $0,8 \ldots 0,5$;
- з асфальтобетонним покриттям $0,7 \ldots 0,4$;
- для грунтової $0,6 \ldots 0,3$;
- для укоченої сніжної $0,3 \ldots 0,2$.

Більше значення відноситься до сухого, а менше до мокрого стану дороги. Розглянемо умови рівноваги автомобіля в припущеній, що точки прикладання сили опору повітря лежать на одній висоті із центром ваги автомобіля, а силою опору коченню знехтуємо. Тоді одну з умов рівноваги автомобіля можна виразити таким рівнянням моментів всіх сил щодо осі, що проходить через точки A, опори передніх коліс (рис. 2.3)

$$a \cdot G_a \cdot \cos \alpha + (P_a + P_i + G_a \cdot \sin \alpha)h_g - Z_2 \cdot L = 0. \quad (2.24)$$

Вираз в дужках чисельно дорівнює силі тяги P_T. З урахуванням формули (2.7) розв’яжемо рівняння відносно реакції Z_2.

$$Z_2 = \frac{a \cdot G_a \cdot \cos \alpha}{L - \varphi \cdot h_g}. \quad (2.25)$$

Інша умова рівноваги автомобіля випливає з рівняння проекцій всіх сил на вісь, перпендикулярну поверхні дороги (рис 2.3):

$$G_a \cdot \cos \alpha - Z_1 - Z_2 = 0. \quad (2.26)$$

Звідки:

$$Z_1 = G_a \cdot \cos \alpha - Z_2. \quad (2.27)$$

Підставивши в останній вираз замість реакції Z_l її значення (2.25) і виконавши необхідні перетворення, одержимо:
\[Z_1 = \frac{G_a \cdot \cos \alpha (b - \varphi \cdot h_g)}{L - \varphi \cdot h_g}. \] (2.28)

У цих формулach \(a \), \(b \), \(h_g \) — координати центра ваги автомобіля (рис. 2.3). Якщо \(G_1 \) і \(G_2 \) — вага автомобіля, що доводиться відповідно на передню й задню осі, тоді

\[Z_1' = G_1 = G_a \left(\frac{b}{L} \right), \]
\[Z_2' = G_2 = G_a \left(\frac{a}{L} \right). \]

Одержані реакції відповідають прискореному руху автомобіля на підйомі з максимальним використанням сили зчеплення \(P_{zc} \). Динамічну зміну нормальних реакцій оцінюють коефіцієнтами поздовжнього перерозподілу реакцій \(m_1 \) і \(m_2 \)

\[m_1 = \frac{Z_1}{Z_1'} = \frac{L \cdot \cos \alpha \cdot (b + \varphi h_g)}{b - (L - \varphi h_g)}, \] (2.29)
\[m_2 = \frac{Z_2}{Z_2'} = \frac{L \cdot \cos \alpha}{b - (L - \varphi h_g)}. \]

Нормальні реакції, що діють на колеса відповідно передньої й задньої осей, рівні складовій ваги автомобіля, що доводиться на ці осі.

2.8 Опір повітря

Автомобіль, що рухається швидко, витрачає більшу потужність на подолання опору повітря. Наприклад, при русі автомобіля в безвітряну погоду зі швидкістю 90 км/год, повітря через товщу якого просувається автомобіль, давить на нього із силою, рівною силі урагану.

Витрати потужності на подолання опору повітря складаються з витрат на подолання:
- лобового опору, викликаного різницею тисків повітря спереду й ззаду автомобіля (до 60 % усього опору повітря) через утворення розрідження за його кузовом;
- опору, створюваного виступаючими частинами автомобіля;
- опору потоку повітря, що проходить через радіатор системи охолодження;
- тертя частинок повітря об зовнішню поверхню автомобіля;
- піднімаючи силы, викликаної різницею тиску повітря внизу й угорі кузова.

Дослідним шляхом установлено, що сила опору повітря (у Н):

\[P_a = c_a \cdot F_a \cdot V^2, \]

де \(c_a \) – коефіцієнт опору повітря (коефіцієнт обтічності), що залежить від форми і якості обробки поверхні автомобіля, Н \(c^2/m^4 \);
\(F_a \) – лобова площа автомобіля, \(m^2 \);
\(V \) – швидкість руху автомобіля, м/с.

Коефіцієнт обтічності \(c_a \) визначають експериментально, чисельно він дорівнює силі опору повітря в ньютонах, що створює 1 м лобової площи автомобіля при його русі зі швидкістю 1 м/с.

Лобовою площею називають площу проекції автомобіля на площину, перпендикулярну до поздовжньої осі автомобіля. Визначити точне значення лобової площі легкового автомобіля досить важко через складну форму його поперечного контуру. Тому користуються наближеною формуловою:

\[F_a = 0.78B_a \cdot H_a, \]

де \(B_a \) – найбільша ширина автомобіля, м;
\(H_a \) – найбільша висота автомобіля, м.

Таким чином, потужність, необхідна для подолання опору повітря (у Вт),

\[N_a = P_a \cdot V = c_a \cdot V^3. \]

Зрозуміло, що обтічність кузова не може бути підібрана без випробувань в аеродинамічній трубі.

Оскільки відомо, що сила опору повітря пропорційна як коефіцієнту \(c_a \) (у сучасних автомобілів \(c_a = 0.26 – 0.48 \)), так і площі лобової поверхні \(F_a \), то силу опору повітря можна зменшити тільки шляхом створення вдалої в аеродинамічному відношенні форми. Конструктори прагнуть додати кузову автомобіля найкращу обтічну форму.

Експериментально в аеродинамічній трубі було встановлено, що якщо передня частина кузова низька і широка, не має гострих кутів, то не відбувається відриву потоку повітря і вони добре обтікає поверхню (рис. 2.10). Тому грати радіатора повинні бути широкі, але невисокі, а вітрове скло встановлене під кутом 40 – 55° до вертикали, щоб зберегти зону підвищеного тиску (рис. 2.10, IV) для роботи систем вентиляції й опалення.
Рисунок 2.10 – Вплив форми передньої частини автомобіля на коефіцієнт обтінності c_W: I – III – форма автомобіля; IV – розподіл зон повітряного потоку по довжині автомобіля

Крім того, варто врахувати, що хоча при занадто великому нахилі й поліпшується обтінність автомобіля, негативні наслідки значні:
- зростає маса скла;
- запиленість скла погіршує світлопередачу;
- помітно позначаються дефекти скла.

При занадто великому нахилі скла збільшується запотівання стекол у салоні, у сутінках різко падає оглядовість, потрібно збільшувати розміри склоочисника. Все це знижує безпеку при русі по нічному місту й у дощову погоду.

Перехід скла до боковини повинен здійснюватися плавно, для цього застосовують скло з великою кривизною. Але не можна забувати про спотворення, які тим сильніші, чим більша кривизна скла.

З погляду аеродинаміки автомобіля бічні поверхні впливають на створення безвихрового потоку. Однак встановлено, що бічні поверхні не повинні бути занадто закругленими (погіршується зручність входу й
виходу), а скло бажано наблизити до зовнішньої поверхні й розташовувати їх на одній лінії із зовнішнім контуром автомобіля.

Найбільший вплив на коефіцієнт обтічності робить саме задня частина автомобіля, тому що у задній частині повітряний потік відривається з утворенням завихрень.

Задню частину автомобіля практично неможливо виконати обтічною настільки, щоб вона повторювала форму дирижабля, довжина якого повинна бути в 6 разів більша ширини (вважається найбільш обтічною формою). Форму задньої частини автомобіля досліджують ще більш детально ніж передню.

Дослідження в аеродинамічній трубі показують, що кут нахилу \(\varphi \) задньої частини автомобіля впливає на коефіцієнт обтічності \(c_w \) (рис. 2.11). Вихровий потік зривається за заднім склом на невеликій ділянці поперечного перерізу, і підбір кута нахилу заднього скла є для конструктора найбільш складним. Із графіка (рис. 2.11) видно, що збільшення кута нахилу більше 34° незначно впливає на коефіцієнт \(c_w \), а зрив потоку звичайно відбувається в заштрихованій зоні. Це означає, що область турбулентного потоку, яка насичена відпрацьованими газами і пилом, охоплює площу задньої частини автомобіля аж до заднього скла. А якщо ущільнення кузова негерметичні, то в салоні відчувається запах відпрацьованих газів. Такий тип контуру задньої частини характерний для вантажопасажирських автомобілів, при проектуванні яких намагаються максимально використовувати обсяг салона.

Рисунок 2.11 – Вплив форми передньої частини автомобіля на коефіцієнт обтічності

29
Розгляд графіка на рисунку 2.11 дозволяє зробити висновок, що найкраще робити нахил заднього скла близьким до 10°. Однак не слід забувати про забезпечення необхідної оглядовості позаду, особливо при русі в дощ і снігопад, коли потрібне очищення заднього скла. Тому на автомобілях останніх випусків часто встановлюють склоочисники заднього скла й застосовують обігрів.

Вплив заднього спойлера на коефіцієнт обтічності вивчається багатьма дослідниками. Одні з них вважають, що оптимальна висота спойлера, установлена на задній частині кузова, становити близько 60 мм, інші пропонують обмежитися 40 мм.

Добуток $c_a \cdot F_a$ називають фактором обтічності й позначають буквою W_a.

Середні значення c_a, F_a і W_a наведені в табл. 2.2.

Таблиця 2.2 – Параметри обтічності автомобілів

<table>
<thead>
<tr>
<th>Автомобілі</th>
<th>c_a, (Н·с²/м⁴)</th>
<th>F_a, (м²)</th>
<th>W_a, (Н·с²/м²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Легкові із закритим кузовом</td>
<td>0,20-0,35</td>
<td>1,6-2,8</td>
<td>0,3-1,0</td>
</tr>
<tr>
<td>з відкритим кузовом</td>
<td>0,40-0,50</td>
<td>1,5-2,0</td>
<td>0,6-1,0</td>
</tr>
<tr>
<td>Вантажні</td>
<td>0,60-0,70</td>
<td>3,0-5,0</td>
<td>1,8-3,5</td>
</tr>
<tr>
<td>Автобуси з кузовом вагонного типу</td>
<td>0,24-0,40</td>
<td>4,5-6,5</td>
<td>1,1-2,6</td>
</tr>
<tr>
<td>Гоночні</td>
<td>0,13-0,15</td>
<td>1,0-1,3</td>
<td>0,13-0,2</td>
</tr>
</tbody>
</table>

Потужність, необхідна для подолання опору повітря (у Вт), може бути підрахована за формулою:

$$N_a = P_a \cdot V = c_a \cdot F_a \cdot V^2 = W_a \cdot V^3.$$ (2.33)

Діючі сили прийнято позначати на схемах стрілками й буквами, причому напрямок стрілок збігається з напрямком дії сили, а довжини стрілок повинні бути витримані в одному масштабі пропорційно величинам сил. Початок стрілки встановлюють у точці прикладення сили.

Приклад. На кузов автомобіля діють дві сили – сила опору повітря й сила вітру, що діє під кутом 90° до поздовжньої осі (і напрямку руху) автомобіля (рис. 2.12). Це найбільш стандартна ситуація. Швидкість автомобіля 108 км/год, тобто зустрічний рух повітря складе 30 м/с, швидкість вітру 36 км/год або 10 м/с.

Розв'язання. Величини сил лобового опору й бічного вітру приблизно пропорційні квадратам швидкості, так що можна зобразити ці величини за допомогою стрілок, довжиною 30² = 900 і 10² = 100мм. $R = \sqrt{30^2 + 10^2}$ Взяви масштаб 1:10, відкладемо на рисунку прямі лінії довжиною 90 і 10 мм. Взяли на рисунку 2.12.
10 мм. Продовживши напрям ліній до перетинання їх у точці і центра ваги автомобіля ЦВ, одержимо сукупність діючих сил.

Рисунок 2.12 – Сукупність сил, що діють на автомобіль у русі

Сукупність декількох сил, що одночасно діють на тіло, у механіці називають системою сил.

Якщо сили діють в одному напрямку і прикладені в одній точці, їх рівнодіюча прикладена в тій же точці, спрямована в ту ж сторону й дорівнює за величиною сумі складових сил.

У дійсності на автомобіль можуть діяти сили в різних напрямках. Розглянемо дію на автомобіль двох сил, різних за напрямком (рис. 2.13). Додавання таких сил відрізняється від додавання сил, спрямованих в одну або в протилежні сторони. У цьому випадку сили необхідно привести до однієї точки, а потім скласти, щоб визначити рівнодіючу. Рівнодійну силу бічного вітру і зустрічного потоку повітря є геометричною сумою сил.

Все викладене вище про опір повітря і аеродинамічні якості автомобіля справедливе тільки для ідеального випадку, коли повітряний потік діє точно уздовж осі автомобіля. Але цього майже ніколи не буват. Повітряний потік фактично відхиляється і вверх, і вниз і може збільшувати або зменшувати силу зчеплення шин з дорогою.

Приклад. Визначити силу опору повітря й потужність, необхідну для подолання опору повітря автомобілем, при таких даних:

\[W_a = 0,6 \frac{H \cdot c^2}{M^2}; V = 35 \frac{M}{c}. \]
Рівняння руху автомобіля

Рівняння руху автомобіля є основним у тяговій динаміці. Воно пов’язує сили, що рухають автомобіль, із силами опору руху й дозволяє визначити характер руху автомобіля в будь-який момент часу. При вивченні динамічності автомобіля вважають, що його можливості обмежені лише потужністю двигуна і зчепленням ведучих коліс із дорогою. Інші обмеження, що накладаються, наприклад, вимогами безпеки руху або комфортабельності, не враховують. У зв’язку із цим розглядається лише прямолінійний рух автомобіля.

Розглянемо рух автомобіля по складному профілю дороги. При проходженні автомобілем западини дороги (рис. 2.14, a) сила ваги \(G_a \) і відцентрова сила \(Z_a \), прикладені в центрі ваги, дають рівнодієву \(R \):

Якщо сили спрямовані в протилежні сторони (проходження опуклого місця дороги), рівнодієна дорівнює їх різниці, прикладена в центрі ваги і спрямована у бік більшої сили (рис. 2.14, б).
Рисунок 2.14 – Проходження автомобілем складного профілю дороги:
а – западини, б – опуклості.

\[R = G_a + Z_u \] (2.34)

Якщо протидійні сили рівні, то тіло перебуває в спокої або в усталеному русі, тому що рівнодійна \(R \) дорівнює нулю.

Дія на тіло сили або декількох сил приводить до початку руху нерухомого тіла або до зміни напрямку й швидкості руху тіла, або до тиску одного тіла на інше, якщо одне з них перешкоджає переміщенню іншого.

Розглянемо сили і моменти, що діють на автомобіль на підйомі під час розгону (рис. 2.3).

До центра ваги автомобіля прикладена сила ваги \(G \), сила інерції \(P'_i \), що спрямована протилежно прискоренню, і сила опору підйому \(P_n \).

Сила ваги: \(G = M_a \cdot g \)
Сила інерції: \(P'_i = M_a \cdot j \)
Сила опору підйому: \(P_n = G \cdot \sin \alpha \) (2.35)

де \(M_a \) – маса автомобіля, кг;
\(j \) – прискорення автомобіля; м/с²;
\(g \) – прискорення вільного падіння, м/с².

До коліс прикладені моменти опору коченню \(M_{k1} \) і \(M_{k2} \), а також моменти сил інерції \(M_{i1} \) і \(M_{i2} \). З боку дороги на шини діють нормальні реакції \(Z_1 \) і \(Z_2 \) і дотичні реакції \(X_1 \) і \(X_2 \). Сила опору повітря \(P_v \) прикладена до центра автомобіля на висоті \(h_a \). Крім того, до буксириного гака автомобіля
може бути прикладена сила опору руху причепа P_{np}. Спроектуємо всі сили на площину дороги:

$$X_1 - X_2 - P'_{i} - P_n - P_a - P_{np} = 0. \quad (2.36)$$

При русі одиночного автомобіля:

$$X_1 - X_2 - P'_{i} - P_n - P_a = 0. \quad (2.37)$$

Підставивши у формулу (2.37) замість сил X_1, X_2 і P_i їх значення, одержимо:

$$P_T - \frac{I_m \cdot \eta_{mp} \cdot u_{mp}^2 + I_2}{r^2} - \frac{I_1}{r^2} J - M_a \cdot J - (Z_1 + Z_2) \cdot f - P_n - P_a = 0. \quad (2.38)$$

Разом з тим:

$$(Z_1 + Z_2) \cdot f + P_i = P_k + P_n = P_d. \quad (2.39)$$

Отже,

$$p_T - \left(1 + \frac{I_m \cdot \eta_{mp} \cdot U_{mp} + I_K}{M_a r^2}\right) M_a J - P_d = 0, \quad (2.40)$$

де I_K — сумарний момент інерції всіх коліс автомобіля, кг·м².

Другий член рівняння (2.40) являє собою силу, яку потрібно прикласти до автомобіля, щоб надати йому прискорення, рівне j. Порівнюючи цей член з рівнянням (2.35) бачимо, що вираз в дужках визначає у скільки разів енергія витрачена при розгоні обертових мас деталей автомобіля, більша енергії, необхідної для розгону автомобіля. Таким чином, цей вираз враховує вплив обертових мас, його називають коефіцієнтом врахування обертових мас δ_{op}:

$$\delta_{op} = 1 + \frac{I_m \cdot \eta_{mp} \cdot U_{mp} + I_K}{M_a r^2}. \quad (2.41)$$

Весь другий член рівняння (2.40) називають приведеною силою інерції P_i автомобіля:
\[P_I = P_I \delta_{\text{тр}} = M_a J \left(1 + \frac{I_m \cdot \eta_{\text{тр}} \cdot U_{\text{тр}} + I_k}{M_a r^2} \right). \] (2.42)

Енергія, що витрачається на розгін обертових деталей двигуна, на прямій передачі в 2 – 3 рази, а на нижчих передачах в 8 – 10 разів більша енергії, що витрачається на розгін коліс.

Якщо точне значення моментів інерції \(I_m, I_k \) невідомо, то коефіцієнт \(\delta_{\text{тр}} \) визначають за емпіричною формулою:

\[\delta_{\text{тр}} = 1 + (\delta_1 + \delta_2 \cdot U_{KII}^2) \cdot \frac{G_a}{G}, \] (2.43)

де \(\delta_1 = \delta_2 = 0.03 \text{ – 0.05}; \)
\(U_{KII} \) – передаточне число коробки передач;
\(G_a \) – вага автомобіля з повним навантаженням;
\(G \) – вага автомобіля з навантаженням.

Для випадку руху автомобіля з від'єднаним від трансмісії двигуном коефіцієнт врахування обертових мас позначають буквою \(\delta_H \) і визначають за формулою:

\[\delta_H = 1 + \frac{I_k}{(M_e r^2)} \approx 1 + 0.05 \cdot \frac{G_a}{G}. \] (2.44)

Рівняння для загального випадку руху автомобіля:

\[P_T - P_I - P_n - P_{\text{вт}} = P_T - P_I - P_{\text{жн}} - P_{\text{вт}} = 0. \] (2.45)

2.10 Сила тяги за умовами зчепленняшин з дорогою

При визначенні сили тяги було прийнято, що її величина залежить лише від параметрів автомобіля \((M_e, U_{\text{тр}}, \eta_{\text{тр}}, r) \). Однак це не означає, що, збільшуючи, наприклад, передаточне число трансмісії можна реалізувати як завгодно більшу силу тяги. Граничне її значення обмежене зчепленнямшин з поверхнею дороги.

Силу зчепленняшин з дорогою \(P_{\text{вт}} \) називають максимальним значенням горизонтальної реакції \(R_{\text{max}} \), пропорційним вертикалному навантаженню на колесо:

\[P_{\text{вт}} = R_{\text{max}} = \phi \cdot Z, \] (2.46)
де φ – коефіцієнт зчеплення, який чисельно дорівнює відношенню сили, що викликає рівномірне ковзання колеса до нормальної реакції дороги.

Залежно від напрямку ковзання колеса розрізняють коефіцієнти поздовжнього φ_x і поперечного φ_y зчеплення.

Для руху колеса без поздовжнього й поперечного ковзання необхідне дотримання умови:

$$P_{cu} = R_{max} = \varphi \cdot Z \geq \sqrt{X^2 + Y^2}. \quad (2.47)$$

При відсутності поперечних сил сила зчеплення:

$$P_{zu} = \varphi \cdot Z \geq X. \quad (2.48)$$

У випадку рівномірного кочення ведучого колеса:

$$X = P_T - Z \cdot f,$$
$$P_T \leq (\varphi_x + f) \cdot Z.$$

Коефіцієнт φ_x зазвичай набагато більший коефіцієнта f тому умову кочення колеса без ковзання можна з невеликою похибкою подати у вигляді:

$$P_T \leq P_{zu} = \varphi_x \cdot Z. \quad (2.49)$$

Якщо сила тяги менша сили зчеплення P_{zu}, то ведуче колесо котиться без пробуксовування. Якщо сила тяги більша сили зчеплення, то ведуче колесо пробуксовує, і для руху використовується лише частина сили тяги, рівна $\varphi_x \cdot Z$. Інша частина сили P_T викликає прискорене обертання коліс, що триває доти, поки потужність, що витрачається на буксування, не зрівноважить надлишок потужності підведені до коліс. Найбільш часто буксування спостерігається при різкому рушанні з місця і під час подолання великого опору руху на слизьких дорогах.

На дорогах із твердими покриттями коефіцієнт зчеплення залежить від тертя ковзання між шиною й покриттям. На дорогах, що деформуються, коефіцієнт зчеплення залежить, перш за все, від опору ґрунту. Однак потім починається руйнування ґрунту внаслідок чого коефіцієнт зчеплення зменшується.

При змочуванні твердого покриття коефіцієнт зчеплення різко падає через утворення плівки із частиною ґрунту й води, що зменшують тертя між шиною й дорогою. Коефіцієнт зчеплення знижується особливо значно,
якщо на покритті є плівка з глини. Сильним дощем ця плівка може бути змита, тоді величина \(\phi \) знову наближається до значень, характерним для сухого покриття.

Великий вплив на коефіцієнт \(\phi \) робить рисунок протектора. Протектор шин легкових автомобілів звичайно має дрібній рисунок, що забезпечує достатнє зчеплення із твердим покриттям. У шин вантажних автомобілів рисунок протектора великий із широкими й глибокими западинами. Такі шини врізаються в фунт, поліпшуючи прохідність автомобіля.

Зношування протектора шини погіршує її зчеплення з дорогою, при цьому коефіцієнт зчеплення шини з дорогою найменший при повному зношуванні рисунка. Експлуатація шин зі зношеним протектором заборонена, тому що це може привести до серйозних дорожньо-транспортних подій.

Недостатня величина коефіцієнта \(\phi \) є причиною багатьох дорожньо-транспортних подій. Для забезпечення безпеки руху величина \(\phi \) повинна бути не меншою 0,1. Збільшення тягового (або гальмівного) моменту, прикладеного до колеса, викликає буксування або проковзування шини відносно дороги. Величину проковзування \(\lambda \) оцінюють у відсотках:

\[
\lambda = \left(1 - \frac{\omega K r}{V}\right) \cdot 100,
\]

де \(\omega K \) – кутова швидкість;
\(V \) – швидкість кочення колеса.

При \(\omega K r > V \) колесо пробуксовує в напрямку свого обертання. При \(\omega K r = V \) колесо котиться без проковзування. При \(\omega K r < V \) (галмівний режим) колесо проковзує у бік протилежний напрямку обертання, а при \(\omega K = 0 \) спостерігається ковзання шини відносно дороги – автомобіль іде юзом.

Зі збільшенням проковзування (або буксування) шини по дорозі коефіцієнт зчеплення зростає, досягаючи максимуму \(\phi_{\text{max}} \) при ступені проковзування до \(\lambda = 20 \text{–} 25 \% \).

При повнім буксуванні ведучих коліс або юзі гальмівних коліс (\(\lambda = 100 \% \)) коефіцієнт зчеплення (\(\phi \)) може бути на 10 – 25 % менше максимального (рисунок 2.15).

Зі збільшенням швидкості руху автомобіля коефіцієнт \(\phi \) зменшується, тому що на величину \(\phi \) впливає велика кількість факторів, врахувати які дуже важко, то для розрахунків користуються середніми значеннями коефіцієнта зчеплення \(\phi \), наведеними в табл. 2.3. Коефіцієнт поперечного зчеплення \(\phi_y \) залежить від тих же факторів, і його звичайно приймають рівним коефіцієнту \(\phi_x \).
Вплив ступеня проковзування коліс відносно дороги і швидкості кочення колеса на коефіцієнт зчеплення

Рисунок 2.15 – Вплив ступеня проковзування коліс відносно дороги і швидкості кочення колеса на коефіцієнт зчеплення

Таблиця 2.3 – Значення коефіцієнта зчеплення φ_x залежно від виду дороги й стану її поверхні

<table>
<thead>
<tr>
<th>Дорога</th>
<th>Поверхня</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асфальтобетонна або цементно-бетонна</td>
<td>суха: 0,7 – 0,8; мокра: 0,35 – 0,45</td>
</tr>
<tr>
<td>Щебенева</td>
<td>суха: 0,6 – 0,7; мокра: 0,3 – 0,4</td>
</tr>
<tr>
<td>Ґрунтована</td>
<td>суха: 0,5 – 0,6; мокра: 0,2 – 0,4</td>
</tr>
<tr>
<td>Зледеніла</td>
<td>суха: 0,1 – 0,2</td>
</tr>
<tr>
<td>Покрита снігом</td>
<td>суха: 0,2 – 0,3</td>
</tr>
</tbody>
</table>

2.11 Умова можливості руху автомобіля

Відповідно до виразу $P_{сЦ} = \varphi \cdot Z \geq X$ тривалий рух автомобіля можливий лише за умови:

$$P_T \geq P_D + P_B.$$

Ця нерівність пов'язує конструктивні параметри автомобіля із силами опору руху. Виконання її необхідна, але недостатня умова для руху автомобіля. Рух можливий лише при відсутності буксування ведучих коліс. З урахуванням формули $P_T \leq P_{сЦ} = \varphi_x Z$ умову руху можна виразити таким чином:

38
Якщо сумарна сила опору руху більша тягової сили, то зупиняється двигун. Якщо тягова сила більша сили зчеплення, то пробуксовують ведучі колеса.

Таким чином, тривалий рух автомобіля можливий лише в тому випадку, якщо сила тяги на ведучих колесах не більша сили зчеплення, але більша суми сил опору дороги і повітря або, у крайньому випадку, дорівнює їй.

Контрольні запитання

1. Що таке швидкісна характеристика двигуна і як вона визначається?
2. Від яких факторів залежить ККД трансмісії і які його середні значення для автомобілів різних типів?
3. Які причини викликають опір коченню, опір підйому й опір дороги?
4. Назвіть середні значення коефіцієнта опору коченню для доріг різних типів.
5. Від чого залежить сила й потужність опору повітря?
6. Що таке коефіцієнт врахування обертових мас? Чому він дорівнює ?
7. Від яких факторів залежить коефіцієнт зчеплення і які його середні значення для доріг різних типів?
8. Напишіть умову можливості руху автомобіля.
9. Навіщо потрібне рівняння руху автомобіля і які величини в ньому входять?
3 ТЯГОВА ДИНАМІЧНІСТЬ АВТОМОБІЛЯ

3.1 Силовий баланс і його графік

Отримане в попередньому розділі рівняння руху автомобіля (2.45) не можна розв'язати в загальному вигляді, тому що невідомі точні функціональні залежності, що пов'язують основні діючі сили P_T, P_K, P_D, P_B зі швидкістю автомобіля V_a.

Рівняння руху розв'язують приблизно, використовуючи прості й наочні графоаналітичні методи, які забезпечують достатню точність одержуваних результатів. Найбільше поширення одержали: метод силового балансу, метод потужнісного балансу, метод динамічної характеристики.

Розглянемо метод силового балансу.

Переписавши рівняння $P_T = P_i + P_K + P_n + P_B = P_I + P_D + P_B$ в такому вигляді:

$$P_T - P_I - P_K - P_n - P_B = P_T - P_I - P_D - P_B = 0.$$ (3.1)

Таким чином одержано рівняння силового балансу, яке можна розв'язати графічно, як показано на рисунку 3.1.

Спочатку будується тягову характеристику автомобіля на кожній передачі, задаючись частотою обертання колінчастого вала двигуна і знаходять значення швидкості руху автомобіля:

$$V_a = 0,377 \frac{n \cdot r}{U_{rg} \cdot U_{GG}}.$$

Потім одержуються значення сили тяги $P_{T, I}$, $P_{T, II}$, $P_{T, III}$, $P_{T, IV}$.

У нижній частині графіка наносять криву P_d, побудовану для одного значення коефіцієнта опору дороги. Криву сили опору повітря P_B будуєть, відкладаючи значення цієї сили нагору від відповідних значень сили P_d.

Крива сумарного опору $P_B + P_D$ визначає силу тяги, необхідну для руху автомобіля з постійною швидкістю. Якщо крива P_T проходить вище кривої $P_B + P_D$, то відтака, побудовані між цими кривими, являють собою нереалізовану частину («запас») P_3 сили тяги, яку можна використовувати для подолання підвищеного опору дороги або для розгону автомобіля.

За допомогою отриманого графіка силового балансу можна визначити основні показники динамічності автомобіля при русі. Так, наприклад, максимальну швидкість визначають по абсцисі точки перетинання кривих P_T і $P_D + P_B$, тому що при цьому запас сили тяги P_B, а отже, і прискорення...
дорівнюють нулю. Якщо крива P_T проходить нижче кривої $P_D + P_B$, то автомобіль рухається уповільнено.

Рисунок 3.1 – Графік силового балансу автомобіля: $P_{T_1}, P_{T_{II}}, P_{T_{III}}, P_{T_{IV}}$– криві сил тяги відповідної передачі

Для визначення максимального опору дороги, що може здолоти автомобіль при рівномірному русі зі швидкістю V_a, потрібно з ординати P_T відняти відрізок ab, рівний у вибраному масштабі силі P_B при швидкості V_1. Сума відрізків P_3 і bc у тому ж масштабі являє собою силу P_D при максимальному коефіцієнті опору дороги Ψ_{max}.

Щоб врахувати можливість буксування ведучих коліс, потрібно, визначивши для заданого коефіцієнта зчеплення ϕ_X силу зчеплення P_{ϕ} провести горизонтальну лінію, як показано на рисунку 3.1. У зоні, розташованій нижче цієї лінії (ϕ_XG_2), дотримується умова $P_T \leq P_{\phi}$, а в зоні вище її тривалий рух автомобіля неможливий.

Для розглянутого прикладу рух автомобіля на четвертій, третій і другій передачах можливий у всьому інтервалі швидкостей від мінімальної до максимальної. На першій передачі рух автомобіля без буксування коліс при повному навантаженні двигуна можливий лише зі швидкістю, більшою або рівною швидкості V_2. Для руху на першій передачі зі
швидкістю, меншою швидкості \(V_2 \) необхідно зменшити подачу палива, щоб зменшити силу тяги \(P_T \).

У рівнянні силового балансу, записаному для загального випадку руху автомобіля, всі сили опору умовно мають знак плюс. Однак залежно від характеру руху сили \(P_n \) і \(P_I \) можуть бути або силами опору, або рушійними силами.

\[
P_T = P_I + P_K + P_{II} = P_I + P_D + P_B.
\]

Тому підставляти значення цих сил у рівняння при русі на підйомі (+ \(\alpha_D \)), а також при розгоні автомобіля (+\(j \)) потрібно зі знаком «+», а у випадку руху на спуску (- \(\alpha_D \)) і з (-\(j \)) зі знаком «-».

3.2 Баланс потужності і динамічна характеристика автомобіля

За аналогією з рівнянням силового балансу можна скласти рівняння потужнісного балансу.

\[
N_T = Ne - N_{TP} = N_k - N_B - N_n
\]

або

\[
N_T = G \cdot \cos \alpha_D \cdot V + G \cdot \sin \alpha_D + W_B V^3 + m_a \delta_{bP} \cdot I \cdot V.
\]

Практичне використання силового й потужнісного балансів для аналізу динамічних властивостей автомобіля ускладнюється трудомісткістю побудови графіків (кривих сумарного опору \(P_D + P_B \) і сумарних витрат потужності \(N_a + N_B \)). Крім того, за силовим і потужнісним балансами не можна порівняти динамічні властивості двох автомобілів, що мають різні маси, лобову площу і обтічність.

Ці недоліки відсутні в методі розв'язання рівняння руху автомобіля за допомогою динамічної характеристики, запропонованому академіком Е. А. Чудаковим.

Динамічною характеристикою автомобіля називається залежність динамічного фактора \(D \) автомобіля з повним навантаженням від швидкості руху на різних передачах (рис. 3.2).

Динамічним фактором \(D_a \) автомобіля називають відношення різниці сил тяги \(P_T \) і сили опору повітря \(P_B \) до ваги автомобіля:

\[
D_a = \frac{P_T - P_B}{G} = \left(\frac{M_C \cdot U_{TP}}{r} \eta_{TP} - P_B V^2 \right) \frac{1}{G}.
\]
Величина D_a залежить тільки від конструктивних параметрів автомобіля, тому її визначають для кожної конкретної моделі.

Рисунок 3.2 – Динамічна характеристика з номограмою навантажень

Оскільки у випадку руху автомобіля на нижчій передачі з малою швидкістю сила P_b невелика, то нею нехтує, і динамічний фактор визначають за наближеною формулою

$$D_a = \frac{P_T}{G}.$$

Для того щоб пов'язати динамічний фактор з умовами руху автомобіля, необхідно перетворити формулу потужнісного балансу (3.3). У результаті чого одержують:

$$D_a = \psi + \frac{\delta_{BP}}{g} \cdot J. \quad (3.5)$$

При рівномірному русі $j = 0$, отже

$$D_a = \psi.$$
З умови руху автомобіля легко визначити і прискорення, що може розвити автомобіль:

\[J = (D_a - \psi) \frac{g}{\delta_{BP}}. \]

(3.6)

Найбільшу швидкість, що може розвити автомобіль у заданих умовах, визначають із умови:

\[D_a - \psi = 0. \]

Динамічну характеристику автомобіля будують графічним способом. Будь-яка точка характеристики може бути розрахована за такою формулою:

\[D = \frac{(P_T - P_B)}{G} = \frac{D_a \cdot G}{G_i}. \]

(3.7)

Щоб не перераховувати при кожній зміні значення ваги автомобіля значення динамічного фактора \(D \), користуються номограмою навантажень. Будують її таким чином: продовжують вліво вісь абсцис, на ній наносять шкалу навантаження \(H \), що доводиться на ведучий міст (у відсотках), або вказують число пасажирів і вагу багажу. Через нову нульову точку проводять вісь ординат і на ній наносять шкалу динамічного фактора для автомобіля без навантаження \(D_0 \). Масштаб для шкали \(D_0 \) визначають за формулою:

\[a_0 = \frac{a_a G_0}{G}, \]

de \(a_a \) – масштаб шкали динамічного фактора для автомобіля з повним навантаженням;

\(G_0 \) – вага спорядженого автомобіля, включаючи вагу водія.

Рівнозначні розподіли шкал осей ординат \(D_0 \) і \(D_a \), (наприклад, 0,05; 0,10;0,15;0,35) з’єднують між собою прямими лініями.

При аналізі проміжні значення визначаються способом інтерполяції, що використаний у наведеному нижче прикладі.

Приклад. При навантаженні \(H = 20 \% \) (див. рисунок. 3.2) і швидкості автомобіля \(V = 13 \text{ м/с} \) коефіцієнт опору дороги \(\Psi = 0,10 \); при навантаженні \(H = 40 \% \) і коефіцієнти \(\Psi = 0,048 \) швидкість автомобіля \(V = 25 \text{ м/с} \); при навантаженні \(H = 80 \% \) і коефіцієнти \(\Psi = 0,14 \) максимальна швидкість автомобіля дорівнює 7 м/с.
Потрібно визначити, якому значенню динамічного фактора D_a відповідає довільна точка A при 90%-ному навантаженню.

Розв'язання. Відрізок $a - b$ (між двома фіксованими значеннями D_a) ділить на таку кількість частин, з якою точністю бажають одержати значення динамічного фактора D_a. Допустимо, потрібна точність до 0,01, отже, відрізок $a - b$ необхідно розділити на п'ять частин, тому що точка A лежить між значеннями D_a, рівними 0,20 і 0,25.

Потім визначають швидкість руху автомобіля. Якщо, наприклад, горизонтальна пряма Ψ перетинає криву динамічного фактора D_{II} у двох точках, то автомобіль при повністю відкритій дросельній заслінці може рівномірно рухатися як зі швидкістю $V_1 = 2,5$ м/с, так і зі швидкістю $V_2 = 7,5$ м/с.

При перетинанні кривої динамічного фактора D_{III} одержують відповідно $V_3 = 6$ м/с і $V_4 = 13$ м/с.

Звідси слідує, що для рівномірного руху зі швидкістю понад 2,5 м/с і менше 7,5 м/с або відповідно більше 6 м/с і менше 13 м/с потрібно знизити потужність двигуна, прикривши дросельну заслінку.

Динамічність автомобіля залежить від його конструктивних параметрів і якості дороги. Найбільше значення при проектуванні автомобіля має форма швидкісної характеристики двигуна, ККД трансмісії, передаточні відношення трансмісії. Збільшення числа передач у коробці покращує тягову динамічність автомобіля. Однак при надмірно великій кількості передач ускладнюється конструкція коробки передач і збільшується її маса, ускладнюється керування автомобілем. Тому в легкових автомобілях число передач не перевищує шести. Найкращою була б безступінчаста трансмісія, але її ККД трохи менше, ніж у ступінчастих трансмісій, що й стримує її застосування. Останнім часом помітно підвищилася увага до безступінчастих трансмісій через їхні тягові переваги, і можна сподіватися, що застосування нових матеріалів і засобів автоматизації допоможе конструкторам знайти оптимальне рішення.

3.3 Динамічний паспорт автомобіля

Динамічний паспорт автомобіля складається з динамічної характеристики з номограмою навантажень (рис. 3.2), графіка контролю буксування і динамічних показників.

Графік контролю буксування являє собою залежність динамічного фактора за зчепленням від навантаження і дозволяє визначити можливість буксування ведучих коліс. Цей графік будуєть таким чином.
Рисунок 3.3 – Динамічний паспорт автомобіля

Спочатку за формулами, наведеними нижче, визначають динамічний фактор зі зчеплення для автомобіля з повним навантаженням \(D_{aх} \) і без нього \(D_{0х} \) при різних значеннях коефіцієнта зчеплення \(\phi \), починаючи з \(\phi = 0.1 \)

\[
D_{aх} = \frac{G_2}{G_a} \cdot \phi \chi, \\
D_{0х} = \frac{G_{02}}{G_0} \cdot \phi \chi,
\]

де \(G_{02} \) — вага, сприймана ведучими колесами автомобіля без навантаження, \(H \).

Потім значення \(D_{aх} \) відкладають по осі \(D_a \) номограми навантажень (рис. 3.3), а значення \(D_{0х} \) — по осі \(D_0 \), і отримані точки з’єднують прямою штриховою лінією, на якій указують величину коефіцієнта \(\phi \chi = 0.1 \). Так само визначають положення точок і наносять штрихові лінії \(D_{\chi} \) для інших значень \(\phi \chi \) (0,2; 0,3;...0,8).

Користуючись графіком контролю буксування, можна врахувати обмеження, що накладаються зчепленням шин ведучих коліс із дорогою на рух автомобіля.

Приклад. Визначити мінімальний коефіцієнт \(\phi \chi \), необхідний для руху із заданим навантаженням і швидкістю або із заданим навантаженням і коефіцієнтом \(\psi \).
Розв'язання. У першому випадку роблять так само, як при визначенні динамічного фактора (за відомими значеннями навантаження \(H \) і швидкості \(V \)), тільки замість величини \(D \) по суцільних похилих лініях визначають значення \(D_{\text{сч}} \) по штрихових лініях. Так, при швидкості \(V = 25 \text{ м/с} \) і навантаженні \(H = 80 \% \) коефіцієнт \(\varphi_X = 0,12 \) (точка \(A \)).

У другому випадку проводять вертикальну лінію через точку, що відповідає відомому значенню навантаження \(H \), і на ній відкладають значення коефіцієнта \(\Psi \), після чого за похилими штриховими лініями визначають коефіцієнт \(\varphi_X \).

Так, при навантаженні \(H = 40 \% \) і коефіцієнті \(\Psi = 0,2 \) одержують значення коефіцієнта \(\varphi_X = 0,32 \) (точка \(B \)).

За графіком контролю буксування можна також визначити максимальні значення коефіцієнта \(\Psi \) і швидкості \(V \) при відомих навантаженні \(P \), коефіцієнти \(\varphi_X \) або навантаженні \(H \) і швидкість при відомих величинах \(\varphi_X \) і \(\Psi \).

Якщо навантаження \(H = 70 \% \) і коефіцієнт \(\varphi_X = 0,4 \) (точка \(C \), то коефіцієнт \(\Psi = 0,27 \). При такому коефіцієнті опору дороги автомобіль зуміє рухатися лише на першій передачі, причому для підтримки рівномірного руху дросельна заслінка карбюратора повинна бути прикрита.

Якщо опір дороги не обмежує руху автомобіля, то можна досягти будь-якої швидкості, що не перевищує максимальної – 35 м/с.

При коефіцієнтах \(\Psi = 0,3 \) і \(\Psi_X = 0,5 \) і навантаженні \(H = 30 \% \) швидкість автомобіля \(V = 11,5 \text{ м/с} \).

Вишенаведені розрахунки відносяться до рівномірного руху автомобіля.

Час рівномірного руху автомобіля зазвичай невеликий в порівнянні із загальним часом його роботи. Так, при експлуатації в містах автомобілі рухаються рівномірно всього лише 15 – 25 % часу. Від 30 до 45 % часу доводиться на прискорений рух і 30 – 40 % – на рух накатом і гальмування.

Показниками динамічних властивостей автомобіля при нерівномірному русі служать прискорення, а також шляхи і час у певному інтервалі. Рух автомобіля може бути прискореним або сповільненим.

Однак саме по собі прискорення дає неповну уяву про динамічні якості автомобіля. Потрібно знати більш значущі показники: час розгону від моменту рушання з місця до досягнення певної швидкості (або в інтервалі між двома значеннями швидкості) і шлях розгону. Наближені значення часу й шляхі розгону можна одержати відповідним використанням динамічної характеристики автомобіля.

Знайшовши вже відомими способами значення прискорень для різних швидкостей і умов руху, підраховують величини, зворотні прискоренням, тобто \(\frac{1}{J} \), будують графік зміни цих величин (рис. 3.4, а).
З курсу механіки відомо, що прискорення \(j \) дорівнює \(\frac{V_a}{t} \), а час розгону \(t=\frac{V_a}{j} \).

На графіку (рис. 3.4, б) проводять вертикальні лінії від горизонтальної осі до кривої \(F(\text{мм}^2) \), обмежену цими лініями. Площу \(F \) можна розглядати як добуток величини \(V_a \) на висоту \(\frac{l}{J} \). Отже, площа пропорційна часу розгону від однієї швидкості (відповідної першої вертикальної лінії) до іншої.

Час розгону можна обчислити, якщо величину кожної площі розділити на 3,6 і на кількість міліметрів, що відображає 1 км/год на горизонтальній шкалі і на кількість міліметрів \(H \), що відображає 1 см²/м на вертикальній:

\[
t = \frac{F}{3,6eh}, (c).
\]

За значеннями \(t \), різними для різних швидкостей, будуєть криву часу розгону, починаючи з \(V_{min} \), при якій \(t = 0 \) (рис. 3.5).

Можливість швидкого розгону, що визначає середню швидкість автомобіля, є важливою характеристикою динамічності. Показниками розгону є прискорення, час і шлях розгону.

З графіків силового і потужнісного балансу та динамічної характеристики видно, що надлишкова сила тяги, надлишкова потужність і різниця \((D_a - \Psi) \), що визначають величину прискорення автомобіля, не постійні, а залежать від передачі, на якій роблять розгін, а також від
досягнутої швидкості. Тому, щоб одержати повну уяву про інтенсивність розгону, знаходять прискорення для кожної передачі і послідовного ряду значень швидкості руху автомобіля і будуєть графік залежності \(j = f(V_a) \).

Такий графік (рис. 3.6, а) показує, що найбільших прискорень можна досягти, якщо розгін починається на першій передачі і якщо відбувається послідовно і вчасно перехід з нижчої передачі на вищу.

Перед початком розгону ведучі колеса від’єднані від двигуна, колінчастий вал двигуна обертається з мінімально стійкою частотою, а швидкість автомобіля дорівнює нулю. Плавне нарощування прискорення при рушанні автомобіля з місця досягається при одночасному поступовому включенні зчеплення й збільшенні відкриття дросельної заслінки (подачі палива). На цій фазі розгону прискорення росте (щільні крива); до моменту повного включення зчеплення й відкриття заслінки (точка A) воно досягає значення \(j_a \), швидкість автомобіля – значення \(V_a \).

Рисунок 3.6 – Графіки показників розгону автомобіля: а – прискорення; б – шляху і часу розгону

При використанні графіка прискорення для практичних розрахунків приймають, що розгін починають зі швидкості \(V_a \), а передачі перемикають миттєво при швидкостях, що відповідають швидкостям у точках (B, B і Г) перетинання кривих прискорення. Якщо криві не перетинаються, то вважається, що передачі перемикають при максимальних швидкостях, які досягаються на кожній із проміжних передач.
Час розгону автомобіля в інтервалі швидкостей від V_a до V_{max} визначають графоаналітичним способом з використанням графіка прискорення.

Для цього криву прискорення (див. рис. 3.6, а) вертикальними лініями ділять на рівні ділянки, що відповідають збільшенню швидкості $V_a = 5$ км/год. Внаслідок невеликих розмірів цих інтервалів вважають, що в межах кожного з них автомобіль рухається з постійним прискоренням

$$J_c = 0,5(J_n+J_k),$$

де J_n і J_k – прискорення відповідно на початку й наприкінці розглянутої ділянки.

Для кожної ділянки підраховують час розгону t_p, протягом якого досягається збільшення швидкості V_a, за формулою:

$$t_p = \frac{\Delta V_a}{3,6 \cdot J_{cp}} = \frac{\Delta V_a}{1,8 \cdot (J_n + J_k)},$$

а потім послідовним графічним підсумовуванням отриманих результатів будуєть графік залежності часу розгону від швидкості (рис. 3.6, б).

Шлях розгону визначають аналогічним методом. За кривою залежності $t=f(V_a)$ для кожного інтервалу V_a швидкості знаходять шлях розгону:

$$S_p = \frac{V_{cp} \cdot t_p}{3,6},$$

де V_{cp} – середня швидкість, $V_{cp} = 0,5(V_n + V_k)$;

t_p – час розгону на розглянутій ділянці кривої часу розгону.

Потім, відносячи результат кожного підрахунку до кінця розглянутого інтервалу, послідовним графічним підсумовуванням цих результатів будуєть графік залежності $S_p = f(v_a)$, по даних на рисунку. 3.6, б.

Час і шлях розгону дають більше наочне уявлення про прийомистість автомобіля, ніж прискорення. Наприклад, для порівняльної оцінки прийомистості двох автомобілів різних марок досить за їх кривими шляху й часу розгону визначити час t_{100} проходження автомобілями перших 100 м шляху при розгоні з місця.

Приклад. Визначити час і шлях розгону автомобіля від швидкості $V_1= 33$ м/с до швидкості $V_2 =35$ м/с, якщо відповідні їм прискорення рівні $0,25$ і $0,23$ м/с2. 50
Розв'язання. Середнє прискорення

\[J_{cp} = 0,5(0,25 + 0,23) = 0,24 \text{ м/с}^2. \]

Час розгону

\[t = (35-33)/0,24 = 0,24 \text{ с.} \]

Шлях розгону

\[S = (33+35)/2 = 283 \text{ м.} \]

3.4 Динамічне подолання підйомів

Викладений вище спосіб визначення максимального підйому за динамічною характеристикою, що може перебороти автомобіль, придатний для найбільш важкого випадку руху, коли довжина підйому велика і автомобіль, рухаючись рівномірно, підйом долає лише за рахунок сили тяги \(P_t \). Короткі підйоми можна переборювати, використовуючи також кінетичну енергію, накопичену автомобілем при розгоні. Тому підйом, що автомобіль може перебороти з розгону, більший підйому подоланого ним при рівномірному русі. Розглянемо графік динамічного подолання підйому, показаний на рисунку 3.7. Автомобіль рухається зі швидкістю \(V_0 \) по ділянці \(AB \), що характеризується коефіцієнтом опору дороги \(\Psi_1 \).

![Графік динамічного подолання підйому](image)

У точці \(P \) починається розгон, і до початку підйому автомобіль рухається зі швидкістю \(V_i \). На ділянці \(BC \), коефіцієнт опору якого \(\Psi_2 > \Psi_1 \), швидкість зменшується. При визначенні максимальної величини підйому вважають, що автомобіль наближається до початку підйому зі швидкістю, максимально можливою на ділянці \(AC \).

Криву динамічного фактора \(D \) розбивають на ділянки, як показано на рис. 3.8, за рівнянням (3.5), підставивши значення \(\Psi_2 \) і визначають сповільнення, а потім час і шлях для кожного інтервалу швидкостей.

51
Якщо коефіцієнт опору дороги на підйомі дорівнює або менший D_{max} на даній передачі, то кінцеву швидкість автомобіля визначає точка F перетину лінії Ψ_2 із кривою D. Після того як швидкість зменшиться до значення V_k, рух автомобіля стане рівномірним. Якщо коефіцієнт опору дороги на підйомі більше D і дорівнює, наприклад, Ψ_3, то швидкість, зменшуючись, стане меншою критичної V_T.

Рисунок 3.8 – Графік динамічного фактора

Подальше зниження швидкості супроводжується значним зменшенням динамічного фактора. Для того щоб уникнути зупинки автомобіля, необхідно перейти на нижчу передачу. У цьому випадку при розрахунку нижню межу швидкості обмежують критичною швидкістю V. Довжина підйому, що автомобіль проходить при зниженні швидкості до значення V, не суттєво відрізняється від довжини шляху, наприкінці якого автомобіль зупиняється.

3.5 Рух автомобіля накатом

Під час експлуатації автомобіля рух накатом використовують досить часто. Особливе значення цей режим руху має в тих випадках, коли необхідні регулярні зупинки і наступні розгони, а також при русі по дорогах з підйомами, що чергуються, і спусками. При русі накатом двигун відключений від трансмісії, крутний момент до ведучих коліс не підводиться і сила тяги відсутня. Потужність, що витрачається при цьому на подолання тертя в трансмісії, невелика, тому що всі її агрегати працюють в холостому режимі.

Щоб розрахувати показники динамічності при накаті, запишемо рівняння руху автомобіля для цього режиму
де \(P_\Gamma = \frac{M_\Gamma}{r} \) – сила тертя трансмісії при роботі на холостому ходу, приведена до ведучих коліс.

Якщо експериментальних даних немає, то величину сили \(P_\Gamma \) можна визначити з емпіричної формули:

\[
P_\Gamma = (2 + 0,9 \cdot V) \cdot G_a \cdot 10^{-3}.
\]

Для розв’язання рівняння (3.8) у координатах \(P – V \) наносять криві \(P_\Pi, P_\kappa \) і \(P_e \), відкладаючи значення кожної наступної сили від значення попередньої (рис. 3.9, а). Визначивши для декількох додатних і від’ємних значень ухилу \(i \) значення сили \(P_n \), наносять їх на графік у вигляді горизонтальних ліній, причому значення \(P_n \) відкладають вверх від осі абцис при ухилі \(i < 0 \) і вниз при ухилі \(i > 0 \).

Показники динамічності визначають аналогічно розглянутим вище при допомозі графіка силового балансу. Так, наприклад, максимальну швидкість \(V_{\text{max}} \), знаходять по абцисі точки перетинання сумарної кривої \(P_\Gamma + P_\kappa + P_B \) сил опору із прямою \(P_n \), що відповідає даному ухилу (наприклад, \(V_{\text{max}} \) для точки A). Якщо пряма \(P_n \) проходить вище сумарної кривої, то автомобіль рухається прискорено, а якщо нижче – уповільнено.

Прийнявши в середньому \(\delta_n = 1,05 \), визначимо з рівняння (3.8) сповільнення (негативне прискорення \(j_c \)) у м/с²):

\[
J_c = \frac{P_\Pi + P_\kappa + P_B + P_\Gamma}{G \cdot \delta_n} \cdot g = 9,3 \cdot \frac{P_\Pi + P_\kappa + P_B + P_\Gamma}{G}.
\]

На рисунку. 3.9, б показана зміна прискорення при накаті автомобіля для різних ухилів \(i_1 – i_7 \). Криві сповільнення \(J_c \), що відповідають руху автомобіля на підйомах, горизонтальних ділянках і на пологих спусках, проходять нижче осі абцис. Отже, швидкість автомобіля при русі накатом по таких ділянках зменшується. Криві, що характеризують рух автомобіля на порівняно крутих спусках, перетинають вісь абцис при деякому значенні швидкості. У цих випадках рушійні сили врівноважують сили опору \(P_\kappa + P_B + P_\Gamma \), внаслідок чого автомобіль рухається рівномірно. Так, на (рис. 3.9, б) крива, що відповідає \(i = i_2 \) перетинає вісь абцис в точці, що відповідає швидкості \(V' \).

Якщо початкова швидкість автомобіля більша \(V' \), то рух накатом по такій ділянці буде вповільненням, якщо менша, то прискоренням. Уповільнений і прискорений рухи тривають тільки лише до швидкості \(V' \), а потім наступає рівномірний рух автомобіля.

53
На практиці для оцінювання динамічності автомобіля при накаті широко використовують довжину шляху вибігу (довжину шляхи до зупинки автомобіля) – показник, що дозволяє оцінювати також і технічний стан шасі автомобіля. Чим кращий технічний стан автомобіля, тим більший шлях вибігу, що досягається іноді на горизонтальній ділянці дороги в безвітряну погоду 1000 метрів.

3.6 Вплив конструктивних факторів на динаміку й економічність автомобіля

Найбільший вплив на тягову динамічність автомобіля має форма швидкісної характеристики двигуна. Так, наприклад, порівнюючи рисунки 2.1 і 2.2, можна зробити висновок, що бензиновий двигун має більш опуклу характеристику, чим дизель, а це означає, що перший має більші запас потужності при однакових швидкостях руху і може розвивати більше прискорення при рівних умовах. Збільшення числа передач у коробці також покращує тягову динамічність автомобіля.

Розглянемо вплив параметрів конструкції автомобіля і його експлуатаційного стану на зниження опору руху.

Якій вплив можуть мати різні «малі» зміни в автомобілі на зміну опору й, отже, на витрату палива, наочно показують дослідження, проведені з ініціативи англійського журналу «Autocar» на серійному автомобілі «Ford Capri».
Після внесення кожної зміни вимірявся час розгону автомобіля на прямій передачі (так звана «еластичність» автомобіля) від швидкості 32 км/год до 130 км/год, що характеризувало зміну потужності двигуна. Витрата палива вимірялася при постійних швидкостях руху, 100 і 130 км/год. Середнє значення, отримане при цих вимірюваннях, порівнювалося з витратою стандартного автомобіля. Нижче розглядаються результати випробувань автомобіля при деяких внесених змінах.

Знижений тиск повітря в шинах. Для забезпечення безпеки руху ці випробування проводилися на закритій кільцевій дорозі. Нормальний тиск 0,17 М Па в передніх шинах і 0,19 М Па в задніх було знижено до 0,10 і 0,12 М Па, відповідно. При цьому не було виявлено великої зміни форми шини, не змінилася також і керованість автомобіля. Вплив на зміну витрату палива також був дуже невелиkim, відзначено збільшення витрати на 0,26 л/100 км. Час розгону збільшився на 11%.

Відкриті бічні вікна погіршують аеродинамічне обтікання кузова автомобіля, тому що утворюються завихрення, які при їзді на великих швидкостях викликають також і неприємний шум. Вплив на зміну витрати палива також був дуже невеликим, збільшення витрати на 0,7 л/100 км, а час розгону – на 5%.

Багажник на даху, навіть не завантажений, значно погіршує аеродинаміку автомобіля, викликаючи збільшення витрати палива на 0,8 л/100 км і час розгону на 9%. Багажник із чотирма валізами, накритими брезентом, збільшує витрату палива на 2,6 л/100 км, а час розгону – на 27%. Тому багажник на даху рекомендується використовувати лише в крайніх випадках.

Відкритий зсувний люк на даху викликає більші втрати, головним чином, при малій швидкості руху. При більших швидкостях автомобіля в місці над головою водія виникає розрідження і обтікання повітрям кузова в районі даху практично не порушується. Невеликий рівень шуму свідчить про добре аеродинамічно спроектований люк автомобіля «Ford Capri».

Витрата палива збільшилася на 0,3 л/100 км, а час розгону на 4,5%.

Були випробувані п’ять видів заднього спойлера і вибраний варіант із мінімальною висотою 40 мм, що забезпечив зниження Сд з 0,41 до 0,38, а коефіцієнта аеродинамічної завантаженості задньої осі з 0,25 до 0,19.

Потрібно відмітити, що наведені дані можуть служити лише для наближеної оцінки, тому що багато чого залежить від умов випробувань - температури й тиску повітря, виду й стану покриття дороги, погоди і т. д.

Однак з результатів випробувань можна зробити висновок, що неправильне технічне обслуговування автомобіля впливає на його динамічні якості і витрату палива.

3.7 Тягові властивості автопоїзда

На дорогах з твердим покриттям, що не мають крутих і затяжних підйомів, можна підвищити продуктивність вантажних автомобілів,
використовуючи їх як тягач для буксирування причепів. При цьому кількість перевезеного вантажу збільшується в 2 – 3 рази, а середня швидкість руху знижується незначно. Знижуються витрати на перевезення 1 т вантажу. Застосування автопоїздів дозволяє підняти продуктивність праці водіїв, зменшивши тим самим потреби в їхньому числі. Автопоїзди незамінні при перевезеннях великогабаритних і довгомірних вантажів (труб, рейок, колод, будівельних панелей, ферм, балок і т. п.). При використанні причепів і напівпричепів можна знизити навантаження на вісь. Це сприятливо відображиться на терміні служби дорожнього покриття.

Рух автопоїзда пов’язаний з збільшенням сил опору кочення. Недосконалість поворотних пристроїв причепів і зазори в зчіпних пристроях приводять до того, що траекторія руху причепа або напівпричепа не збігається із траекторією руху тягача. При русі з великою швидкістю виникають коливання причепів у горизонтальній площині, а при зміні швидкості тягача – поздовжні ривки й удари. У результаті сила опору кочення автопоїзда збільшується непропорційно до його ваги, тому що одночасно з підвищенням ваги росте також і коефіцієнт опору кочення автопоїзда:

\[
f_{АП} = \frac{(f_a \cdot G_a + f_{PR} \cdot G_{PR})}{G_a + G_{PR}},
\]

де \(f_a\) і \(f_{PR}\) – коефіцієнти опору кочення відповідно тягача й причепів;
\(G_a\) і \(G_{PR}\) – відповідно вага тягача з повним навантаженням і причепів.

Коефіцієнт \(f_a\) збільшується при проковзуванні ведучих коліс відносно дороги, якщо зростає сила тяги. Так, на горизонтальній дорозі застосування одного причепа збільшує коефіцієнт опору кочення на 5 – 10 %. На дорозі із кругими підйомами він підвищується майже вдвічі.

При використанні причепів підвищується також опір повітря внаслідок віхреутворення в повітряних потоках і збільшення поверхні тертя. Якщо відстань між тягачем і причепом порівняно невелика, то коефіцієнт обтічності автопоїзда на 8 – 10% більше, ніж в одиночного автомобіля. Якщо відстань між тягачем і причепом дорівнює 50 – 80 см, то коефіцієнт обтічності збільшується на 15 – 17%, а при відстані 120 – 180 см на 30 – 35%.

У середньому можна вважати, що кожний причіп, що має дишель сучасної конструкції, збільшує коефіцієнт обтічності автопоїзда на 25%. Більша площа фронтальної проекції й прямокутна форма кузова вантажного автомобіля і автобуса викликають значний аеродинамічний опір. Сучасне перевезення вантажів потребує більших швидкостей, при яких цей опір ще більше зростає.
Максимальна площа фронтальної проекції вантажного автомобіля або автопоїзда обмежена відповідними національними й міжнародними правилами й стандартами. Кузова вантажних автомобілів і напівпричепів за розмірами значно перевищують кабіну автомобіля тягача і розходження їх висот впливає на процес обтікання автопоїзда повітрям.

У Європі найбільш часто використовуються причепи і особливо напівпричепи з висотою 3,6 – 3,8 м. Ширина їх відповідно до правил дорожнього руху більшість країн не повинна перевищувати 2,5 м. Такий напівпричіп з гострими ребрами перевищує тягач як по висоті, так і по ширині і порушує аеродинамічне обтікання всієї системи «тягач – напівпричіп».

Тому в таких вантажних автопоїздів, що мають більшу повну масу, а також більшу площу фронтальної проекції, аеродинамічний опір і опір коченню стають за величиною однаковими при швидкості порядку 80 км/год.

Поліпшення аеродинамики автопоїздів у цей час приділяється підвищена увага. Основна увага фахівців зосереджена на аеродинамічному щитку, що встановлюється на даху тягача. Його можна пристосувати для напівпричепів різної висоти, змінюючи кут нахилу. Порівняно невеликий щиток відхиляє повітряний потік таким чином, щоб обтікання даху напівпричепа відбувалося без завихрень.

Важливим є також обтікання нижньої частини вантажного автомобіля, що має різні виступи. Тому необхідно обмежити витрати повітря під автомобілем, що досягається за допомогою переднього спойлера. Спойлер встановлюється під переднім бампером по всій ширині автомобіля так, щоб його нижня грань перекривала нижню точку передньої осі. Таке розміщення спойлера зменшує аеродинамічний опір автопоїзда.

Для аналізу динамічності автопоїзда використовують його динамічну характеристику з номограмою навантажень (динамічний паспорт автопоїзда). Номограму навантажень для автопоїзда (рис. 3.10) на відміну від номограми для одиночного автомобіля будують, приймаючи за 100% вагу тягача з повним навантаженням.

Для визначення навантаження автопоїзда вагу причепів з навантаженням умовно підсумовують із вагою тягача. Динамічний фактор автопоїзда визначають за формулою:

\[
D_{\text{АП}} = \frac{(P_T - P_B)}{G_{\text{АП}}} = \psi + \frac{\delta_{\text{АП}} \cdot J}{g},
\]

де \(\delta_{\text{АП}}\) – коефіцієнт в обертових масах автопоїзда.

Прийнявши для спрощення, що сила \(P_B = 0\), для випадку рівномірного руху автопоїзда, одержимо:
Останній вираз дозволяє знайти аналітичну залежність швидкості автопоїзда від його ваги.

Ефективний крутний момент бензинового двигуна:

\[
M_e = \frac{N_e}{\omega_e} = \frac{N_u}{\omega_m} \left[1 + \frac{\omega_e}{\omega_N} - \left(\frac{\omega_e}{\omega_N} \right)^2 \right],
\]

(3.12)

\[
M_e = \frac{N_u}{\omega_m} \left[1 + \frac{V}{V_N} - \left(\frac{V}{V_N} \right)^2 \right],
\]

(3.13)

de \(V_N = \frac{\omega_N \cdot r}{U_{TP}} \) – швидкість автомобіля при \(N_{\text{max}} \).

З формул (3.12) і (3.13) одержимо:

\[
P_T = G_{API} \psi = \frac{N_M}{V_N} \eta_{TP} \left[1 + \frac{V}{V_N} - \left(\frac{V}{V_N} \right)^2 \right].
\]

(3.14)

Після математичних перетворень виходить квадратне рівняння:

\[
V^2 - V_N \cdot V - (G_{API} \cdot A - 1) \cdot V_N^2 = 0,
\]

(3.15)

de \(A = \frac{\psi \cdot N_N}{N_M \cdot \eta_{TP}} \).

Із двох розв’язків цього рівняння практичний зміст має тільки корінь із позитивним значенням радикала:

\[
V = V_N \left(0.5 + \sqrt{1.25 - A \cdot G_{API}} \right).
\]

(3.16)
Рисунок 3.10 – Динамічний паспорт автопоїзда: 1 – 5 – передачі;
\(H \) – відношення ваги автопоїзда до ваги тягача

Розрахунки руху автопоїзда за допомогою його динамічного паспорта аналогічні розрахункам, розглянутим вище для одиночного автомобіля.

Приклад. Автопоїзд, вага якого в 2,5 раз більша ваги одиночного автомобіля, може рухатися по дорозі, що характеризується коефіцієнтом \(\Psi = 0,05 \) (точка \(A \) на рис. 3.10), лише на другій передачі (точка \(B \)) зі швидкістю приблизно 6 м/с.

На якісній дорозі швидкість автопоїзда, що складається з вантажного автомобіля й причепа, знижується в порівнянні з одиночним вантажним автомобілем приблизно на 10 %. Однак продуктивність автопоїзда при цьому набагато більша продуктивності одиночного автомобіля.

Контрольні запитання

1. Охарактеризуйте методи силового і потужнісного балансу і динамічної характеристики.

2. Від чого залежать величини динамічних факторів за умовами тяги і зчеплення?

3. Що таке динамічний паспорт автомобіля і як його застосовують для розв’язання експлуатаційних завдань?

4. Як визначити прискорення автомобіля, час і шлях його розгону?

5. Які способи розрахунку показників динамічності автомобіля при накаті і динамічному подоланні підйому?

6. Охарактеризуйте вплив конструктивних факторів на динамічність автомобіля.

7. Назвіть основні показники динамічності автомобіля.

8. Які переваги і недоліки автопоїздів?
4 ГАЛЬМІВНА ДИНАМІЧНІСТЬ АВТОМОБІЛЯ

4.1 Безпека руху й гальмівний момент

Розрізняють пасивну й активну безпеку автомобіля. Заходи щодо підвищення пасивної безпеки спрямовані на зменшення ймовірності й ваги травмування водія й пасажирів при дорожньо-транспортних випадках. До них відносять застосування ременів безпеки, травмобезпечних кермових коліс і колонок, а також панелей приладів, що мають енергопоглиначну здатність, безосколкових стекол, усунення в салоні виступаючих деталей т. д.

Заходи щодо підвищення активної безпеки спрямовані на зниження ймовірності виникнення дорожньо-транспортних випадків, що є наслідком недосконалості конструкції автомобіля. До них у першу чергу відносять заходи, що поліпшують ті властивості автомобіля, від яких залежить його надійність як об’єкта керування. Ними є керованість, стійкість і гальмівні якості автомобіля, обумовлені деякими особливостями його конструкції.

Рисунок 4.1 – Схема сил, що діють на колесо при гальмуванні

Гальмування є процесом, під час якого кінетична енергія автомобіля, що рухається, у результаті тертя перетворюється в теплоту й розсіюється в навколишньому просторі. Тертя створюється гальмовими механізмами, установленими на кожному колесі.

Під час гальмування колеса одночасно відбуваються два взаємозалежних явища (рис. 4.1):
- по-перше, гальмовим механізмом створюється гальмівний момент $M_{	ext{гальм}}$, що перешкоджає обертанню колеса;
- по-друге, у результаті взаємодії колеса з дорогою виникає момент зчеплення $M_{	ext{зч}}$, що прагне підтримувати обертання колеса.
При службовому (частковому) гальмуванні дотримується нерівність:

\[M_{\text{гальм}} < M_{zr}, \text{ тобто } P_{\text{гальм}} < \varphi Zr. \]

Тому колесо обертається, а енергія розсіюється в гальмовому механізмі. При екстренному (повному) гальмуванні \(M_{\text{гальм}} > M_{zr} \), і колесо блокується (рухається юзом), внаслідок чого енергія розсіюється в місці контакту шини з дорогою.

Гальмівні властивості автомобіля оцінюються величиною негативного прискорення – сповільненням \(j_c \); часом \(t_{\text{гальм}} \) і шляхом \(S_{\text{гальм}} \) гальмування (рисунок 4.2).

При екстреному гальмуванні на горизонтальній дорозі рушійною силою є сила інерції \(P_{\text{пл}} \), а основною силою опору руху – сумарна гальмівна сила \(P_{\text{гальм}} = \varphi X G_d \) всіх коліс.

4.2 Сили, що діють на автомобіль при гальмуванні

При гальмуванні сили тертя, розділені по поверхні фрикційних накладок, створюють результатуючий момент тертя \(M_{\text{гальм}} \) спрямований у бік, протилежний обертанню колеса, а між колесом і дорогою виникає гальмівна сила \(P_{\text{гальм}} \).

Максимальна гальмівна сила \(P_{\text{гальм max}} \) дорівнює сили зчеплення шини з дорогою. При установлений гальм на всі колеса автомобіля (рисунок 4.3) максимальна гальмівна сила:

\[
P_{\text{гальм max}} = P_{\text{гальм 1}} + P_{\text{гальм 2}} = \varphi X (Z_1 + Z_2) = \varphi X G.
\]

61
Складемо в загальному вигляді рівняння руху автомобіля при його гальмуванні на підйомі. Для цього спроектуємо всі сили, що діють на автомобіль при гальмуванні (рисунок 4.3) на площину дороги:

\[
P_{\text{газьм}} + P_{\text{газьм}2} + P_{K1} + P_{K2} + P_B + P_{TD} + P_I - P_I = \]

(4.2)

де \(P_{\text{газьм}} = P_{\text{газьм}1} + P_{\text{газьм}2}; P_D = P_{K1} + P_{K2} + P_B - \) сила опору дороги;

\(P_{TD} - \) сила тертя в двигуні приведена до ведучих коліс.

Знаючи момент тертя \(M_{TD} \) у двигуні, силу тертя у двигуні визначають за формулою:

\[
P_{TD} = \frac{M_{TD} \cdot U_{TR}}{\eta_{ОБР}}. \tag{4.3}\]

Розглянемо випадок гальмування автомобіля тільки гальмівною системою, коли сили \(P_{TD} = 0. \)

Рисунок 4.3 – Сили, що дієть на автомобіль при гальмуванні на підйомі

З огляду на те, що швидкість автомобіля під час гальмування зменшується, можна вважати, що сила \(P_a = 0. \) У зв'язку з тим, що сила \(P_a \) мала в порівнянні із силою \(P_{\text{газьм}} \) нею можна знехтувати, особливо при екстреному гальмуванні. Прийняті допущення, що трохи поліпшують
гальмівні властивості автомобіля, дозволяють написати рівняння (4.2) у такому вигляді:

\[P_{\text{гальм}} + P_D - P_i = 0. \]

Після підстановки значень діючих сил і перетворень формули (4.3) одержимо рівняння руху автомобіля при гальмуванні на негоризонтальній ділянці дороги:

\[\varphi_X + \psi - \left(\delta \over g \right) \cdot J_3 = 0. \]

(4.4)

4.3 Показники гальмівної динамічності автомобіля

Показниками гальмівної динамічності автомобіля служать сповільнення \(J_c \) (м/с²), час гальмування \(t_{\text{гальм}} \) (с) і гальмівний шлях \(S_{\text{гальм}} \) (м).

З формули (3.8) знайдемо сповільнення:

\[J_3 = \frac{P_{\text{гальм}} + P_D + P_B + P_F}{\delta_H \cdot M_a}. \]

(4.5)

Якщо гальмівні сили на всіх колесах досягли значення сил зчеплення, то, нехтуючи силами \(P_B \) і \(P_F \), з рівняння (4.5) одержимо:

\[J_c = \frac{\varphi_X + \psi}{\delta_H} g. \]

(4.6)

Коефіцієнт \(\varphi_X \) звичайно значно більший коефіцієнта \(\Psi \), тому у випадку повного гальмування автомобіля величиною останнього у виразі (4.6) можна знехтувати. Тоді:

\[J_c = \frac{\varphi_X \cdot g}{\delta_H} \approx \varphi_X \cdot g. \]

(4.7)

Якщо під час гальмування коефіцієнт \(\varphi_X \), не змінюється, то сповільнення залишається приблизно постійною величиною, тобто не залежить від швидкості автомобіля (рисунок 4.4).

Час гальмування можна визначити, використовуючи криву \(J=f(V) \) (рисунок 4.4), побудовану за рівнянням (4.6).
Показники гальмівної динамічності автомобіля

Знайшовши за графіком $J_C = f(V)$ сповільнення для декількох значень швидкості, визначають середнє сповільнення у кожному інтервалі швидкостей. Потім за формулою:

$$
\Delta t_1 = \frac{\Delta V}{J_{cp}}
$$
знаходять збільшення часу у кожному інтервалі й, підсумовуючи отримані значення Δt, визначають час гальмування. Графік залежності $t_{\text{гальм}} = f(V)$ показаний на рисунку 4.4.

Подання про зміну швидкості й сповільнення при гальмуванні дає діаграма, зображена на рис. 4.5.

Відрізок t_p на діаграмі відповідає часу реакції водія, протягом якого він ухвалює рішення щодо гальмування й переносить ногу з педалі керування дросельною засліною на педаль гальма. Час реакції водія залежить від його індивідуальних особливостей і кваліфікації і знаходиться в межах 0,4 – 1,5 с. У розрахунках час t_p звичайно приймають рівним 0,8 с.

Відрізок t_{np} являє собою час спрацьовування гальмового привода від початку натискання на педаль гальма до виникнення сповільнення. Протягом цього часу відбувається переміщення всіх рухливих деталей гальмового привода. Час t_{np} (c) залежить від типу гальмового привода, а також від його технічного стану й перебуває в межах:

- для гідравлічного приводу – 0,2 – 0,4
- для пневматичного приводу – 0,6 – 0,8
- для автопоїздів із пневматичним приводом – 1 – 2

Відрізок t_c характеризує час, протягом якого S збільшується від нуля (початок дії гальма) до максимального значення. Цей час залежить від ефективності гальмування, навантаження автомобіля, типу й стану дорожнього покриття.

Нижче наведені значення часу t_c (с) при екстреному гальмуванні автомобіля із блокуванням всіх коліс:

- легкові автомобілі – 0,05 – 0,2
- вантажні автомобілі і автобуси з гідравлічним приводом гальма – 0,05 – 0,4
- вантажні автомобілі з пневматичним приводом гальма вантажопідйомністю до 4500 кг – 0,15 – 1,2
- те ж, вантажопідйомністю понад 4500 кг – 0,2 – 1,5
- автобуси із пневматичним приводом гальма – 0,2 – 1,3

Менші значення часу t_c відповідають дорогам з малим коефіцієнтом зчеплення, причому навантаження автомобіля в цьому випадку практично не впливають на цей час, більші значення – руху автомобіля з повним навантаженням по дорогах з більшим коефіцієнтом зчеплення.

Відрізок $t_{\text{гальм}}$ являє собою час гальмування з максимальною інтенсивністю. Протягом часу $t_p + t_{np}$ автомобіль рухається рівномірно зі швидкістю V, протягом часу t_c – сповільнено, а протягом часу $t_{\text{гальм}}$ сповільнення практично постійне.
Щоб визначити час \(t_0 \), необхідний для зупинки автомобіля з моменту виникнення небезпеки, тобто так званий залишковий час, розглянемо криву на рисунку 4.5.

За час \(t_c \) сповільнення змінюється за законом, близьким до лінійного, і можна вважати, що автомобіль рухається зі сповільненням, рівним приблизно \(0,5j_{C_{\text{max}}} \). Тоді збільшення швидкості

\[
\Delta V = \frac{j_{C_{\text{max}}} \cdot t_c}{2}.
\]

Отже, швидкість на початку екстреного гальмування зі сповільненням:

\[
V' = V - \Delta V = V - \frac{j_{C_{\text{max}}} \cdot t_c}{2}.
\]

Якщо надалі автомобіль рухається рівносповільнено із сповільненням, \(j_{C_{\text{max}}} \) і зупиняється наприкінці гальмування, то швидкість протягом часу \(t_{\text{гальм}} \) зменшується за лінійним законом від \(V' \) до нуля. Тоді:

\[
V' = j_{C_{\text{max}}} \cdot t_{\text{гальм}}.
\]

Розв'язуючи отримане рівняння щодо часу \(t_{\text{гальм}} \) і підставляючи замість швидкості \(V' \) її значення з виразу (4.9), одержуємо:

\[
J_{\text{гальм}} = \frac{V}{J_{C_{\text{max}}}} \cdot \frac{t_y}{2}.
\]

Таким чином, зупинний час:

\[
t_0 = t_p + t_{\Pi P} + t_c + t_{\text{гальм}} = t_p + t_{\Pi P} \frac{t_c}{2} + \frac{V}{J_{C_{\text{max}}}} + \frac{V}{J_{C_{\text{max}}}},
\]

\[
t_{\text{сум}} = t_p + t_{\Pi P} + \frac{t_c}{2}.
\]

Якщо гальмівні сили на всіх колесах автомобіля одночасно досягають максимальних значень сил зчеплення, то \(j_{C_{\text{max}}} \) визначають за формулою (4.6).

Приймаючи з достатньою для практичних розрахунків точністю коефіцієнт \(\delta_H = 1 \), одержимо:
Гальмівний шлях визначають, використовуючи криву \(t_{гальм} = f(V) \) вважаючи, що в кожному інтервалі швидкостей автомобіль рухається рівномірно. Розбивши криву на інтервали й скориставшись формуловою:

\[
\Delta S = V_{CP} \cdot \Delta t = \frac{V_{CP} \cdot \Delta V}{J_{CP}}
\]

(4.14)

визначають збільшення шляху \(\Delta S \) у кожному інтервалі швидкостей так само, як це робили при визначенні шляху розгону. Складши отримані значення збільшення шляху \(\Delta S \) визначають загальний шлях гальмування \(S_{гальм} \).

Зразковий вигляд графіка залежності \(S_{гальм} = f(V) \) з урахуванням сил \(P_k \), \(P_e \) і \(P_r \) і без урахування цих силь показаний на рисунку 4.4.

Відстань, необхідна для зупинки автомобіля з моменту виникнення небезпеки, тобто довжину так званого зупинного шляху, можна визначити, якщо прийняти, що \(S_{гальм} \) змінюється так, як показано на рисунку 4.4.

Як і раніше, приймемо, що при зменшенні швидкості від \(V \) до \(V' \) автомобіль рухається з постійним сповільненням, рівним \(0,5j_{Cmax} \). Тоді шлях, пройдений автомобілем за цей період, буде:

\[
S = \frac{V_{CP} \cdot \Delta V}{J_{CP}} = \frac{(V + V') \cdot (V - V')}{2} \cdot \frac{1}{0,5J_{Cmax}} = \frac{V^2 - (V')^2}{0,5J_{Cmax}}.
\]

(4.15)

Під час екстреного гальмування \(S_{гальм} \) дорівнює \(j_{Cmax} \), і гальмівний шлях при зменшенні швидкості від значення \(V' \) до нуля:

\[
S_{гальм} = \frac{(V')^2}{2J_{Cmax}}.
\]

(4.16)

Знайдена величина \(S_{гальм} \), являє собою шлях, пройдений автомобілем за час \(t_{гальм} \) гальмування з максимальною інтенсивністю. Зупинний шлях \(S_z \), необхідний для зупинки автомобіля, більший шляху \(S_{гальм} \), тому що в нього входить також шлях, пройдений автомобілем за час реакції водія, спрацьовування гальмового привода й збільшення \(S \):

\[
S_z = V(t_p + t_{IP}) + S_c + S_{гальм} = V(t_p + t_{IP}) + \frac{V^2}{J_{Cmax}} - \frac{(V')^2}{2J_{Cmax}}.
\]

(4.17)
Підставляючи у формулу (4.17) замість швидкості \(V \) її вираз із формулі (4.9) і нехтуючи досить малим значенням добутку, що містить \(t_c^2 \), одержимо:

\[
S_x = V \cdot t_{сум} + \frac{V^2}{J_c_{max}}. \tag{4.18}
\]

Якщо гальмівні сили на всіх колесах автомобіля одночасно досягли значень сил зчеплення, то з урахуванням рівняння \(J_3 = \frac{\varphi_x g}{\delta_H} \approx \varphi_x g \) при \(P_{TD} = P_G = 0 \) гальмівний шлях автомобіля:

\[
S_{зам} = \frac{\delta_n \cdot M_a \cdot (V')^2}{2\left[(\varphi_x \cdot f) \cdot G \cdot \cos \alpha + G \cdot \sin \alpha + P_B \right]} \approx \frac{\delta_n \cdot (V')^2}{2\varphi_x g} = \frac{V^2}{2\varphi_x g}. \tag{4.19}
\]

Показники гальмування регламентовані правилами дорожнього руху. Найбільший припустимий гальмівний шлях і найменше припустиме сповільнення для автомобілів без навантаження при гальмуванні з початковою швидкістю 8,3 м/с на сухій асфальтованій дорозі, наведені в таблиці 4.1.

<table>
<thead>
<tr>
<th>Автомобілі</th>
<th>Найбільший припустимий гальмівний шлях, м</th>
<th>Найменше припустиме сповільнення, м/с²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Легкові</td>
<td>7,2</td>
<td>5,8</td>
</tr>
<tr>
<td>Вантажні з максимальною масою до 8 т і автобуси довжиною до 7,5 м</td>
<td>9,5</td>
<td>5,0</td>
</tr>
<tr>
<td>Вантажні з максимальною масою понад К т і автобуси довжиною більше 7,5 м</td>
<td>11,0</td>
<td>4,2</td>
</tr>
</tbody>
</table>

Гальмівний шлях прямо пропорційний квадрату швидкості автомобіля в момент початку гальмування, тому що:

\[
S_x = V \cdot t_{сум} + \frac{V^2}{2\varphi_x g}. \tag{4.20}
\]

Тому гальмівний шлях різко зростає зі збільшенням початкової швидкості. Для перевірки ефективності дії гальмової системи (ножних
гальм) як оцінні показники використовують найбільший припустимий гальмівний шлях і найменше припустиме сповільнення для автомобілів без навантаження і з номінальним навантаженням (перевірку інтенсивності гальмування легкових автомобілів і автобусів за умовами безпеки роблять без пасажирів).

4.4 Розподіл гальмівної сили між мостами автомобіля

При гальмуванні автомобіля сила інерції Рі, діючи на плечі hі (рисунок 4.3) викликає перерозподіл нормальних навантажень між переднім і заднім мостами: навантаження на передні колеса збільшується, а на задні, навпаки, зменшується.

Тому нормальні реакції Z1 і Z2, що діють відповідно на передні й задні колеса автомобіля під час гальмування, значно відрізняються від навантажень G1 і G2, які вони сприймають у статичному стані. Як вказувалося раніше, ці зміни оцінюють коефіцієнтами m1 і m2 перерозподілу реакцій (див. розділ 2, формулу (2.29). Для випадку гальмування автомобіля на горизонтальній дорозі коефіцієнти m1 і m2 визначають за формулами:

\[m_1 = 1 + \frac{\varphi \cdot h_i}{b}, m_2 = 1 - \frac{\varphi \cdot h_i}{a}. \] (4.21)

Під час гальмування автомобіля найбільші значення коефіцієнтов перерозподілу реакцій перебувають у таких межах:

\[m_1 = 1,5...2; m_2 = 0,5...0,7. \]

Визначивши коефіцієнти m1 і m2, можна знайти нормальні реакції:

\[Z_1 = m_1 \cdot G_1, \]
\[Z_2 = m_2 \cdot G_2. \]

Максимальну інтенсивність гальмування можна забезпечити за умови повного використання зчіпної ваги автомобіля. Тому, що співвідношення між гальмівними силами P_{гальм1} і P_{гальм2}, що діють на передні й задні колеса, не змінюється, то сумарна сила P_{гальм} може досягти найбільшого значення без ковзання коліс тільки на дорозі з певним коефіцієнтом зчеплення, рівним наприклад, \(\varphi_0 \). На інших дорогах повне використання зчіпної ваги без блокування передніх або задніх коліс неможливо.

Коефіцієнт розподілу гальмівної сили між передніми й задніми колісами визначають за формулою:

69
\[\beta_0 = \frac{P_{\text{гальм}}^{1}}{P} = 1 - \frac{P_{\text{гальм}}^{2}}{P} \] \hspace{1cm} (4.22)

Оптимальним розподілом гальмівної сили вважають такий її розподіл, при якому передні й задні колеса автомобіля можуть бути доведені до блокування одночасно.

Для цього випадку

\[\beta_0 = \left(b + \varphi_0 \cdot h_u \right) \frac{\pi}{L} \] \hspace{1cm} (4.23)

Гальмові системи автомобілів забезпечують постійний розподіл гальмівної сили між колісами й мостами. Системи підібрані для дороги з певним коефіцієнтом \(\varphi_0 \). На інших дорогах під час гальмування першими до юза доводять або передні, або задні колеса. Однак існують гальмові системи зі статичним або динамічним регулюванням розподілу гальмівної сили.

Тому, що розподіл загальної гальмівної сили між мостами не відповідає нормальним реакціям, що змінюються під час гальмування на них, то дійсний мінімальний гальмівний шлях виявляється на 20 – 40 % більший теоретичного. З метою наближення результатів розрахунку до експериментальних даних у формули вводять коефіцієнт ефективності гальмування \(K_e \), що враховує ступінь використання теоретично можливої ефективності гальмової системи.

У середньому коефіцієнт \(K_e \) має значення:

- для легкових автомобілів – 1,1 – 1,2;
- для вантажних автомобілів і автобусів – 1,4 – 1,6.

З урахуванням \(K_e \) розрахункові формули приймають вигляд:

\[t_0 = \frac{t_{\text{сум}} \cdot K_C \cdot V}{\varphi_X \cdot g} \] \hspace{1cm} (4.24)

\[S_{\text{гальм}} = \frac{K_e \cdot V^2}{2 \cdot \varphi_X \cdot g} \] \hspace{1cm} (4.25)

\[S_0 = V \cdot t_{\text{сум}} + \frac{K_e \cdot V^2}{2 \cdot \varphi_X \cdot g} \] \hspace{1cm} (4.26)

\[J_C = \frac{\varphi_X \cdot g}{K_e} \] \hspace{1cm} (4.27)
4.5 Способи гальмування автомобіля й автопоїзда

Раніше було з'ясовано, що рух по інерції (без передачі зусилля від двигуна до коліс) приводить до зупинки тільки тоді, коли вся накопичена перед цим енергія витратиться на подолання сил опору. Шлях, який пройшов автомобіль, при сповільненні у цих умовах обчислюється сотнями метрів, і водій не може заздалегідь розрахувати цей шлях, щоб зупинити автомобіль у наміченому місці.

Більш ефективного сповільнення можна досягти при гальмуванні автомобіля з нероз'єднаним від коліс двигуном. У цьому випадку до опору кочення й опору повітря, а також до втрат на тертя в системі силової передачі додаються втрати на тертя у двигуні. Але таке сповільнення не використовує всі можливості гальмування автомобіля, тому що (при не виключеному запалюванні) двигун все-таки працює й не розвиває великого гальмівного моменту. Автомобіль після відомого зниження швидкості «повзе» при малому числі обертів двигуна або, найчастіше, рухається ривками. Виходить, що для більш швидкої зупинки автомобіля необхідний якийсь опір, на подолання якого була б швидко витрачена вся накопичена в русі кінетична енергія (іноді її називають живою силою). Таким опором є тертя, що виникає при дії гальм.

Величина кінетичної енергії:

\[
E_K = \frac{m \cdot V_a^2}{2},
\]

де \(m\) – маса автомобіля;
\(V_a\) – швидкість автомобіля в м/с.

Якщо виразимо швидкість \(V_a\) у км/год, а масу – через вагу \(G_a\) у кгс, ділену на прискорення сили ваги \(g\) у м/с\(^2\), то

\[
E_K = \frac{G_a V_a^2}{2 \cdot 9.81 \cdot 3.6} = 0.004 \cdot G_a V_a^2, \text{кгс} \cdot \text{м}.
\]

При сповільненні ходу автомобіля або гальмуванні накопичена кінетична енергія робить роботу:

\[
E = P_T S,
\]

де \(P_T\) – сила опору або гальмування в кгс;
\(S\) – шлях з у м.

Звідси одержуємо вираз для сили гальмування:
Визначимо для прикладу силу, необхідну для гальмування автомобіля вагою 2000 кгс, що рухається зі швидкістю 100 км/год, якщо гальмівний шлях дорівнює 50 м:

\[P_T = \frac{m \cdot V_a^2}{2S} = \frac{G \cdot V_a^2}{2 \cdot 9,81 \cdot 3,6^2 \cdot S}. \]

При русі на спуску гальмівна сила повинна бути ще більша, щоб зрівноважити також складову ваги, спрямовану уздовж дороги.

Гальмування автомобіля гальмовою системою й двигуном застосовується у випадку перегріву гальмових механізмів, зношування шин і т. п. При такому способі гальмування автомобіля гальмівний момент на колесах створюється одночасно гальмовими механізмами й двигуном. Тому що в цьому випадку натискання на гальмову педаль передусім відпусть усі оберті коліс. В різних випадках двигун повинен бути запізняний до кутової швидкості колінчастого валу двигуна. Однак насамперед ведучі колеса через трансмісію примусово переводять колінчастий вал. У результаті з'являється додаткова сила, яка призводить до гальмівного сповільнення автомобіля. Інерація маховика протидає гальмівній дії двигуна. Іноді протида маховика виявляється більш гальмівної дії двигуна, внаслідок чого інтенсивність гальмування дещо знижиться.

Розглянемо у яких випадках вигідно застосовувати спільне гальмування гальмовою системою й двигуном.

Позначимо через \(J_{c, гальм} \) сповільнення при спільному гальмуванні, а через \(J_{cд, гальм} \) – сповільнення при гальмуванні з від’єднаним двигуном. Тоді рівняння можна написати в такому вигляді:

\[
J_{c, гальм} = \frac{1}{\delta_{ap}} \cdot \frac{P_{\text{гальм}} + P_D + P_B + P_{TD} + P_{TR}}{M_a}
\] \((4.28) \)

де \(\delta_{ap} \) – коефіцієнт урахування інерції обертових мас;
\(P_T \) – сила тертя в трансмісії при передачі крутного моменту, Н.

При гальмуванні з від’єднаним двигуном коефіцієнт \(\delta_{ap} = \delta_H \). У цьому випадку

\[
J_{cд, гальм} = \frac{1}{\delta_R} \cdot \frac{P_{\text{гальм}} + P_D + P_B + P_T}{M_a}.
\] \((4.29) \)
Спільне гальмування більш ефективне, ніж гальмування тільки гальмовою системою, якщо \(J_{\text{C, гальм}} > J_{\text{CД, гальм}} \)

\[
\frac{P_{\text{гальм}} + P_D + P_B + P_{TD} + P_{TR}}{\delta_{вр}} > \frac{P_{\text{гальм}} + P_D + P_B + P_G}{\delta_{H}}.
\] (4.30)

Таким чином, доцільність гальмування тільки гальмовою системою або спільним гальмуванням гальмовими механізмами й двигуном залежить, головним чином, від значення сил \(P_{TD} \) і \(P_{\text{гальм}} \), а також від коефіцієнтів \(\delta_{вр} \) і \(\delta_{H} \).

На рис. 4.6 наведений приклад графічного розв’язання нерівності (4.30) для легкового малолітражного автомобіля при \(\delta_{вр} = 1,08; \ \delta_{H} = 1,04; \ \varphi_{x} = 0,6 \). Значення сили \(P_m \) взято з опублікованих у літературі даних.

Криві 1 – 6 відповідають різним значенням гальмівної сили \(P_{\text{гальм}} \). На рисунку 4.6 заштрихована зона, у якій у даних умовах недоцільне спільне гальмування, тому що сповільнення \(J_{\text{C, гальм}} \) (штрихові лінії) менше сповільнення \(J_{\text{CД, гальм}} \) (суцільні лінії).

На дорогах з малим коефіцієнтом зчеплення спільне гальмування підвищує поперечну стійкість автомобіля за умовами заносу. Стійкість поліпшується в цьому випадку в результаті більш рівномірного розподілу диференціалом гальмівних сил між ведучими колісами автомобіля. При гальмуванні автомобіля на дорогах з малим коефіцієнтом зчеплення поздовжні й поперечні сили зчеплення колеса з дорогою змінюються залежно від інтенсивності гальмування (рисунок 4.7).

![Рисунок 4.6](image)

Рисунок 4.6 – Співвідношення при різних способах гальмування: штрихові лінії – з урахуванням сил \(P_D, P_G \); суцільні лінії – без урахування сил \(P_D, P_G \) і \(P_{\text{гальм}} \); 1, 3, 5 – гальмування гальмовою системою; 2, 4 і 6 – гальмування двигуном і гальмівною системою
Не можна допускати гальмування юзом, коли колеса сковзають по поверхні дороги. Загальмоване нековзне колесо сприймає більшу гальмівну силу, ніж при русі юзом, тому що коефіцієнт зчеплення в останньому випадку значно менший. Щоб не допустити виникнення юза, необхідно періодично припиняти діяти гальмами. Однак цей спосіб можна рекомендувати тільки водіям високої кваліфікації, тому що щоб удержати колеса автомобіля на граничній натяжні, не допускаючи їх ковзання, необхідні значні магніті і велика увага.

Останнім часом одержують поширення антиблокувальні пристрої, що автоматичні зменшують гальмовий момент при початку ковзання колеса й через деякий час (0,05 – 1 с) знову збільшують гальмування. Колеса автомобіля завдяки такому циклічному навантаженню гальмівним моментом котяться із частковим проковзуванням, приблизно рівним оптимальному, і коефіцієнт зчеплення залишається гранично високим протягом усього гальмування. Введення антиблокувальних пристроїв зменшує зношуванняшин і дозволяє підвищити поперечну стійкість автомобіля. Перешкодою широкому поширенню цих пристроїв є складність їх конструкції.

Приклад. Визначити шлях і час гальмування, а також заповільнення легкового автомобіля при його гальмуванні з від’єднанням двигуном зі швидкістю 20 м/с до зупинки на сухій горизонтальній дорозі з бетонним покриттям (\(\varphi_x = 0,6\)), якщо коефіцієнт \(Ke = 1,2\), а час \(t_p = 0,8\) с, \(t_{np} = 0,2\) с і \(t_c = 0,5\) с.
Розв'язання. Гальмівний шлях при гальмуванні із швидкості 20 м/с до зупинки

\[S_{гальн} = \frac{K_e \cdot V^2}{2 \cdot \varphi_X \cdot g} = \frac{1,2 \cdot 20^2}{2 \cdot 0,6 \cdot 9,81} = 40,7 \text{ м.} \]

Зупинний час

\[t_z = t_p + \frac{t_c}{2} + \frac{K_e \cdot V}{\varphi_X \cdot g} = 0,8 + 0,2 + \frac{0,5}{2} + \frac{1,2 \cdot 20}{0,6 \cdot 9,81} = 4,8 \text{ с.} \]

Сповільнення автомобіля

\[J_c = \varphi_X \cdot g - K_e = 0,6 \cdot 9,81 - 1,2 = 4,7 \text{ м/с}^2. \]

4.6. Дорожньо-транспортна експертиза дорожньо-транспортного випадку

Дорожньо-транспортною експертизою називають науково-технічне дослідження дорожньо-транспортного випадку фахівцями автомобільного транспорту. Дорожньо-транспортними пригодами (ДТП) називають порушення режимів руху транспортних засобів по дорогах, що викликали травми або смерть людей, ушкодження рухомого складу, штучних споруджень і вантажів або нанесений будь-який інший матеріальний збиток.

Дорожньо-транспортна експертиза дає характеристику всіх фаз ДТП, установлює причини його виникнення й з'ясовує поводження окремих учасників. Експерт з'ясовує технічні причини ДТП, визначає швидкості руху транспортних засобів, величини гальмівного й зупинного шляхів і т. д.

Вихідними даними для проведення експертизи служать результати огляду місця події й автомобілів, а також результати опитування учасників і очевидців події.

Якщо на місці події виявлений слід юза шин по дорозі, то вимірюють довжину сліду юза \(S_o \). Провівши слідчий експеримент, визначають коефіцієнт зчеплення \(\varphi_X \) (або, установивши шляхом огляду зони події тип і стан покриття, вибирають значення \(\varphi_X \) за таблицями). Задавшись значенням коефіцієнта \(K_e \), знаходять, відповідно до формули (4.27), приблизне максимальне сповільнення, вважаючи, що момент початку повного ковзання шин збігається з моментом виникнення максимального сповільнення \(j_{c_{\text{макс}}} \).
Швидкість автомобіля перед гальмуванням можна визначити, виходячи з формул (4.9) і (4.16):

\[V = 0,5 \cdot J_{C_{\text{max}}} t_c + \sqrt{2S_3 \cdot J_{C_{\text{max}}} + (0,5J_{C_{\text{max}}} t_c)^2} , \] \hspace{1cm} (4.31)

де \(t_c \) – час збільшення сповільнення (рисунок 4.8).

Нехтуючи останнім доданком підкореневого виразу внаслідок його малої величини, можна записати:

\[V = 0,5 \cdot J_{C_{\text{max}}} t_c + \sqrt{2S_3 \cdot J_{C_{\text{max}}}} . \] \hspace{1cm} (4.32)

Розглянемо як приклад ДТП, результатом якого був наїзд автомобіля на пішохода (рисунок 4.8). Автомобіль \(A \) рухався на відстані \(S_{n} \) від тротуару, на краю якого перебував пішохід \(P \).

Рисунок 4.8 – Положення автомобіля й пішохода під час дорожньо-транспортної пригоди

Коли між автомобілем і пішоходом була відстань \(S \), пішохід почав рух по проїзній частині перпендикулярно до напрямку руху автомобіля. Положення автомобіля й пішохода, що відповідає цьому моменту, відзначено цифрами \(I \). Водій загальмував. Однак уникнути наїзду не зміг. Проміжне положення автомобіля й пішохода позначено цифрою \(II \). Автомобіль, ударивши пішохода (положення \(III \)), перемістився ще на деяку відстань і зупинився (положення \(IV \)).

Зразкова послідовність розрахунків при експертизі така. За схемою події визначають переміщення автомобіля \(S_{n} \) після наїзду в загальмованому стані й обчислюють швидкість автомобіля в момент наїзду на пішохода:
Потім визначають швидкість автомобіля перед початком гальмування за формулю (4.32), зупинний шлях \(S_3 \) за формулою (4.16) і час руху автомобіля до наїзду:

\[
t_i = t_p + t_{np} + 0.5 \cdot t_c + \frac{V - V_i}{J_{C_{\text{max}}}} = t_{\text{сум}} + \frac{V - V_i}{J_{C_{\text{max}}}}.
\] (4.34)

При експертних розрахунках швидкість руху пішохода звичайно вважають постійною (\(V_n = \text{const} \)), а шириною траєкторії його руху нехтують. При цих допущеннях час руху пішохода по проїзній частині:

\[
t_{II} = S_{II} \cdot V_{II}.
\] (4.35)

Умову своєчасності початку гальмування автомобіля можна записати в такий спосіб:

\[
t_n \geq t_n.
\] (4.36)

Якщо ця умова не виконана й час \(t_n \) менше часу \(t_n \), то водій діяв із запізненням, і автомобіль встиг переміститися з положення \(I \) у положення \(II \). Щоб установити, чи міг водій уникнути наїзду на пішохода, якби не допустив цього запізнення, а діяв вчасно, продовжують розрахунки, визначаючи проміжок часу, прострочений водієм:

\[
t_{3\Pi I} = t_n - t_n.
\] (4.37)

За цей проміжок часу автомобіль, рухаючись із початковою швидкістю \(V \), переміщається на відстань:

\[
S_{3\Pi I} = V \cdot t_{3\Pi I}.
\] (4.38)

Згідно з рисунком 4.8 відстань \(S \) між передньою частиною автомобіля й пішоходом у момент початку руху останнього по проїзній частині:

\[
S = S_3 + S_{3\Pi I} - S_{II} - 1,
\] (4.39)

de \(L \) - відстань від місця удару до передньої частини автомобіля.

Якщо в результаті розрахунків вийде, що відстань \(S \) більша зупинного шляху \(S_3 \), це значить, що водій міг, застосувавши екстрене гальмування,
зупинити автомобіль до лінії проходження пішохода. При $S < S_3$ водій не мав можливості запобігти наїзду шляхом гальмування, тому що пішохід почув рух на занадто малій відстані від автомобіля.

Під час дорожньо-транспортної експертизи досліджують також наїзди автомобіля на нерухому перешкоду, перекидання й зіткнення автомобілів. Результати експертизи слідчі й судові органи використовують як докази по розглянутій справі про подію.

4.7 Визначення показників гальмівної динамічності автомобіля

Показники гальмових властивостей автомобіля визначають під час дорожніх випробувань автомобіля після його обкатування. Відповідно до Правил дорожнього руху (ПДР) гальмівний шлях і величину сповільнення автомобілів визначають при русі без навантаження зі швидкістю 30 км/год на сухій горизонтальній ділянці дороги із твердим покриттям, що має коефіцієнт зчеплення не менше 0,6.

Ділянка дороги, на якій проводяться випробування, повинна бути прямою і горизонтальною (уклон не більше 0,5°) із твердим сухим покриттям, температура навколишнього середовища повинна бути в межах від мінус 5 до плюс 30 °C, а швидкість вітру не більше 3 м/с. Вихід автомобіля з коридора шириною 3,5 м при гальмуванні або розворот на кут більше 8° неприпустимий. При випробуваннях «0» перевіряється ефективність системи при холодних механізмах, коли температура гальмівного диска або барабана не перевищує 100 °C. При випробуванні «І» гальмівний шлях не повинен перевищувати 165% гальмівного шляху, отриманого при випробуваннях «0». При випробуванні «ІІ» визначають ефективність робочої гальмової системи автомобілів при русі на затяжних спусках. Це випробування проводиться аналогічно випробуванням «І». Прогрів гальмівних механізмів здійснюється на спуску з ухилом 6% і довжиною 6 км при швидкості руху 36 + 5 км/год і невідключеному двигуні. Основний етап випробувань після прогріву гальмівних механізмів проводиться за методикою випробування «0» не пізніше ніж через 45 с після прогріву гальмівних механізмів.

Стовпковий гальмівний механізм автомобіля повинен утримувати його на уклоні не менш 25%. При дорожніх випробуваннях майже неможливо об'єктивно оцінити роботу гальма кожного колеса й одночасність спрацьовування, а отже, визначити характер і місце можливої несправності. Тому для діагностики гальмових систем перевага віддається стендам. У цей час визначені два напрямки в діагностуванні гальмових систем автомобілів:

- комплексне діагностування, що дозволяє оцінити технічний стан гальм автомобіля в цілому за величиною оцінних (вихідних) параметрів (гальмівний шлях, сповільнення, гальмівна сила, час спрацьовування);
причине діагностування, у процесі якого встановлюється зниження ефективності гальм шляхом визначення технічного стану окремих агрегатів і елементів гальмової системи.

Комплексне діагностування є первинним етапом, його виконують на спеціальних стендах у плановому порядку з певною періодичністю. При цьому вимірюють:

− гальмівний шлях автомобіля (шлях, який пройшов автомобіль з моменту натискання на гальмову педаль до повної зупинки);
− сповільнення автомобіля при гальмуванні;
− гальмівне зусилля на кожному колесі.

Супутніми параметрами можуть бути час спрацьовування гальма кожного колеса (осі), різниця величин основних параметрів по окремих колесах. Крім зазначених вище параметрів технічного стану гальм, на стендах можна визначати зусилля вільного обертання коліс, силу гальмування, що розвивається кожним колесом, наявність блокування, тобто схоплювання коліс, зусилля тиску на гальмову педаль, нерівномірність зношування (еліптичність) гальмівних барабанів.

Зусилля вільного обертання коліс характеризує регулювання гальмових колодок і стан механічної передачі автомобіля (трансмісії). При оптимальному регулюванні колодок і відсутності дефектів у механічній передачі зусилля вільного обертання коліс вантажних автомобілів перебуває в межах 300 – 400 Н (30 – 40 кгс).

Сила гальмування, що розвивається кожним колесом, при тому самому зусиллі тиску на педаль є важливим параметром, що визначає занесення автомобіля при різкому гальмуванні. Нормальне розкладання сил гальмування між передніми й задніми колісами визначається заводами-виготовлювачами автомобілів. Різниця між силами гальмування, що розвиваються правими й лівими колісами, допускається не більше 15 – 20%.

Оцінним параметром ефективності гальм у цілому служить співвідношення гальмової сили й ваги автомобіля. Гальмівна сила повинна бути не менша 65 % ваги автомобіля.

Зусилля тиску на педаль характеризує стан гідравлічного приводу гальм; воно не повинне перевищувати при блокуванні коліс 500 Н (50 кгс).

Нерівномірне зношування гальмових барабанів по окружності характеризується нестабільністю показань сили гальмування, що проявляється в коливаннях стрілки приладу синхронно швидкості обертання колеса (вимірювання краще проводити при малих швидкостях). Припустима еліптичність гальмівного барабана викликає коливання стрілки приладу в межах, обумовлених конструкцією стенда.

У цей час розроблено кілька типів стендів для діагностування гальм легкових і вантажних автомобілів:
− стенди для статичних випробувань, на яких вимірювання гальмівних сил здійснюють при нерухомому автомобілі й близьких до нуля швидкостях обертання коліс;
− стенди для кінематичних випробувань, де автомобіль нерухомий, обертання коліс відбувається за допомогою роликів стенда (рухомою стрічкою);
− стенди для динамічних випробувань, де автомобіль в'їжджає з певною швидкістю на динамометричні площадки й загальмовується (автомобіль і стенд впливають один на одного так само, як автомобіль і дорога під час гальмування).
− за принципом передачі гальмівного зусилля стенди для діагностування гальмування можна розділити на дві групи:
− стенди з передачею гальмового зусилля через опорну поверхню колеса (покришку);
− стенди з безпосередньою передачею гальмового моменту через маточину колеса (тобто без використання сил зчеплення з опорною поверхнею).

Контрольні запитання
1. Чим пояснюється відхилення теоретичних і дійсних параметрів гальмування?
2. Як впливають опори руху на гальмування?
3. Коли виходить більшіший гальмівний шлях: при блокованих колесах або при гальмуванні до початку блокування? Чим пояснюється розходження у величині цих двох гальмівних шляхів?
4. Від чого залежить теоретичний розподіл гальмівних сил на колеса?
5. Чому при гальмуванні автомобіля відбувається перерозподіл навантаження по осях?
6. Що таке дорожньо-транспортна пригода ДТП?
7. Якими вихідними даними повинен оперувати експерт і як він їх використовує, аналізуючи дорожньо-транспортну пригоду?
5 ПАЛИВНА ЕКОНОМІЧНІСТЬ АВТОМОБІЛЯ

5.1 Показники паливої економічності

З параметрів, що характеризують потужнісні показники автомобіля, у центрі уваги тривалий час залишалися максимальна швидкість і час розгону. Відчутний ріст цін на рідке паливо привів до того, що особливу увагу стали приділяти питомій і загальній витраті палива автомобілем.

Паливо є найважливішим експлуатаційним матеріалом, який автомобільний транспорт споживає у великій кількості. Вартість палива становить 10 – 15% всіх витрат на перевезення. Тому паливо необхідно використовувати з максимальною ефективністю, не допускаючи невиправданих його витрат і втрат.

Досконалість конструкції автомобіля з погляду паливої економічності оцінюють за загальною витратою палива Q у л, віднесеною до довжини пройденого шляху S у км або до транспортної роботи в тонно-кілометрах. Питома шляхова витрата палива при пробігу автомобілем 100 км (у л)

$$q_P = \frac{1000Q}{S}.$$ (5.1)

Витрата палива на одиницю пробігу не враховує транспортної роботи, виконуваної автомобілем, що може привести до неправильних виводів при оцінюванні паливої економічності. Так, в автомобіля, що перевозить вантаж, витрата палива на одиницю пробігу завжди більша, ніж у того ж автомобіля, що працює без навантаження. Тому більш правильно оцінювати паливну економічність автомобіля за витратою палива, віднесеною до одиниці транспортної роботи:

$$q_T = \frac{Q \cdot \rho_t}{M_{gp} \cdot S_{gp}} \cdot \frac{1000}{\text{ткм}},$$ (5.2)

де ρ_t — щільність палива, г/см3;

M_{gp} — маса перевезеного вантажу, т;

S_{gp} — пробіг автомобіля з вантажем, км.

Показником q_T зазвичай користуються для оцінювання паливої економічності не окремого автомобіля, а автомобільного парку, що підпорядковується автотранспортному підприємству. Радіональна організація перевезень обумовлює збільшення коефіцієнтів використання пробігу й вантажопідйомності, а отже, зменшення витрати палива на одиницю транспортної роботи.
Як показники паливої економічності двигуна використовують годинну витрату палива G_T (у кілограмах за 1 год роботи), а також питома ефективна витрата ge (у грамах на 1 кВт за 1 год роботи).

Годинна витрата палива (у кг/г)

$$G_T = \frac{ge \cdot Ne}{1000} \quad (5.3)$$

Або

$$G_T = \frac{3600 \cdot Q \cdot \rho_t}{t} \quad (5.4)$$

де t – час, що відповідає витраті палива Q або шляху S в м.

З формул (5.3) і (5.4) одержуємо:

$$G_T = \frac{36 \cdot \rho_t q_{II} \cdot S}{t} \quad (5.5)$$

Розв’язавши спільно рівняння (5.3) і (5.5), визначимо шляхову витрату палива в літрах на 100 км пробігу:

$$q_{II} = \frac{g_e \cdot N_e}{36 \cdot \rho_t \cdot V} \quad (5.6)$$

5.2 Паливно-економічна характеристика автомобіля

Паливно-економічною характеристикою автомобіля називають графік залежності питомої шляхової витрати палива q_n від швидкості автомобіля V і коефіцієнта опору дороги ψ (рисунок 5.1). Цей графік характеризує паливну економічність автомобіля при його рівномірному русі й дозволяє визначити витрату палива за відомими величинами V і ψ.

Наприклад, при русі автомобіля зі швидкістю V_1 по дорозі, якість якої характеризується коефіцієнтом ψ_1, витрата палива дорівнює q_1. Можна розв’язати й зворотне завдання: визначити максимально можливу швидкість, що може розвити автомобіль при даній витраті палива. Так, якщо витрата палива не повинна перевищувати q_3, то на дорозі з коефіцієнтом опору ψ_3 швидкість автомобіля не повинна перевищувати V_2. Завдання подібного роду виникають при виявленні економічно доцільної швидкості руху автомобіля на автомагістралах. Кожна крива графіка має дві характерні точки. Одна з них визначає мінімальну витрату палива при
русі по дорогі з даним коефіцієнтом \(\psi \) (наприклад, \(q'_{min} \) при \(\psi l \)). Швидкість \(V_{ek} \), що відповідає цій витраті, називають економічною.

Рисунок 5.1 – Графіки паливно-економічної характеристики автомобіля

Інша (кінцева) точка кривої визначає витрату палива при повному навантаженні двигуна, що відповідає швидкості руху, максимально можливої при даному коефіцієні \(\psi \) (точки \(a, b, c \)).

Обвідна крива \(AA_1 \), проведена через ці точки, являє собою зміну шляхової витрати палива залежно від швидкості при повному навантаженні двигуна.

Перегини в правих частинах кривих викликані збагаченням суміші при включені економайзера.

Показником паливої економічності автомобіля служить мінімальна шляхова витрата палива, що відповідає швидкості \(V_{ek} \) при випробуваннях автомобіля з повним навантаженням на горизонтальній ділянці дороги із твердим покриттям. Контрольна витрата палива, що указується в технічних характеристиках автомобілів, практично мало відрізняється від мінімальної витрати.

5.3 Паливна економічність автопоїзда

Робота автомобіля в складі автопоїзда пов'язана, як правило, з підвищенням витрати палива на одиницю пробігу. Однак збільшення витрати непропорційно зростанню сил опору руху, тому що при буксуванні причепів або напівпричепів ступінь використання потужності двигуна виша, ніж при русі одиночного автомобіля, що зменшує питому ефективну витрату палива.

Крім того, досить помітно знижується витрата палива на одиницю зробленої транспортної роботи (або на одиницю маси перевезеного
ватажу), що зменшує вартість перевезень. На дорогах із твердим покриттям, що не мають крутих і затяжних підйомів, при використанні причепів економія палива на 1 т·км може становити 15 – 20%.

Щоб з'ясувати причину поліпшення паливої економічності в результаті застосування причепів, визначимо витрату палива, що доводиться на одиницю транспортної роботи.

Якщо у формулу потужнісного балансу підставить вираз (5.6), то при рівномірному русі автопоїзда одержимо:

\[
q_{ГР} = \frac{q_{п}}{G_ГР} = \frac{g_e \cdot (P_A + P_B)}{3600 \cdot \rho_Г \cdot \eta_ГР G_ГР},
\]

де \(G_ГР \) – маса перевезеного автопоїздом вантажу, кг.

Сила опору дороги:

\[
P_A = G \cdot \psi = (G + G_ГР) \psi,
\]

де \(G_0 \) – вага автомобіля без вантажу.

Отже,

\[
q_{ГР} = \frac{g_e [(G_0 + G_ГР) \psi + P_B]}{3600 \cdot \rho_Г \eta_ГР G_ГР},
\]

або, нехтуючи силою \(P_B \),

\[
q_{ГР} = \frac{g_e \psi}{3600 \cdot \rho_Г \eta_ГР} \cdot \left(\frac{G_0}{G_ГР} + 1 \right).
\]

Власна маса причепа значно менша маси автомобіля тої ж вантажопідйомністі. Наприклад, власна маса автомобіля ЗИЛ-431410 (вантажопідйомність 6 т) становить 4300 кг, а власна маса напівпричепа тої ж вантажопідйомністі – усього 2540 кг. Тому у випадку застосування причепа кількість перевезеного вантажу збільшується вдвічі, а власна маса автопоїзда зростає всього на 50 – 60%. Крім того, ступінь використання потужності двигуна в автомобіля, що буксирує причіп, вищий, ніж в одночного автомобіля. ККД трансмісії сідального тягача вищий, ніж ККД бортового автомобіля, тому що більше навантаження, передане трансмісією. У результаті витрата палива, віднесена до одиниці транспортної роботи \(q_1 \) в автопоїзда менша.
5.4 Вплив конструктивних і експлуатаційних факторів на витрату палива

З'ясуємо основні фактори, від яких залежить шляхова витрата палива q_n.

Під час руху автомобіля ефективна потужність N_e двигуна затрачається на подолання розглянутих вище опорів руху. З рівняння потужнісного балансу:

$$Ne = N_T + N_{TP} = (P_d + P_B + P_I) \frac{V}{1000\eta_{TP}},$$

$$q_H = \frac{g_e}{36000 \cdot \rho \cdot \eta_{TP}}.$$ (5.11)

Витрата палива на одиницю пробігу зменшується при поліпшенні паливної економічності двигуна, оціненої величиною g_e. Всі конструктивні параметри двигуна й особливості його робочого процесу, від яких залежить g_e впливають на паливну економічність автомобіля. Так, наприклад, автомобілі з дизелями, мінімальна ефективна витрата палива яких перебуває в межах 230 – 290 г/(кВт·год), економічніший автомобілів з карбюраторними двигунами, що витрачають 290 – 380 г/(кВт·год).

Витрата палива зростає у випадку збільшення сил опору трансмісії, дороги й повітря. При розгоні автомобіля частина палива витрачається на збільшення його кінетичної енергії, внаслідок чого шляхова витрата палива зростає.

Практичне використання рівняння (5.11) для визначення витрати палива утруднене тим, що ККД трансмісії, що входить у це рівняння, не є постійною величиною, а залежить від умов руху автомобіля.

У випадку руху автомобіля з малою швидкістю по дорозі гарної якості, коли сили P_a й P_v невеликі, ККД η_{mp} може бути набагато менший. Приймаючи ККД трансмісії постійним, вносять деяку помилку в розрахунок шляхової витрати палива, але із цим доводиться миритися, тому що введення змінного ККД у розрахунки набагато складніше їх. Крім того, питома витрата палива g_e не є незалежною змінною, а змінюється при зміні кутової швидкості ω_e двигуна й ступеня використання його потужності (рисунок 5.2).

При роботі двигуна з малим навантаженням відносні витрати енергії на подолання внутрішнього опору у двигуні великий. Тому в області малих значень N криві питомої витрати g_e піднімаються вверх. Із збільшенням ступеня використання потужності N паливна економічність поліпшується, тому що питома ефективна витрата знижується, але до певної межі.
Рисунок 5.2 – Залежність питомої витрати палива від степеня використання потужності

При більших навантаженнях і використанні потужності, близької до номінальної, вмикається економайзер карбюратора, який збагачує паливну суміш та визиває підвищення витрати g_e.

Таким чином, збільшення або зменшення опору руху викликає зміна навантаження двигуна й швидкості автомобіля. Це відображається на величині опору кочення і ускладнює розрахунок витрати палива. Щоб визначити витрату палива автомобілем у певних дорожніх умовах, необхідно мати у своєму розпорядженні експериментальний графік – навантажувальну характеристику двигуна. Якщо експериментальних даних немає, то рекомендують таку методику. Спочатку визначають питому ефективну витрату палива в г/(кВт·год) за формулою:

$$g_e = K_i \cdot K_{CK} \cdot g_{emin}, \quad (5.12)$$

де K_{CK} і K_i – коефіцієнти, що враховують відповідно зміни величини g_i, залежно від кутової швидкості колінчастого вала ω_e, і ступеня використання потужності двигуна N;

g_{emin} – мінімальна питома ефективна витрата палива, г/(кВт·год).

Зразкові значення коефіцієнта наведені на рисунку 5.3, а, на якому суцільна лінія характеризує зміну цього коефіцієнта для карбюраторних двигунів, а штрихова – для дизелів. Крива K_{ex} (рисунок 5.3, б) відноситься до двигунів обох типів.

Відповідно до рівнянь (5.11) і (5.12) при $P_I = 0$ можна написати:
q_II = \frac{K_{СК}(P_D + P_B) \cdot g_{emin}}{3600 \cdot \rho \cdot \eta_{тр}}. \tag{5.13}

Рисунок 5.3 – Графіки для розрахунку паливно-економічної характеристики: а – зміна коефіцієнта \(K_N\); б – зміна коефіцієнта \(K_{ek}\)

Рисунок 5.4 – Графік потужнісного балансу

Для побудови паливно-економічної характеристики будуєть графік потужнісного балансу автомобіля. Задавшись декількома значеннями коефіцієнта опору дороги, визначають потужність \(N_D\) і сумарну потужність \(N_D + N_B\), а потім наносять їх на графік (рисунок 5.4). Розділивши діапазон
змени швидкости на вищій передачі (від \(V_{\text{min}} \) до \(V_{\text{max}} \)) на кілька інтервалів, для кожного значення швидкості визначають відношення \(V/V_N \) (або \(\omega_e/\omega_N \)) і за допомогою графіка на рисунок 5.3, б знаходять значення \(k_{\text{ек}} \).

![Графік 5.3](image)

Рисунок 5.5 – Паливно-економічні характеристики автомобіля:
а – при різних температурах води \(t_w \) у системі охолодження; б – при різному тиску повітря у шинах \(P_{\text{ш}} \), в – залежно від типу шин:
1 – широкопрофільні шини; 2 – звичайні шини; 3 – аркові шини

Для кожного значення \(V \) (або \(\omega_e \)) за графіком потужнісного балансу визначають значення \(N_T \) і \(N_D + N_B \). Потім знаходять ступінь використання потужності \(N \) при даному коефіцієнті \(f \), а далі за графіком рисунок 5.3, а визначають коефіцієнт \(k_{\text{ек}} \).
Підставляючи знайдені значення K_{CK} і K_{I} у формулу (5.13), обчислюють витрату палива $q_{{e}}$ при русі автомобіля по дорозі з даним коефіцієнтом ψ_{e}. Повторивши розрахунки для інших його значень, будується паливно-економічну характеристику автомобіля (рисунок 5.5).

Паливно-економічна характеристика автомобіля не враховує безперервної зміни дорожньої обстановки й пов’язаних з ним змін швидкісного і навантажувального режимів роботи двигуна.

Погіршення технічного стану автомобіля приводить до збільшення витрати палива. Паливна економічність погіршується головним чином у результаті неправильного регулювання приладів системи живлення й запалювання, а також розподільного механізму двигуна. Так, при несправному економайзері витрата палива може збільшитися на 10 – 15%. Відхилення рівня палива в поплавковій камері карбюратора від нормального також викликає погіршення паливної економічності, особливо при малій швидкості руху автомобіля. Якщо не працює одна свіча запалювання, то витрата палива в автомобілі зі шестициліндровим двигуном зростає на 20 – 25%, при двох несправних свічах він збільшується на 50 – 60%. Неправильна установка запалювання може викликати підвищення витрати палива на 80%.

Додаткова витрата палива також пов’язана з попередньою роботою допоміжного устаткування автомобіля (склоочисника, вентилятора обдува вітрового скла і його обігрівача і т. д.).

Значно впливає на питому витрату палива стан теплового режиму двигуна, тому що при роботі на холодному двигуні зростають теплові втрати.

На витрату палива впливає застосування шин тої або іншої конструкції. Так, наприклад, проведені дослідження показали, що заміна звичайних шин на широкопрофільні зменшує витрату палива у весьому експлуатаційному діапазоні швидкостей автомобіля, а при заміні звичайних шин арковими, навпаки, витрата зростає (рис. 5.5, в).

Зниження опору кочення в низькопрофільних шинах досягне значно й тому сприяє підвищенню паливної економічності. Використання низькопрофільних шин викликає зменшення витрати палива до 4%, що відповідає зниженню опору кочення на 20%. Одночасно підвищується термін служби шин. Коефіцієнт опору кочення f залежить від багатьох факторів, як це видно з рисунка 5.6.

Низькопрофільні шини мають більшу твердість боковин, що проявляється в меншій величині бічного відведення. На рисунку 5.6, в показаний вплив кута бічного відведення на коефіцієнт опору кочення.

Підкреслює характеризує звичайні шини, суцільна – низькопрофільні. Одиницю з головних вимог, пропонованих до шин, є забезпечення гарного зчеплення з поверхнею дороги. Воно обумовлюється шириною профілю шини, рисунком протектора і якістю його матеріалу.
Рисунок 5.6 – Залежність коефіцієнта опору кочення f:
$а$ – від швидкості автомобіля і профілю шин; $б$ – від швидкості автомобіля і тиску в шинах; $в$ – від кута бокового відведення вузької і широкої шин, зображених у верхній частині рисунка.

Для забезпечення максимального зчеплення з поверхнею дороги в гоночних автомобілях застосовуються шини, виготовлені з особливо
м'якого матеріалу із гладким протектором без рисунка. Дрібні поглиблення на по верхні протектора робляться лише для контролю зношування, що у цих шин при малих пробігах досягає значних розмірів. Опір коченню в таких гладких шинах менший, ніж у тих, які мають протектор з рисунком. Як видно з вищевикладеного, правильний вибір типу шин й дотримання встановленого внутрішнього тиску повітря в них є важливими факторами, що впливають на витрату палива.

Оскільки частка опору коченню в сумі загального опору руху автомобіля значно зменшується з ростом швидкості, то зменшення цього виду опору руху не означає пропорційного зниження витрати палива. Так, зменшення опору коченню шин на 10% викликає зниження витрати палива лише на 2%.

Низькопрофільні шини забезпечують кращі умови руху, що може приводити до збільшення швидкості, при якій економія палива, досягнута зниженням опору коченню, практично зведеться до нуля. У цьому випадку необхідно взяти до уваги, яке зниження витрати досягається зменшенням опору коченню шин і наскільки збільшується ця витрата через збільшення швидкості руху.

При дії бічної сили коефіцієнт опору коченню шини росте. Бічна сила виникає при русі на поворотах. Щоб не допустити при цьому зниження швидкості автомобіля, необхідно збільшити потужність двигуна. Бічна сила росте з ростом швидкості й відповідно збільшується опір коченню. Тому при проходженні поворотів на великій швидкості витрати палива збільшується. Поворот можна проїжджати й способом плавного ковзання всіх коліс (так званий керований занос).

Паливна економічність роботи автомобіля залежить і від технічного стану агрегатів шасі. Неправильно відрегульоване зачеплення шестерень головної передачі, зазори в радіально-упорних підшипниках, малий тиск повітря в шинах або неправильно відрегульоване сходження керованих коліс викликають додатковий опір руху й, як наслідок, перевитрату палива.

Витрату палива можна знижувати правильною експлуатацією автомобільного транспорту.

У тривісних вантажних автомобілях діючим способом економії енергії є підняття задньої осі ненавантаженого автомобіля. У випадку руху по автомагістралі досягнуть цього результату, щоб ведучою була тільки одна середня вісь, що значно скорочує втрати в трансмісії. У цьому випадку навантаження на шины не повинно перевищувати дозволених величин. Збільшення завантаження провідної середньої осі може бути доцільним також при русі порожнього автомобіля по бездоріжжю, розрідженному ґрунті.

Для пошуку шляхів зниження витрати палива автомобілями проводять змагання на мінімальні його споживання. У них беруть участь серійні автомобілі, на яких дозволяється проводити незначні доробки. Під час змагань визначається й способ руху, наприклад заборонений рух по інерції.
на спуску з виключенням двигуном. Однак проводяться змагання й з більш вільними правилами, з малою кількістю обмежень.

Так, відома нафтовій компанія «Шелл» щорічно організовує змагання з досягнення мінімальної витрати палива. Автомобіль, що бере участь у цих конкурсах, повинен мати не менше трьох коліс, а кожне колесо – навантаження не менше 20% повної маси автомобіля. Обсяг двигуна не регламентується.

Оберти стартера при запуску двигуна не повинні перевищувати 1000 хв⁻¹, для того, щоб він не міг бути використаний як допоміжний засіб для акумулювання енергії розкрченим маховиком. Електроакумулятори можуть бути використані тільки для запалювання, вимірювальних приладів і освітлення. Інші аккумулятори енергії використовувати забороняється. Кількість палива, витрачена на проходження встановленої відстані, точно вимірюється. На основі вимірів пройденого шляху й витраченої частини палива розраховується пробіг автомобіля на одному літрі палива. Середня швидкість при випробуваннях повинна бути не менш 15 км/год. Допускається приміщування до палива води в будь-якому вигляді.

В автомобілях, що брали участь у таких змаганнях, використовувалися здебільшого одноциліндрові бензинові двигуни повітряного охолодження фірми «Хонда» (Японія) з об'ємом 50–67 см³ дизелі фірми «Ферімен Дизель» (Німеччина) з робочим об'ємом 200 см³, а також двигуни оригінальних конструкцій. Для контролю мінімальної швидкості й почергового ввімкнення й вимикання двигуна часто використовують електронне керування.

Рух по інерції допускається тільки із ввімкненим двигуном. Майже всі автомобілі конструктивно зроблені триколісними, постачені камерними шинами високого тиску. Незважаючи на малі швидкості, кузови цих автомобілів мають аеродинамічно зроблені форми для максимального скорочення цього виду втрат. Щоб досягти мінімальної лобової площі, гонщики в машинах розташовуються в положенні лежачі.

Власна маса таких автомобілів не перевищує звичайно 50 – 60 кг. Ф. Майер є власником рекорду, установленого в 1980 р. на автомобілі навчального центра фірми «Мерседес-Бенц» (ФРН) з одноциліндровим дизелем безпосереднього впорскування фірми «Фэримэн Дизель» з робочим об’ємом 200 см³. Двигун був відрегульований на мінімальну потужність 0,75 кВт, і економічний режим його роботи забезпечувався електронним регулюванням. Автомобіль-рекордсмен проїхав шлях, що відповідає пробігу 1284 км на 1 л дизельного палива, тобто 0,0778 л на 100 км.

У класі автомобілів з бензиновим двигуном установлений рекорд був еквівалентний пробігу 745 км на 1 л бензину (водій Г. Рай, ФРН).

Після завершення гонок у Вельцхаймі кожний бажаючий міг проїхати по трасі, використовуючи методи водіння й керування двигунами,
застосовувані гонщиками. Виявилося, що на звичайному серійному автомобілі моделі «Рено 5TL» (Франція) водій А. Фінкель із Німеччини зміг досягти витрати пального 3,65 л на 100 км.

Аutomобіль можна назвати економічним у тому випадку, коли під час перевезення вантажу й пасажирів він витрачає мінімум палива.

5.5 Вплив аеродинамічного опору повітря на витрату палива

Сила опору повітря головним чином залежить від густини повітря, швидкості переміщення повітряних мас (вітру), швидкості руху автомобіля, його обтічності та площі поперечного перерізу.

До суттєвого збільшення сили опору повітря призводить також буксування причепа внаслідок завихрення повітряних потоків між тягачем і причепом, а також збільшення зовнішньої поверхні тertia.

Вплив сили опору повітря на експлуатаційну витрату палива найкраще проаналізувати, розглядаючи один з характерних типів автомобілів при типових для нього умовах руху.

На рисунку 5.7 подані співвідношення між зниженням аеродинамічного опору й відповідним зменшенням витрати палива для сідального тягача з напівпричепом вантажопідйомністю 38 т, що є характерним представником важких автопоїздів.

У реальних експлуатаційних умовах, таких, наприклад, як рух по «дуже важкій трасі» або рух по дорозі «державного значення», у порівнянні з ідеалізованим рухом з постійною швидкістю по рівній горизонтальній ділянці дороги видно явне зменшення витрати палива, отримана за рахунок зниження аеродинамічного опору.

Для вантажних автомобілів малої вантажопідйомністю або автомобілів-фургонів ця залежність від виду траси, по якій він рухається, проявляється в меншому ступені (рисунок 5.7).

Причина високих значень сил опору повітря, що діють на вантажний автомобіль, який рухається, полягає не тільки в тому, що в порівнянні з легковим автомобілем він має істотно більшу площу шобового опору (співвідношення площин сідального тягача з високим кузовом, автобуса й легкового автомобіля становить приблизно 9:7:2).

Вирішальне значення має його обтічність, що характеризується коефіцієнтом c_w (див. рис. 5.8, права частина рисунка). У порівнянні з легковими автомобілями автобуси мають приблизно в 1,5 раза більший аеродинамічний опір, а автопоїзді й сідальні тягачі в 2 рази.

Слід зазначити, що фургони майже впритул наближаються за аеродинамічними показниками до легкових автомобілів.
Рисунок 5.7 – Вплив коефіцієнта аеродинамічного опору k_t на експлуатаційну витрату палива:

а – сідельного тягача з напівпричепом вантажопідйомністю 38 т; б – автомобіля-фургона вантажопідйомністю 2,8 т;

1 – рух по рівній горизонтальній ділянці дороги; 2 – рух по горбкуватій місцевості; 3 – рух по дорозі державного значення; 4 – рух по дуже важкій трасі

Рисунок 5.8 – Діапазони коефіцієнтів аеродинамічного опору C_w та співвідношення площ лобового опору легкового автомобіля, автобуса й вантажного автомобіля
5.6 Поняття про норми витрати палива

Наведені в підрозділі 5.1 формули зручні для аналізу впливу окремих факторів на витрату палива, але потребують трудомістких розрахунків і не враховують багатьох факторів, що викликають збільшення витрати палива в експлуатаційних умовах.

У результаті проведення теоретичних і експериментальних робіт установлено, що витрату палива в літрах на 100 км можна виразити рівнянням:

$$q_{II} = A_{II} + B_{II} \cdot (P_D + P_B),$$ \hspace{1cm} (5.14)

де A_{II} — витрата палива в л, викликана внутрішніми (тепловими й механічними) втратами енергії у двигуні;

B_{II} — збільшення витрати палива в л, що відповідає сумарній силі опору руху, рівній 1 Н.

Підставивши значення сили опору дороги P_D відповідно до формули (5.8), одержимо після перетворень:

$$q_{II} = \left[A_{II} + B_{II} (G_0 \cdot \psi + P_B) \right] B_{II} \cdot G_{TP} \cdot \psi.$$ \hspace{1cm} (5.15)

Таким чином, витрату палива можна розглядати як величину, що складається із двох частин, одна з яких являє собою постійні втрати енергії у двигуні й витрати палива на пересування автомобіля (враз у квадратних дужках), а інша — витрата палива, необхідного для переміщення вантажу, тобто для виконання транспортної роботи. Помноживши обидві частини рівняння (5.15) на величину пробігу S у км і розділивши їх на 100, одержимо формулу для визначення витрати палива (у л) по нормах:

$$Q = K_{I_1} \cdot \frac{S}{100} + K_{I_2} \cdot \frac{W_{\psi}}{100},$$ \hspace{1cm} (5.16)

де $K_{III} = A_{II} + B_{II} (G_0 \psi + P_v)$ — норма витрати палива на пересування автомобіля й внутрішні втрати у двигуні:

$K_{I_2} = 1000 \psi \text{ Вт}$, — норма витрати палива на одиницю транспортної роботи W_{ψ}.

Паливо витрачається також при перебуванні автомобіля в пунктах навантаження й розвантаження, у яких автомобіль маневрує, часто рухаючись заднім ходом, а також простоює певний час при навантаженні й розвантаженні. Маневрування автомобіля пов'язане з непродуктивною витратою палива, а його простої — з остиганням агрегатів (двигуна,
коробки передач, ведучого моста), на розігрів яких при наступному русі необхідно затратити паливо. Тому перебування автомобіля у вантажно-розвантажувальних пунктах сполучено з додатковою витратою палива. Щоб урахувати його, в рівняння нормування вводять третій член, пропорційний числу їздок \(Z_e \):

\[
Q = K_{I1} \frac{S}{100} + K_{I2} \frac{W_d}{100} + K_{I3} Z_e, \tag{5.17}
\]

де \(K_{I3} \) – норма додаткової витрати палива на кожну їздку, л.

Конкретні норми \(K_{I1}, K_{I2}, K_{I3} \) залежать від типу автомобіля й умов його роботи. Вантажні автомобілі з бортовою платформою здійснюють перевезення на більші відстані, і число їздок, що доводиться на 100 км пробігу, у них порівняно невелике. Норму витрати палива \(K_{I3} \) для цих автомобілів звичайно включають у норму витрати \(K_{I1} \).

Автомобілі – самоскиди працюють на коротких відстанях, але завантажені повністю й перевозять вантаж тільки в одному напрямку. Це дозволяє спростити розрахунки, включивши для них норму витрати палива \(K_{I2} \) у норму витрати \(K_{I1} \), і визначати загальну норму витрати палива за першим і третім членами рівняння (5.17).

У легкових автомобілях маса корисного навантаження невелика в порівнянні із власною масою автомобіля, тому для них норму витрати палива відносять до одиниці пробігу (100 км).

При нормуванні витрати палива автопоїздом користуються рівнянням (5.17). Оскільки автопоїзди звичайно перевозять вантажи на більші відстані, то використовують лише перші два члени цього рівняння. При цьому норму \(K_{I1} \) витрати палива на пробіг 100 км для автопоїзда збільшують на кожну тонну власної маси причепа в порівнянні з нормою для одиничного автомобіля на 2,5 л для тягачів з карбюраторними двигунами й на 1,3 л для тягачів з дизелеми.

Норма \(K_{I2} \) витрати на одиницю транспортної роботи залишається тією ж, що й для одиничного автомобіля.

Приклад. Автомобіль МАЗ-500А з двохосовим причепом за пробіг (50 км виконав роботу 1200т км. За нормою на виконання цієї роботи витрати палива складає:

\[
1,3 \frac{1200}{100} = 15,6 \ell.
\]

Лінійна норма витрати палива для МАЗ-5337 на 100 км пробігу дорівнює 24 л. На 1т власної маси причепа, що працює з дизельним
автомобілем, норма збільшиться на 1,3 л на кожні 100 км пробігу. Якщо маса прицепу дорівнює 4 т, то збільшення норми буде:

\[1,3 \cdot 4 = 5,2 \text{ л}. \]

Норма витрати палива для даного автопоїзда на 100 км пробігу складе:

\[24 + 5,2 = 29,2 \text{ л}, \]

а з урахуванням транспортної роботи й пробігу загальна витрата палива дорівнює:

\[15,6 + \left(\frac{29,2}{100} \cdot 150 \right) = 59,4 \text{ л}. \]

Контрольні запитання

1. Назвіть основні показники паливої економічності автомобіля й автопоїзда.
2. Від яких факторів залежить витрата палива?
3. Що таке паливо-економічна характеристика автомобіля, як її побудувати і які експлуатаційні завдання можна вирішити з її допомогою?
4. Навіщо потрібні норми витрати палива?
5. Які фактори впливають на величину сили аеродинамічного опору?
6. Якими методами користуються для визначення коефіцієнта обтічності?
7. Що таке фактор обтічності автомобіля?
8. Від чого залежить значення коефіцієнта опору коченню?
9. Чим визначається коефіцієнт опору коченню?
10. Як залежить коефіцієнт опору коченню від зміни внутрішнього тиску в шині?
11. Що таке паливо-економічна характеристика автомобіля?
12. Як визначається годинна витрата палива?
13. Що таке питома шляхова витрата палива автомобіля?
14. Що служить показником паливої економічності автомобіля?
15. Від яких факторів залежить шляхова витрата палива?
СТІЙКІСТЬ АВТОМОБІЛЯ

Стійкістю автомобіля називається його властивість рухатися без небезпеки перекидання набік і ковзання вбік під впливом поперечної сили.

Залежно від напрямку перекидання й ковзання розрізняють поздовжню й поперечною стійкість.

Більш ймовірна й більш небезпечна втрата поперечної стійкості, що відбувається під дією відцентрової сили, поперечної складової сили ваги автомобіля, сили бічного вітру, а також у результаті ударів коліс об нерівність дороги.

6.1 Показники стійкості автомобіля

Показниками поперечної стійкості автомобіля є максимально можлива швидкість руху по кривій і кут поперечної уклону дороги (косогору). Кожний показник може бути визначений з умов поперечної ковзання коліс (заносу) і перекидання автомобіля. Таким чином, виходять чотири фактори поперечної стійкості:

\[V_3 \] – максимальна (критична) швидкість руху автомобіля по кривій, що відповідає початку його заносу, м/с;

\[V_0 \] – максимальна (критична) швидкість руху автомобіля по кривій, що відповідає початку його перекидання, м/с;

\[\beta_3 \] – максимальний (критичний) кут косогору, що відповідає початку поперечної ковзання коліс (заносу), град;

\[\beta_0 \] – максимальний (критичний) кут косогору, що відповідає початку перекидання автомобіля, град.

Для забезпечення керованості керовані колеса під час повороту повинні котитися без бічного ковзання, під час прямолінійного руху зберігати нейтральне положення і автоматично повертатися до нього в момент виходу автомобіля з повороту, рульовий привід повинен забезпечувати правильне співвідношення кутів повороту лівого та правого керованих коліс і вони не повинні мати довільних кутових коливань.

При теоретичному аналізі факторів, що впливають на поперечну стійкість автомобіля, необхідно знати величину поперечної сили, що викликає занос або перекидання автомобіля.

У випадку руху автомобіля на повороті такою силою є відцентрова сила (рисунок 6.1).

Щоб визначити її величину, розглянемо схему, показану на рисунку 6.2. Для спрощення приймем, що автомобіль є плоскою фігурою й рухається по горизонтальній дорогі, а шини в поперечному напрямку не деформуються.
Рисунок 6.1 – Схема руху автомобіля на повороті

Рисунок 6.2 – Схема сил, що діють на автомобіль при повороті
На ділянці дороги 1 – 2 (див. рисунок 6.2) автомобіль рухається прямолінійно, і його керовані колеса перебувають у нейтральному положенні. На ділянці 2 – 3 водій повертає керовані колеса, і автомобіль рухається по кривій змінного радіуса (першої перехідної кривої). На ділянці 3 – 4 положення керованих коліс, повернених на певний кут θ, залишається незмінним, а радіус R траекторії руху середньої точки задньої осі – постійним. На ділянці 4 – 5 (другої перехідної кривої) водій повертає керовані колеса у зворотну сторону, і радіус R поступово збільшується.

На ділянці 5 – 6 автомобіль знову рухається прямолінійно. При рівномірному русі по дузі постійного радіуса відцентрова сила P_{bc} (у Н)

$$P_{bc} = M_a \cdot \omega \cdot 2 \cdot \rho,$$

де M_a – маса автомобіля, кг;
ω – кутова швидкість автомобіля при повороті, рад/с;
ρ – радіус кривизни траекторії центра ваги автомобіля, м.

З курсу механіки відомо, що

$$\omega = \frac{V}{R},$$

$$\rho = \frac{R}{\cos \gamma}.$$

Отже,

$$R = \frac{L}{\operatorname{tg} \theta} \approx \frac{L}{\operatorname{tg} \theta},$$

де γ – кут між радіусом ρ повороту центра ваги й продовженням осі задніх коліс;
L – база автомобіля;
θ – кут між поздовжньою віссю автомобіля й вектором швидкості середньої точки передньої осі. Кут θ приблизно дорівнює півсумі кутів повороту керованих коліс.

Втрати автомобілем стійкості особливо небезпека при великій швидкості, коли його рух прямолінійний або близький до нього. У цьому випадку кут θ порівняно невеликий і можна вважати, що $\operatorname{tg} \theta = \theta$.

Таким чином, відцентрова сила, що діє на автомобіль при його рівномірному русі по дузі окружності:
Залежность от центра силы:

\[P'_{UL} = P_{UL} \cdot \cos \gamma = \frac{M_a V^2 \cdot \theta}{L}. \]

(6.4)

Поперечна складова відцентрової сили:

\[P'_{UL} = \frac{M_a V^2}{L} \cdot \theta. \]

(6.3)

При русі по перехідних кривих на автомобіль діє також сила, викликана зміною кривизни траєкторії. Поперечна складова цієї сили:

\[P'_{UL} = \frac{M_a V^2}{L} \cdot \theta. \]

(6.5)

де \(L \) – відстань від центра ваги автомобіля до задньої осі, м;
\(\omega_{uk} \) – кутова швидкість повороту коліс у рад/с.

Отже, сумарна відцентрова сила, що діє на автомобіль під час повороту коліс:

\[P_{SUM} = P_y + P'_{UL} = \frac{M_a}{L} \cdot \left(V^2 \cdot \theta + V \cdot b \cdot \omega_{UK} \right). \]

(6.6)

Сила \(P_{ac} \) діюча на автомобіль при криволінійному русі, пропорційна квадрату швидкості автомобіля \(V^2 \) і кута \(\theta \). Сила \(P_{ac} \) діє тільки під час повороту передніх коліс і зростає зі збільшенням їхньої кутової швидкості \(\omega_{uk} \) автомобіля. При вході автомобіля в поворот швидкість \(\omega_{uk} \) додатна, \(P_{ac} \) підсумовуючись із силою \(P_y \), збільшує небезпеку перекидання або заносу. При виході з повороту швидкість \(\omega_{uk} \) від’ємна, \(P_{ac} \) може рухатися з більшою швидкістю без втрати стійкості.

Практично сила \(P_{ac} \) впливає на стійкість автомобіля лише в початковий і в кінцевий моменти часу. Ця сила впливає при вході в поворот автомобіля й при виході з нього, коли вона порівнянна із силою \(P_y \). На інших ділянках траєкторії в більшості випадків вплив сили \(P_i \) незначно.

Під час криволінійного руху автомобіля виникає також інерційний момент \(M_i \), що діє у горизонтальній площині, але звичайний вплив цього моменту на стійкість невеликий і ним можна знехтувати.

Визначимо критичні швидкості автомобіля за умовами перекидання і заносу (рис. 6.3). При повороті під дією відцентрової сили \(P_y \) автомобіль може перекинутися відносно осі, яка проходить через центри контактів шин зовнішніх коліс із дорогою. Складемо рівняння моментів сил відносно цієї осі:

101
З рівняння рівноваги автомобіля щодо осі, що проходить через точки опори зовнішніх коліс, можна визначити граничне значення поперечної сили, при якому виникає небезпека перекидання:

\[P_y' = \frac{0.5 \cdot G_a \cdot B}{h_u}. \]

(6.8)

Поперечна сила намагається також викликати бічне ковзання автомобіля. Небезпека ковзання наступає, коли сума поперечних реакцій дороги \(Y_B \) і \(Y_u \), що діють на внутрішні й зовнішні колеса, рівна поперечній силі \(P_y \), яка дорівнює сумарній силі зчеплення коліс із дорогою, тобто:

\[Y_B + Y_u = P_y = \varphi \cdot G_a. \]

(6.9)

В інтересах безпеки бажано, щоб ковзання наступало при меншому значенні поперечної сили в порівнянні з перекиданням, тобто необхідне дотримання умови \(P''_y < P'_y \) або, з урахуванням залежностей (6.8) і (6.9):
Таким чином, стійкість автомобіля проти перекидання можна підвищити збільшенням колії B, зменшенням висоти h_u, розташуванням центра ваги. Якщо з деяким запасом прийняти $\phi=1$, то автомобіль, у якого $h_u = 0.5B$, при русі по рівній дорозі не буде перекидатися.

Рисунок 6.4 – Схема визначення моменту початку перекидання автомобіля на косогорі

Отже, підставивши в рівняння замість сили P_y її значення з виразу

$$P_y = \frac{M_a V^2}{R \cdot \cos \gamma} = \frac{M_a V^2}{L},$$

можна визначити критичну швидкість за умовами перекидання:

$$V_0 = \frac{BL}{2h_u} \approx \frac{BR}{2h_u}.$$ \hspace{1cm} (6.11)

або критичну швидкість за умовами заносу:

$$V_3 = \sqrt{\frac{L \cdot \phi \cdot g}{\theta}} \approx \sqrt{R \cdot g \cdot \phi}. \hspace{1cm} (6.12)$$

При русі автомобіля по дорозі з поперечним ухилом втрата стійкості можлива внаслідок дії поперечної складової сили ваги автомобіля, рівної $G \sin \beta$ (рисунок 6.4). Зіставимо рівняння моментів всіх сил щодо осі, яка проходить через центри контактів шин зовнішніх коліс із дорогою:

103
\[Z_a \cdot B + G \cdot \sin \beta \cdot h_y = G \cdot \cos \beta \cdot 0,5 \cdot B. \] (6.13)

У момент початку перекидання автомобіля реакція \(Z_a = 0 \). Таким чином, критичний кут косогору за умовами перекидання:

\[\beta_0 = \arctg \left(\frac{B}{2h_y} \right). \] (6.14)

З формули (6.14) видно, що можливість автомобіля протистояти перекиданню великою мірою залежить від відношення \(B/2h_y \), названого коефіцієнтом поперечної стійкості \(\eta_{\text{поп}} \).

У таблиці 6.1 наведені середні значення цього коефіцієнта й відповідні йому величини кута \(\beta_0 \) для автомобілів різних типів.

<table>
<thead>
<tr>
<th>Тип рухомого складу</th>
<th>(\eta_{\text{поп}})</th>
<th>(\beta_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Легкові автомобілі</td>
<td>0,9 – 1,2</td>
<td>40 – 50°</td>
</tr>
<tr>
<td>Вантажні автомобілі</td>
<td>0,55 – 0,80</td>
<td>30 – 40°</td>
</tr>
<tr>
<td>Автобуси</td>
<td>0,50 – 0,60</td>
<td>25 – 35°</td>
</tr>
</tbody>
</table>

З метою визначення критичного кута косогору за умовами заносу автомобіля всі діючі сили проектують на площину дороги:

\[G \cdot \sin \beta = Y_B + Y_H. \] (6.15)

З умови надійного зчеплення шин з дорогою сума поперечних реакцій у момент початку заносу визначається виразом:

\[G \cdot \cos \beta \cdot \varphi_y = Y_B + Y_H. \] (6.16)

Отже, критичний кут косогору за умовами заносу

\[\beta = \arctg \varphi_y. \] (6.17)

Для забезпечення безпеки руху автомобіля по дорогах із кривими малих радіусів улаштовують віраж, на якому проїзджда частина й узбіччя мають поперечний нахил до центра кривої (односхилий поперечний профіль).

Цим компенсують силу перекидання автомобіля і його занос на віражі.
6.2 Занос автомобіля: умови можливості заносу, занос переднього або заднього мостів

В загальному випадку руху автомобільного колеса на нього в площині дороги діють дві взаємо перпендикулярні реакції: поперечна \(Y \) і поздовжня (гальмова сила \(P_r \) або сила тяги \(P_T \)). Небезпека ковзання колеса настає, коли рівнодіюча \(R \) цих сил стає рівною сили зчеплення \(\phi_Z \) (де \(Z \) – нормальна реакція дороги):

\[
R = \sqrt{Y^2 + P_r^2} = \phi \cdot Z. \quad (6.18)
\]

Звідси граничне значення поперечної сили, при якому можливе бічне ковзання колеса:

\[
Y = \sqrt{(\phi Z)^2 + P_r^2}. \quad (6.19)
\]

Останнє рівняння дозволяє зробити такі висновки.

1. Задня вісь більш схильна до заносу, ніж передня. Це є наслідком того, що при гальмуванні перерозподіл нормальних реакцій у поздовжньому напрямку веде до зменшення сили \(Z_2 \) і збільшення сили \(Z_1 \).
2. Якщо колесо загальмоване до юза \((P_r = \phi_Z) \), то теоретично його бічне ковзання може бути викликане дуже малою поперечною силою.

Дотепер розглядалася поперечна стійкість автомобіля в припущенні, що при заносі колеса обох мостів починають сковзати в поперечному напрямку одночасно. Звичайно починають сковзати колеса одного мосту, внаслідок чого доводиться розглядати стійкість не всього автомобіля в цілому, а одного з його мостів. Відповідно до формул (6.19) для кочення колеса без ковзання повинна бути дотримана умова:

\[
Y \leq \sqrt{Z^2 \cdot \phi^2 - X^2}. \quad (6.20)
\]

Поперечна сила, яку можна прикласти до колеса, не викликаючи його ковзання, тим більша, чим більша сила зчеплення і чим менша дотична реакція дороги. Найбільш стійке в поперечному напрямку ведене колесо, у якого дотична реакція невелика порівняно із силою \(P_r \). Колесо, навантажене силою тяги або гальмівною силою, гірше противостоять заносу, ніж ведене колесо. Якщо дотична реакції досягла значення сили зчеплення, то для того щоб відбулося бічне ковзання, досить прикласти до колеса невелику поперечну силу. На рисунку 6.5 показана схема руху автомобіля, у якого передні колеса рухаються поступально зі швидкістю \(V_1 \), а задній міст, рухаючись поступально зі швидкістю \(V_1 \), ковзає внаслідок заносу зі швидкістю \(V_2 \) в поперечному напрямку.
У результаті задній міст переміщається зі швидкістю V_3, що викликає
поворот автомобіля навколо центра O. Поперечна складова, відцентрової
сили P_y, що виникає при цьому, діє в напрямку ковзання заднього мосту,
збільшуючи занос. Це викликає подальше зростання відцентрової сили, у
результаті чого занос прогресує. Тому занос заднього мосту
небезпечніший заносу переднього.
При заносе переднего моста (рисунок 6.6) поперечная составляющая силы P_y спрямована вбок, противоположный швейдкости бокового ковзания. Внаслідок цього ковзания передних коліс автоматично припиняється, і автомобіль не втрачає стійкості.

Для усунення заносу заднього мосту необхідно зменшити дотичну реакцію на ведучих колесах, припинивши гальмування або прикривши дросельну заслінку, і повернути передні колеса убік заносу, що почається.

Якщо під час заносу передні колеса займають нейтральне положення, а центр повороту перебував у точці O (див. рисунок 6.5), то після повороту передніх коліс він зміститься в точку O_1 (рисунок 6.6). Радіус повороту при цьому збільшиться, що зменшить відцентріровану силу.

Поворот передніх коліс на надмірно великий кут може викликати ковзання задніх коліс у зворотну сторону й рух автомобіля в напрямку, що відповідає новому положенню керованих коліс. Тому відразу ж після припинення заносу їх варто повернути в нейтральне положення. Щоб уникнути втрати автомобілем стійкості, необхідно плавно зменшувати швидкість до початку повороту, особливо на вологій і слизькій дорозі.

Занос задньої осі автомобіля небезпечний тим, що він прогресує й приведе до випадкової різкої й важкоконтрольованої водієм зміни напряму руху. Якщо швидкість велика, а коефіцієнт зчеплення малий, то різкий поворот керованих коліс викликає занос автомобіля за час, що вивиться набагато меншим реакції водія. У таких ситуаціях водій не встигає прийняти заходи для виходу із заносу.

З вищевикладеного слідує, що для підвищення стійкості автомобіля проти заносу варто застосовувати шини з високим коефіцієнтом зчеплення, не допускати блокування коліс (принаймні задніх), а також усувати ті особливості конструкції, які можуть послужити причиною виникнення поперечної сили. Із цією метою в зимовий час застосовують для задніх коліс шини із шипами; надягають на них додаткові накладки з ланцюгів, тросів, металевих щитків, застосовують пристрої – регулятори гальмівних сил (система АБС), тим самим домагаються симетричного розподілу повної маси автомобіля щодо його поздовжньої осі симетрії.

6.3 Вплив конструктивних і експлуатаційних факторів на поперечну стійкість автомобіля

При визначені показників стійкості було прийнято, що автомобіль являє собою тверде тіло, у дійсності ж він являє собою систему мас, з’єднаних шарнірами або пружними елементами. Можна виділити дві основні групи мас: підресорені (кузов) і непідресорені (колеса, осі).Центр ваги підресорених мас C (рисунок 6.7) розташований на відстані a_k від передньої осі, на відстані b_k й на висоті h_k від поверхні дороги. Центр ваги підресорених мас C розташований вище центра ваги автомобіля C_0, $h_k > h_0$.

107
Непідресорені маси передньої осі звичайно менші непідресорених мас задньої осі, внаслідок чого \(b < b_k \). Під дією поперечної сили шини й пружних елементів підвіски з однієї сторони автомобіля розвантажуються, а з іншого боку – навантажуються. У результаті кузов автомобіля нахиляється й повертається в поперечному напрямку.

Центром крену (переднім або заднім) називають точку, щодо якої переміщається поперечний переріз автомобіля, що проходить через передню або задню вісь.

Знайдемо положення центра крену при важільній підвісці (рис. 6.8).

Рисунок 6.7 – Розташування центрів і осі крена кузова легкового автомобіля

Рисунок 6.8 – Визначення центра крену при важільній незалежній підвісці
При нерухому кузові вертикальні коливання лівого колеса викликають переміщення точок А і Б (кінців верхнього й нижнього важелів) у напрямках, перпендикулярних до важелів. Миттєвий центр швидкостей колеса розташований у точці K – перетинання ліній, які є продовженням важелів. Точка В колеса, яким воно стикалося з дорогою, переміщається при цьому перпендикулярно до лінії KL.

Рисунок 6.9 – Розташування центра і осі крена кузова вантажного автомобіля

Якщо колесо не переміщається, а нахиляється кузов, то центр його крену також перебуває на лінії KL. Підвіска симетрична щодо вертикальної площини IT, отже, центр крену E знаходиться на перетинанні ліній KL і ON, тобто в площині IT. У розглянутому випадку він розташований нижче поверхні дороги.

Підвіску, що забезпечує паралельне переміщення колеса, можна розглядати як важільну підвіску, що має нескінченно довгі важелі. Центр крену при такій підвісці перебуває на поверхні дороги.

Віссю крену називають пряму EE, щодо якої повертается кузов при крені. Вона проходить через центри крену Е₁ і Е₂ (рисунок 6,9) відповідно до передньої й задньої частин кузова.

У легкових автомобілів з передньою незалежною і задньою залежною (ресорною) підвісками вісь крену EE нахиlena до дороги (рисунок 6.7).

У вантажних автомобілів і автобусів, що мають обидві залежні підвіски, вісь крену EE розташована паралельно дорозі на висоті, приблизно рівній радіусу колеса (рисунок 6.10), і \(h_1 = h_2 \). Поперечна сила \(P_{K}, \) прикладена до центра ваги кузова, діє щодо осі крену на плечі крену \(h_{KP} \) і створює момент, що викликає поперечний нахил кузова.

Плече крену (див. рисунок 6.7 і 6.9):

\[
h_{KP} = h_K - \frac{a_k \cdot h_z - b_k \cdot h_1}{L},
\]
де \(h_1 \) і \(h_2 \) — відстані від поверхні дороги відповідно до переднього й заднього центрів крену.

Ходова частина легкового автомобіля повинна із запасом задовольняти умови руху, які можуть бути створені двигуном. В умовах зростаючих прискорень, швидкостей руху (у тому числі й на поворотах) і у випадку екстреного сповільнення ходова частина повинна надійно забезпечувати безпеку руху. Такі вимоги легше виконати, застосовуючи незалежні підвіски, які мають такі основні переваги:

- компактність;
- можливість кінематичної або еластокінематичної зміни сходження коліс у напрямку недостатньої поворотності;
- невелика маса;
- відсутність взаємовпливу коліс.

Дві останні умови важливі для гарного зчеплення з дорогою, особливо на поворотах із хвилястим дорожнім покриттям.

Поперечні й поздовжні важелі забезпечують бажані кінематичні характеристики коліс при ході стиску й відбою й здійснюють передачу сил на кузов (рисунок 6.10, а). У результаті як на зовнішній, так і на внутрішній стороні виникають моменти, що сприяють бічному крену кузова. Незалежно від цього відстань між точками \(E \) і \(G \) у підвісці на подвійних поперечних важелях повинна бути можливо більшою для зменшення сил на кузові й в опорах важелів, щоб деформація гумових елементів не перевищувала припустимої величини.

Бічні сили утворюють додатковий момент, що підсилює поперечний крен кузова на повороті. Опори важелів деформуються під навантаженням і впливають на характеристики пружності: збільшують або твердість за рахунок скручування гумових елементів, або тертя за рахунок ковзання деталей.

Колеса нахиляються разом з кузовом (рисунок 6.10, б), зовнішнє (при повороті) колесо сприймає більшу частину бічної сили, нахиляється у бік позитивного розвалу, а внутрішнє — у бік негативного, однак при цьому можливість передачі шинами бічних сил зменшується. Щоб цього не відбувалося, вводиться кінематична зміна розвалу, що дозволяє протидіяти зазначеному недоліку.

З метою зменшення поперечного крену кузова на повороті застосовують більш тверді підвіски за рахунок установлення додаткових стабілізаторів або високорозташованих центрів крену.

Якщо на повороті кузов крениться на кут \(\varphi \), то зовнішнє колесо незалежної підвіски нахиляється у бік позитивного розвалу: \(+\gamma \), а внутрішнє — у бік негативного: \(-\gamma \). Можливість передачі шинами бічних сил падає, внаслідок чого збільшуються кути відведення.
Залежні підвіски (рисунок 6.11) мають ряд недоліків, істотних для легкових автомобілів, але припустимих для середніх і важких вантажних автомобілів:

− більша маса балки при розташуванні в ній головної передачі;
− схильність до зсуву на дорозі з поперечними хвилями;
− взаємозалежне положення коліс (що при проїзді дорожніх нерівностей приводить до взаємного впливу обох коліс);
− власний поворот осі при прямолінійному русі по дорозі з вибоями (тобто різноманійному або однобічному ході підвіски);
− необхідність вільного простору над віссю, що відповідає ходу стиску підвіски;
− перерозподіл колісних навантажень під дією тягового моменту особливо при установленні здвоєних шин.

Якщо редуктор головної передачі розташований у балці мосту (рисунок 6.11, в), то тяговий момент від двигуна M_A сприймається в точках контакту коліс, де виникають зміни вертикальних сил $\pm \Delta F_{nh}$. У цьому випадку ліве заднє колесо додатково навантажується $(\Delta F_{nh}+ F_{nh})$, а праве розвантажується $(\Delta F_{nh}- F_{nh})$. При правому повороті праве колесо може передчасно провернутися, внаслідок чого відбуваються втрата бічної сили й раптовий зрив задньої осі в буксування.

При розгляді поперечного крена кузова (рисунок 6.12, б) розміри b_f між пружними елементами й b_s між точками приєднання стабілізатора входять у розрахунок твердості. Чим більше це «передаточне відношення», тим менша протидія крену кузова, тому пружні елементи й плечі стабілізатора повинні кріпитися до балки мосту можливо ближче до його кінців.
За рахунок удосконалювання деталей підвіски й відповідне виконання пружних і демпфірувальних елементів характеристики залежних підвісок ведучих коліс удалося поліпшити настільки, що, незважаючи на важку головну передачу, вони застосовуються в цей час на автомобілях з кузовами типу лімузин і купе, що мають конструктивну швидкість більшу 190 км/год.

Рисунок 6.11 – Схема роботи залежної підвіски

Через велику масу залежна підвіска ведучих коліс на хвилястій, нерівній дорозі (особливо на поворотах) за рядом параметрів поспішається незалежний підвіскі, але може бути деякою мірою поліпшена при установленні газонаповнених однотрубних амортизаторів. Ці амортизатори, щоправда, дорожчі, однак дозволяють без помітного погіршення плавності ходу підвищити зусилля стиску, і їхнє демпфірування краще протидіє підскакуванню коліс при ході стиску. Практично це найпростиший і, можливо, найекономічніший спосіб усунення основного недоліку залежної підвіски.

На автомобілях з переднім приводом картина інша: у них залежна задня підвіска має скоріше переваги, ніж недолікі, вона виходить не важча порівнянням залежних підвісок.
Поздовжня стійкість автомобіля

При русі на підйом до сил опору, що діє при русі автомобіля по горизонтальній ділянці дороги, додається сила, необхідна для переміщення його вверх. Знаючи просте правило: сила опору підйому приблизно дорівнює масі автомобіля, помноженій на величину уклону у відсотках, неважко визначити необхідну силу тяги автомобіля, щоб рухатися на підйом. Вона повинна бути більша суми сили опору коченню й сили опору підйому.

Який підйом здатний перебороти автомобіль при русі по певній дорозі й на певній передачі? Так, автомобілю класу «Волга» з повним навантаженням на рівній ділянці дороги з асфальтобетонним покриттям доводиться переборювати опір коченню не більше 325 Н (табл. 6.2).

Для подолання підйому на вищій передачі з постійною швидкістю 75 км/год (тобто при найбільшому крутному моменті двигуна) залишається сила тяги, рівна 2100 – 350 = 1750 Н (175 кгс).

Поділивши цей залишок на вагу автомобіля (1700 кгс), одержимо підйом дорогої близько 0,1, тобто 10%.

На III передачі при швидкості 50 км/год найбільший кут подоланого підйому складе 15%, на ІІ при швидкості 35 км/год – близько 23%, на І – близько 40%.

Сили зчеплення коліс із дорогою на підйомі і на нерівній дорозі різні. На підйомі відбувається розвантаження передніх коліс і додаткове навантаження задніх (рисунок 6.13). Сила зчеплення задніх ведучих коліс збільшується, їхнє буксування стає менш імовірним. В автомобілях з передніми ведучими колісьми сила зчеплення (зчіпна маса) при русі на підйом зменшується, і ймовірність їхнього буксування більша.

Доводилося спостерігати, наприклад, як один із передньопривідних автомобілів не міг піднятися на змочену дощем естакаду, тоді як задньопривідні автомобілі без особливого зусильля переборювали підйом. Тому конструктори прагнуть максимально завантажити ведучі колеса передньоприводних автомобілів, і в новітніх конструкціях отримані цілком задовільні результати.

Можливість подолання підйомів легковими автомобілями показана в табл. 6.2. На невеликих підйомах автомобіль може продовжувати рух на вищій передачі, включеній до цього при русі по горизонтальній дорозі. Зі збільшенням величини підйому виникає (і може ще 1-2 рази повторитися) така ситуація: автомобіль рухається на включеній передачі, але вже на межі можливостей автомобіля, тому що різниця між значеннями сили опору й сили тяги незначні. Водій не завжди може відчути, чи наступ уже момент межі опору. У цьому випадку, якщо вичерпани резерви, отримані при розгоні, доцільне перемикання на знижену (у наших прикладах III або ІІ) передачу.
Таблиця 6.2 – Сила подолання підйомів

<table>
<thead>
<tr>
<th>Автомобіль</th>
<th>ВА3-2108</th>
<th>ВА3-2105</th>
<th>ГАЗ-3110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уклон, %</td>
<td>Сила опору, Н</td>
<td>Сила опору, Н</td>
<td>Сила опору, Н</td>
</tr>
<tr>
<td>0</td>
<td>255</td>
<td>275</td>
<td>325</td>
</tr>
<tr>
<td>3</td>
<td>645</td>
<td>695</td>
<td>865</td>
</tr>
<tr>
<td>6</td>
<td>1035</td>
<td>1115</td>
<td>1405</td>
</tr>
<tr>
<td>10</td>
<td>1555</td>
<td>1675</td>
<td>2125</td>
</tr>
<tr>
<td>15</td>
<td>2205</td>
<td>2375</td>
<td>3025</td>
</tr>
<tr>
<td>Уклон, %</td>
<td>Сила зчеплення ведучих коліс із сухою дорогою, Н</td>
<td>Сила зчеплення ведучих коліс із сухою дорогою, Н</td>
<td>Сила зчеплення ведучих коліс із сухою дорогою, Н</td>
</tr>
<tr>
<td>0</td>
<td>3500</td>
<td>5300</td>
<td>6500</td>
</tr>
<tr>
<td>3</td>
<td>3450</td>
<td>5380</td>
<td>6600</td>
</tr>
<tr>
<td>6</td>
<td>3400</td>
<td>5460</td>
<td>6700</td>
</tr>
<tr>
<td>10</td>
<td>3325</td>
<td>5560</td>
<td>6820</td>
</tr>
<tr>
<td>15</td>
<td>3240</td>
<td>5700</td>
<td>7000</td>
</tr>
<tr>
<td>Уклон, %</td>
<td>Сила зчеплення ведучих коліс зі слизькою дорогою, Н</td>
<td>Сила зчеплення ведучих коліс зі слизькою дорогою, Н</td>
<td>Сила зчеплення ведучих коліс зі слизькою дорогою, Н</td>
</tr>
<tr>
<td>0</td>
<td>1500</td>
<td>2300</td>
<td>2850</td>
</tr>
<tr>
<td>3</td>
<td>1480</td>
<td>2335</td>
<td>2890</td>
</tr>
<tr>
<td>6</td>
<td>1455</td>
<td>2370</td>
<td>2935</td>
</tr>
<tr>
<td>10</td>
<td>1425</td>
<td>2415</td>
<td>2990</td>
</tr>
<tr>
<td>15</td>
<td>1390</td>
<td>2470</td>
<td>3060</td>
</tr>
<tr>
<td>Уклон, %</td>
<td>Максимальна сила тяги, Н, при передачі, на якій автомобіль може рухатися</td>
<td>Максимальна сила тяги, Н, при передачі, на якій автомобіль може рухатися</td>
<td>Максимальна сила тяги, Н, при передачі, на якій автомобіль може рухатися</td>
</tr>
<tr>
<td>Менше 3</td>
<td>1100-V</td>
<td>1200-IV</td>
<td>2100-IV</td>
</tr>
<tr>
<td>6</td>
<td>1100-V</td>
<td>1200-IV</td>
<td>2100-IV</td>
</tr>
<tr>
<td>10</td>
<td>1200-IV</td>
<td>1200-IV</td>
<td>2100-IV</td>
</tr>
<tr>
<td>10</td>
<td>1600-III</td>
<td>1700-III</td>
<td>2100-IV</td>
</tr>
<tr>
<td>10</td>
<td>2500-II</td>
<td>2650-II</td>
<td>3050-III</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>3050-III</td>
</tr>
<tr>
<td>15</td>
<td>2500-II</td>
<td>2650-II</td>
<td>4700-II</td>
</tr>
</tbody>
</table>

Тут необхідно враховувати й силу зчеплення. На сухій дорозі вона в будь-якого легкового автомобіля на будь-якому підйомі значно більша сили тяги, і буксування не відбувається. Якщо ж дорога слизька, то при підйомі більше 5% сила тяги може незначно перевершити силу зчеплення, чим лиш незначно перешкоджає перерозподілу навантаження (а в передньопривідних автомобілях сприяє). Знайочи особливості свого автомобіля, водій повинен вирішити, що йому робити: рухатися на «граничній» передачі або все-таки перейти на нижчу, одночасно зменшивши подачу палива, щоб не відбулося буксування коліс. Все це потребує основаної на досвіді інтуїції.
Перед підйомом вигідно дати автомобілю розгін, нагромадити кінетичну енергію, що дозволить взяти підйом без істотного зменшення швидкості і, може бути, також без переходу на нижчу передачу.

Коли автомобіль переборює дуже крутий підйом, можна припустити, що перекидання назад, якщо й відбудеться, то навколо лінії, що проходить через точки дотику задніх коліс із дорогою (рисунок 6.12). Допускаючи перекидання, тим самим вважаємо, що реакція дороги на передні колеса в момент перекидання дорівнює нулю, і її можна не брати до уваги. Після цих допущень ясно, що автомобіль може перекинутися, якщо суми моментів, щодо цієї лінії, які діють за годинниковою стрілкою, більша суми моментів щодо тої ж осі, які діють проти годинникової стрілки, тобто якщо

\[G \cdot h_y \cdot \sin \alpha > G \cdot h_y \cdot \cos \alpha. \]
(6.21)

Скорочуючи нерівність (6.21) на \(G \) і \(h_y \) й зробивши перетворення, можемо записати: \(\tan \alpha > 1 \). Це умова, при якій може відбутися перекидання. Звідси висновок: для того щоб легковий автомобіль міг перекинутися назад на підйомі, тангент кута підйому повинен бути більший одиниці (тобто кут підйому більший 45°), у той час як граничний кут підйому для всіх легкових автомобілів значно менший цієї величини. Інакше кажучи, легковий автомобіль не може перекинутися назад: він або зупиниться на підйомі, якщо опір великий, а зчеплення коліс із ґрунтом достатнє, або буде буксувати, сковзати, якщо коефіцієнт зчеплення малий.

У вантажних автомобілях з більш високим розташуванням центра ваги й більш навантаженням задніми колісами й тільки у випадках перевезення довгомірних вантажів (тобто при зсуві центра ваги назад за задню вісь) можлива умова перекидання.
Рисунок 6.13 – Схема для расчета максимального угла подъема автопоезда

Приблизительно таки же значения для перекидания, что и догомоёрный вантаж, має причіп до автомобіля, причому його вплив на перекидання автомобіля тим більший, чим більша його вага і чим вище розташований буксирний пристрій на рамі тягача. Тангенс угла підйому, при якому можливе перекидання тягача назад, визначається з нерівності:

\[
tg\alpha = \frac{G \cdot b}{G \cdot h_у + G_{IIp} \cdot h_{IIp}},
\]

де \(G_{IIp}\) – повна вага причепа;
\(h_у\) – висота буксирного пристрою від поверхні дороги.

Визначимо максимальный угол підйому, який при рівномірному русі може перебороти автомобіль без буксування ведучих коліс тягача. Приймемо, що сили опору коченю й опору повітря відсутні (рисунок 6.13). З умов рівноваги тягача маємо:

\[
Z_2 = \frac{(G \cdot h_у + G_{IIp} \cdot h_{IIp}) \cdot \sin \alpha + G \cdot \cos \alpha}{L},
\]

\[
X_2 \cdot (G + G_{IIp}) \sin \alpha.
\]

Приклад. Автомобіль КамАЗ-5320 (рисунок 6.14) має вагу 8000 кг, причіп до нього — 11500 кг; на задні колеса автомобіля доводиться 74 % його ваги при базі 3,2 м, тобто величина \(b\) дорівнює 1,00 м; висота центра ваги навантаженого автомобіля близько 2,08 м; висота буксирного пристрою \(h_{IIp} = 1,36\) м.
Визначити кут підйому α, при якому відбудеться перекидання автомобіля із причепом (автопоїзда).

Рисунок 6.14 – До визначення кута перекидання автопоїзда

Розв’язання. За формулою (6.22) маємо:

$$\tan \alpha = \frac{8000 \cdot 1,0}{8000 \cdot 2,08 + 11500 \cdot 1,36} = 0,24783$$

тобто перекидання відбується, якщо тангенс кута підйому більший 0,2478; виходить, кут повинен бути більший 15° – величина досить близька до значення найбільшого подоланого автомобілем КамАЗ кута підйому (18°).

Ще гірше положення може бути при роботі із причепами автомобілів підвищеної прохідності, у яких центр ваги розташований вище.

Розглядаючи подібним же чином перекидання автомобіля навколо передньої осі, наприклад, при русі з гальмуванням на крутому спуску, переконуємося, що такий випадок менш імовірний, чим перекидання навколо задньої осі, тому що відстань a від передньої осі до центра ваги завжди більше b (рис. 6.14). Однак при різкому гальмуванні, як відомо, з'являється значна сила інерції, спрямована вперед, тому для автомобілів із близьким до рівномірного розподілу ваги по осях і високорозташованим центром ваги різке гальмування на крутих спусках варто вважати небезпечним.

Все сказане відноситься до поздовжнього перекидання автомобіля на ухилах.
6.5 Умови букусування й перекидання при русі на підйомі

Максимальна величина реакції обмежена зчепленням шин з дорогою:

\[X_2 < \phi X \cdot Z_2. \] \hspace{1cm} (6.25)

Можливе лише буксування задніх коліс, що викликає сповзання автомобіля, наприклад, під час динамічного подолання автопоїздом крутого підйому великої довжини.

Підставивши у формулу (6.25) значення \(X_1 \) і \(Z_2 \) відповідно до вирахів (6.23) і (6.24) і розділивши обидві частини на \(\cos \alpha \), одержимо вираз для максимального (критичного) кута підйому, при якому можливий рух автопоїзда без буксування ведучих коліс тягача:

\[
\tan \alpha_{букс} = \frac{\phi X \cdot G} {G (L - \phi X \cdot h_U) + G_{pp} (L - \phi X \cdot h_U)},
\] \hspace{1cm} (6.26)

де \(a \) – відстань від центра мас до передньої осі в проекції на полотно дороги.

Тому, що для одиночного автомобіля вага причепа \(G_{pp} = 0 \), то для нього:

\[
\tan \alpha_{букс} = \frac{\phi X \cdot a} {L - \phi X \cdot h_U}.
\] \hspace{1cm} (6.27)

Критичний кут підйому великою мірою залежить від коефіцієнта зчеплення. Для автопоїздів при \(\phi X = 0.3 \) цей кут не перевищує 4 – 6°, для одиночних автомобілів типу 2×1 він знаходиться в межах 10 – 15°. Цим пояснюється часто спостережуване в зимовий час буксування ведучих коліс тягача автопоїзда на порівняно пологих підйомах.

Для автомобілів типу 2×2 і 3×3 сила \(P_{сл} = \phi X G \cos \alpha \). Критичний кут підйому, що можуть перебороти ці автомобілі без буксування й сповзання назад, визначають із виразу \(\tan \alpha = \phi X \).

Автомобіль із усіма ведучими колісьми може переборювати круті підйоми без втрати поздовжньої стійкості навіть на мокрих і слизьких дорогах (\(\alpha_{букс} = 17 – 19° \)).

6.6 Методи водіння автомобіля, що запобігають заносу і перекиданню

У конструкціях автомобілів зроблено чимало для того, щоб автомобіль був стійким, безпечним. І сучасний автомобіль дійсно стійкий і
безпечний, але при одній умові: якщо водій дотримує певних правил водіння машини. Ці правила пропонують:

− стежити за станом машини, особливо за справністю шин, рульового керування, ресор, амортизаторів і гальма, за правильною установкою й балансуванням коліс;
− не перевантажувати автомобіль, не навантажувати його занадто високим вантажем;
− дотримувати рекомендованого тиску в шинах;
− знижувати швидкість перед поворотами;
− дотримувати обережності при русі у вітряну погоду, особливо по місцевості, де відкриті ділянки перемежуються із закритими;
− уникати різкості в керуванні автомобілем, плавно повертати кермове колесо, плавно натискати на педаль гальма й педаль подачі палива;
− на слизькій дорозі знижувати швидкість, намагатися не застосовувати гальма (краще гальмувати двигуном), не намагатися швидко розганяти автомобіль;
− знижувати тиск у шинах задніх коліс;
− у випадку заносу вправляти автомобіль швидким поворотом рульового колеса у бік заносу;
− у випадку проколу шини плавно знижувати швидкість і вирівнювати рух автомобіля кермовим колесом;
− уникати їзди по узбіччях і по будівельному сміттю;
− проявляти обережність при їзді із причепом або довгомірним вантажем на підйомах;
− не гальмувати різко на спусках.

Контрольні запитання

1. Назвіть і охарактеризуйте показники поперечної стійкості автомобіля.
2. Від яких факторів залежить критична швидкість автомобіля, певна за умовами заносу й перекидання?
3. Від яких факторів залежить максимальний кут косогору, визначений за умовами заносу і перекидання?
4. Що таке коефіцієнт поперечної стійкості автомобіля і які його середні значення для автомобілів різних типів?
5. Занос якого мосту небезпеченіший: переднього або заднього? Чому?
6. Від чого залежить поздовжня стійкість автомобіля?
7 КЕРОВАНІСТЬ АВТОМОБІЛЯ

Автомобіль повинен стійко рухатися по напрямку, заданому водієм залежно від обставини на дорозі, що, безупинно змінюючись, потребує від водія постійної готовності змінити характер руху автомобіля, щоб не допустити можливості дорожньо-транспортної пригоди. Автомобіль повинен легко й швидко змінювати своє положення на дорозі під впливом зусиль водія. Однак існують сили, здатні вивести автомобіль із підпорядкування водієві, а саме:

− повести автомобіль за напрямком, відмінним від заданого водієм (відведення автомобіля);
− зрушити автомобіль уперед при загальнованих колесах (юз) або вбік під час кочення коліс;
− повернути автомобіль навколо вертикальної осі, змусивши при цьому колеса сковзати вбік (занос автомобіля);
− перекинути автомобіль (у рідких випадках).

Стійкість автомобіля – це його здатність протистояти силам, що намагаються повернути, зрушити, занести (рис. 7.1) або перекинути його всупереч волі водія. Здатність автомобіля точно додержуватися заданого напрямку називається керованістю автомобіля.

Явища керованості і стійкості тісно пов'язані, і їх варто вивчати разом. У звичайних спокійних, неаварійних умовах руху серед факторів стійкості й керованості головними по важливості є «відведення» автомобіля, потім «занос» (ковзання) і, нарешті, перекидання.

Для оцінювання керованості автомобіля застосовуються такі вимірювачі: критична швидкість, поворотність, відносні кути повороту керованих коліс, стабілізація керованих коліс, кутові коливання керованих коліс.
7.1 Критичні швидкості за умовами керованості

Поперечна складова сили P

$$P_{y1} = P_{k1} \cdot \text{tg} \theta = G_1 \cdot f \cdot \text{tg} \theta. \quad (7.1)$$

На передній міст діє також відцентрова сила передньої частини автомобіля, спрямована уздовж радіуса R_1 повороту середини переднього мосту (рисунок 7.2):

$$P_{ul1} = \frac{M_1 V^2}{R_1^2} = \frac{M_1 V^2 \cdot \text{tg} \theta}{L \cdot \cos \theta}, \quad (7.2)$$

де M_1 – маса автомобіля, що припадає на передню вісь;

L – база автомобіля.

Сили P_{y1} і P_{ul1} притупляють викликати бічне ковзання керованих коліс. Щоб колеса коритися без ковзання, необхідне дотримання умови:

$$Y_1 = P_{y1} + P_{ul1} \leq \sqrt{Z_1^2 f^2 - X_1^2} \approx G_1 \sqrt{\phi^2 - f^2}. \quad (7.3)$$

Сила P_{ul1} прямо пропорційна квадрату швидкості, тому ковзання коліс найбільш ймовірне при великій швидкості автомобіля.

На рисунку 7.2 показаний автомобіль при русі його на повороті.

Керовані колеса автомобіля повернені щодо нейтрального положення, займаного ними під час прямолінійного руху, на кут θ.

До переднього мосту прикладена відштовхувальна сила P, складова P_{x1} якої паралельна площині керованих коліс і при рівномірному русі автомобіля дорівнює силі опору кочення:

$$P_{x1} = G_1 \cdot f.$$

Критичною швидкістю за умовами керованості V_{ypr} називають швидкість, з якої автомобіль може рухатися на повороті без поперечного ковзання керованих коліс:

$$V_{ypr} = \sqrt{\frac{\sqrt{\phi^2 - f^2}}{\text{tg} \theta}} \cdot g \cdot L \cdot \cos \theta. \quad (7.4)$$

121
Якщо швидкість автомобіля \(V_a > V_{упр} \), то керовані колеса проковзують у поперечному напрямку. У цьому випадку автомобіль не змінює свого напрямку руху.

Рисунок 7.2 – Схема сил, що діють при русі автомобіля на повороті

Величина критичної швидкості \(V_{упр} \) зменшується при збільшенні кута повороту \(\theta \), отже, чим менший радіус повороту автомобіля, тим менше повинна бути його швидкість. На дорогах із твердим покриттям коефіцієнт зчеплення звичайно в багато разів менш і складається з коефіцієнта опору коченню \(f \), тому автомобіль зберігає керованість навіть при русі по кривих малих радіусів.

Практикою встановлено, що при русі автомобіля по дорогах з нерівним зледенілим покриттям, а також по піску або снігу значення коефіцієнтів \(\phi \) і \(f \) зближаються, причому різниця \(\phi^2 - f^2 \) зменшується, що веде до зниження критичної швидкості. Якщо \(\phi = f / \cos\theta \), то підкореневий вираз у формулі (7.4) дорівнює нулю. Це означає, що автомобіль може поєднуватися лише з досить малою швидкістю. Якщо \(f / \cos\theta < \phi \), то автомобіль стає некерованим, тому що значення швидкості \(V_{упр} \) стає уявною величиною.

122
При повному ковзанні передніх коліс, наприклад у результаті їхнього блокування при гальмуванні й переході на юз, поперечна реакція дороги не виникає. В даному випадку поворот передніх коліс не змінює напрямки руху, і автомобіль втрачає керованість. При русі по слизькій дорозі як на повороті, так і на прямій потрібно уникати різких розгонів і гальмування. Схильність автомобіля до заносу визначається не тільки якістю й конструкцією його підвіски й амортизаторів, але і його загальним компонуванням.

Якщо при їзді по прямій сухій дорозі зі швидкістю хоча б 50 – 70 км/год спробувати вести автомобіль строго прямо, паралельно осьовій лінії дороги, то можна переконатися, що автомобіль підкоряється наче неохоче й увесь час прагне відійти від наміченого курсу трохи вліво й вправо. Якщо спостерігати за автомобілем, який йде спереду, то можна побачити, що якісь сили плавно «водять» цей автомобіль вліво – вправо. Якщо тримати автомобіль «за курсом», доводиться напружувати увагу, повертаючи кермове колесо. Таке відведення пов'язане з дією бічних сил.

7.2 Відведення колеса й поворотність автомобіля

Кочення еластичного колеса, навантаженого поперечною (бічною) силою, має свої особливості, тому що шина еластична не тільки в радіальному напрямку, але й у поперечному.

Під дією бічної сили автомобіль може переміститися за напрямком її дії. Якщо дорога не слизька й зчеплення шини з дорогою досить велике, ближня до дороги частина шини залишається зчепленою з дорогою, перетин шини викривляється, деформується, а колесо під дією бічної сили зміщається на якусь відстань. Середня лінія рисунка протектора шини вже не повністю збігається із площинкою симетрії колеса; вона лежить на осі відбитка, потім переходить по скривленій частині шини до площини симетрії колеса.

Передній край відбитка увесь час переміщається в напрямку до площини колеса, а площа колеса знову віддаляється від нього. У результаті вісь відбитка виявляється не паралельна, а під деяким кутом до площини колеса. Якби колесо було нерухомим, поздовжня вісь зміщеного відбитка шини була б паралельно площині колеса. Але колесо обертається, то починаючи з початкової точки відбитка шини при дотикові з дорогою відбиваються всі наступні точки із зміщенням. Це легко перевірити.

Якщо на протекторі шини нанести фарбою точки A, B, C, D (рисунок 7.3), то при коченні колеса внаслідов поперечного прогину шини, викликаного бічною силою P_υ, ці точки залишають на дорозі слід A_2, B_2, C_2, D_2. Якщо ці точки з'єднати лінією, то одержимо пряму, спрямовану під кутом δ_υ до поздовжньої площини симетрії колеса. Таке кочення
називають відведенням коліс, а кут, який вектор швидкості центра колеса утворить із його середньою площинною, кутом відведення δ_{uv}.

Рисунок 7.3 – Слід шини на дорозі при дії поперечної (бокової) сили

Середня лінія контакту, що приблизно збігається з напрямком руху, також буде розташована під кутом δ_{uv} до середньої площини колеса. Таким чином, колесо буде котитися з відведенням, кут якого буде дорівнювати δ_{uv} (рисунок 7.4).

Під час відведення колеса до передньої частини контакту шини з дорогою наближаються елементи, менш деформовані в поперечному напрямку. У результаті відведення проекція центра колеса на площину дороги (точка O_1 не збігається із центром контакту O, а сили X і Y створюють моменти, що прагнуть повернути колесо навколо вертикальної осі.

Відведення може бути викликане також установленням керованих коліс під кутом до напрямку руху (сходженням і з нахилом до вертикалі (розвалом).
При малих значеннях сили P_y епюра поперечних сил близька до трикутної, і колесо змінює напрямок руху, головним чином, внаслідок пружних деформацій шини (рисунок 7.4). Тому при малих силах P_y елементарні поперечні реакції в передній частині контакту менші, ніж у задній, і епюра елементарних поперечних реакцій має форму, близьку до трикутної. Рівнодійна Y, рівна за величиною із силою P_y, зміщена щодо центра контакту (рисунок 7.4) на відстань c_w. Зміщена на величину b_w і дотична реакція дороги (рисунок 7.4). Збільшення сили P_y викликає спочатку лише відповідне збільшення площі епюри (рисунок 7.5) без зміни її форми. При подальшому збільшенні сили P_y елементарні поперечні сили, досягнутий граничного за умовами зчеплення значення, залишаються постійними, і епюра набуває форму трапеції.

У дійсності відбиток повертається на значно менший кут. Силу відносять до більшого кута з метою одержання цілих чисел.

При відведенні шина деформується не тільки в радіальному напрямку, але й у поперечному, внаслідок чого внутрішнє тертя в шині зростає. Крім того, при більших кутах відведення частинки протектора колеса інтенсивно проковзують по дорозі.

У результаті при відведенні сила, необхідна для кочення колеса, збільшується. Для кочення колеса з відведенням $6 – 7^\circ$ вона може бути в кілька разів більша, ніж при коченні без відведення.
Залежність між поперечною реакцією дороги Y і кутом δ_w записується так:

$$Y = K_{yB} \cdot \delta_{yB},$$

де K_{yB} – коефіцієнт опору відведення; він дорівнює бічній силі, вираженої в Н, необхідній для повороту відбитка шини на один радіан. 1 рад. = 57,3°.

Порівняємо керованість автомобілів із твердими й еластичними в поперечному напрямку шинами. Для цього визначимо відстань від поздовжньої осі автомобіля з еластичними і жорсткими шинами до миттєвого центра швидкостей (центра повороту). Центр повороту перебуває в точці O_1 (рисунок 7.6) перетинання перпендикулярів до векторів швидкостей V_A і V_B. Отже, можна записати, що база автомобіля

$$L = R_c \cdot tg(\theta - \delta_A) + R_c \cdot tg\delta_B,$$ \hspace{1cm} (7.5)

де R_c – радіус еластичності шини.

Тому що кути θ, δ_A, і δ_B невеликі, то радіус:

126
Для автомобіля із жорсткими шинами $\delta_A = \delta_B = 0$ і радіус повороту:

$$R = \frac{L}{\tan \theta} \approx \frac{L}{\theta}. \quad (7.7)$$

Відведення коліс приводить до відведення осей і автомобіля в цілому, що істотно відображається на його керованості. Так, внаслідок відведення, що виникає під впливом поперечної складової P_y відцентрової сили, на повороті напрямок руху задньої осі не збігається з поздовжньою віссю автомобіля, відхиляючись від неї у бік дії сили P_y на кут δ_B (рисунок 7.6).

Напрямок руху передньої осі відхиляється від середнього напрямку, у якому орієнтовані напрямні колеса, на кут δ_A. У результаті дійсні центр O_1 і радіус R_1 повороту відрізняються від центра O і радіуса R повороту при русі без відведення.

Зміна кінематики повороту автомобіля, викликана відведенням, залежить співвідношення кутів δ_A і δ_B відведення його осей. Допустимо,
що колеса передньої осі автомобіля мають абсолютну твердість у поперечному напрямку й тому на повороті передня вісь рухається без відведення, а задня з відведенням (кут відведення δ_B). Тоді центр повороту буде розташований у точці O_2 й радіус повороту $R_2 < R_1$. Якщо ж допустити, що абсолютну поперечну твердість мають задні колеса, а передня вісь рухається з кутом відведення δ_A, то центр повороту виявиться в точці O_3, і радіус повороту $R_1 < R_3$.

Розгляд цих крайніх випадків (рисунок 7.6) дозволяє зробити такі висновки про вплив відведення на маневреність автомобіля.

1. В автомобіля з $\delta_B > \delta_A$ радіус кривизни траєкторії руху менший, ніж радіус R, заданий поворотом напрямних коліс, внаслідок чого автомобіль має зайву маневреність.

2. В автомобіля з $\delta_B < \delta_A$ радіус кривизни траєкторії руху більший, ніж радіус R, тобто автомобіль має недостатньою поворотність.

При зайвій маневреності автомобіля полегшується поворот, але одночасно з’являється схильність до курсової нестійкості.

Отже, якщо траекторія руху автомобіля із твердимишинами залежить тільки від кута θ, то в автомобіля з еластичними шинами залежить і від кутів δ_B і δ_A мостів.

Автомобіль із недостатньою маневреністю намагається повернутися у бік дії сили P_y. Однак цьому перешкоджає відцентрова сила, що спрямована у бік, протилежний напрямку дії сили P_y. У результаті в автомобіля з недостатньою маневреністю зберігається прямолінійний напрямок руху.

Автомобіль із еластичними шинами може під впливом поперечної сили (наприклад порив вітру) рухатися криволінійно, навіть якщо керовані колеса перебувають у нейтральному положенні й кут θ дорівнює 0. На автомобіль можуть діяти такі сили, які в деяких умовах руху можуть повести його від заданого напрямку, змістити й навіть перекинути.

Для того, щоб легкові автомобілі мали високу курсову стійкість, вони повинні мати недостатню маневреність. Із цією метою зміщують по можливості вперед центр ваги автомобіля, щоб більша частина відцентрової сили впливало на передню вісь. У шинах передніх коліс зменшують тиск, збільшуючи тим самим їх схильність до бічного відведення.

Для передніх коліс застосовують незалежну двоважільну трапеціподібну підвіску, тоді крен кузова, що відбувається під впливом сили P_y, викликає нахил передніх коліс у бік дії цієї сили, що також збільшує їх відведення.

Кути відведення δ_B і δ_A пропорційні поперечним силам P_{y1} і P_{y2}, які у свою чергу пропорційні квадрату швидкості V: 128
де K_{YB1} і K_{YB2} — коефіцієнти опору відведеню відповідно переднього й заднього мостів, Н/рад.;

M_1 і M_2 — маси, віднесені відповідно до переднього й заднього мостів, кг.

При підвищенні швидкості автомобіля кути відведення також зростають, причому кут δ_B більша кута δ_A. При деякій швидкості V_{yb}, названій критичною, автомобіль починає рухатися криволінійно, хоча його керовані колеса перебувають у нейтральному положенні. Якщо швидкість більша V_{yb}, то різниця $(\delta_B - \delta_A) > L / Re$, і кут θ стає від’ємним. Це означає, що для повороту автомобіля вправо передні колеса потрібно повернути вліво. Отже, автомобіль із зайвою маневреністю втрачає керованість, якщо його швидкість більша критичної V_{yb}.

Визначимо критичну швидкість. Прирівняємо кут θ до нуля й підставимо у формулу різницю кутів δ_1 і δ_2, отриману з виразу (7.8):

$$\delta_B - \delta_A = \left(\frac{M_2}{K_{YB2}} - \frac{M_1}{K_{YB1}} \right) \frac{V^2}{R_e} = \frac{L}{R_e}. \quad (7.9)$$

Звідси критична швидкість відведення коліс (у м/с):

$$V_{yb} = \sqrt{\frac{L}{\frac{M_2}{K_{YB2}} - \frac{M_1}{K_{YB1}}}}. \quad (7.10)$$

В автомобілі з недостатньою або нейтральною поворотністю критична швидкість відсутня, тому що при $\delta_B < \delta_A$ підкореневий вираз від’ємний, і значення швидкості стає сумнівною величиною, а при $\delta_B = \delta_A$ вона дорівнює нескінченності.

Щоб забезпечити недостатню поворотність автомобіля, трохи зменшують тиск повітря в шинах передніх коліс у порівнянні з тиском у шинах задніх коліс і тим самим знижують коефіцієнт K_{YB1}. Крім того, центр ваги автомобіля несуттєво зміщають у бік переднього мосту, що збільшує частину відцентреної сили, яка діє на керовані колеса.
7.3 Поворот задньої осі при крені кузова

Істотний вплив на керованість автомобіля робить поперечний крен кузова, що може викликати поворот осі автомобіля в горизонтальній площині або змінити розвал керованих коліс. На рисунку 7.7 показана схема взаємного положення заднього мосту із залежною ресорною підвіскою й кузова автомобіля, що робить правий поворот.

Рисунок 7.7 – Крен кузова при повороті автомобіля

На рисунку 7.8 показана схема з’єднання передніх кінців ресор з кузовом простим шарніром, а задніх – за допомогою серги. При прогинах ресори задній міст переміщається по дузі mm, причому вісь його хитання

130
розташована біля шарніра. Під дією поперечної сили \(P_{xy} \) кузов автомобіля нахиляється, викликаючи стиск лівих ресор і розпрямлення правих. Ліва ресора, стискаючись, переміщує задній міст назад (у точку \(A \)), а права, розпрямляючись, переміщує його вперед (у точку \(B \)). У результаті задній міст повертається в горизонтальній площині, як показано штриховою лінією. Це сприяє зменшенню радіуса повороту й рівносильно підвищенню схильності автомобіля до зайвої поворотності. З'єднавши передній кінець ресори з кузовом за допомогою серги, а задній – за допомогою простого шарніра, підсилюють недостатню поворотність автомобіля.

7.4 Співвідношення кутів повороту керованих коліс

При повороті автомобіля вектори швидкостей центрів всіх коліс перпендикулярні до радіусів, проведених із центра повороту \(O \) (рис. 7.9).

![Рисунок 7.9 – Співвідношення кутів повороту керованих коліс](image)

В автомобілі, що має тверді в поперечному напрямку шини, вектори швидкостей збігаються із середніми площинами коліс, і центр повороту \(O \) перебуває на продовженні задньої осі. Співвідношення між кутами повороту \(\theta_{h} \) і \(\theta_{v} \) відповідно зовнішнього й внутрішнього коліс визначимо із трикутників \(OAB \) і \(OCD \). Віднімаючи з першої рівності другу, одержуємо:

\[
ctg \theta_{h} - ctg \theta_{v} = \frac{(OC - OA)}{L} = \frac{L_{шк}}{L}, \tag{7.11}
\]

131
де \(L_{ЩК} \) — відстань між центрами шворнів, рівна приблизно колії керованих коліс, м.

З рівності (7.11) треба, щоб колесо, внутрішнє стосовно центра повороту, повинне бути повернене на більший кут, чим зовнішнє. При кутах повороту до 12 – 15° обидва колеса повертаються приблизно на однакові кути, що й дозволяє замість кутів \(\theta_n \) і \(\theta_z \), використовувати в розрахунках середній кут \(\theta \), рівний їхній півсумі, як було зроблено вище.

Рисунок 7.10 – Схема повороту автомобіля з еластичними шинами

Якщо на автомобілі встановлені шини, еластичні в поперечному напрямку, то вектори швидкостей центрів коліс не збігаються із середніми площинами коліс, а утворюють із ними кути відведення.

Центр \(O_1 \) повороту, що перебуває в точці перетинання перпендикулярів до векторів швидкостей, не збігається із центром повороту \(O \) автомобіля, що має тверді шини (рисунок 7.9 і 7.10).

Змінюється також і співвідношення кутів \(\theta \) повороту керованих коліс, які необхідні для їх кочення без бічного ковзання. У цьому випадку вираз (7.11) приймає такий вигляд:

\[
ctg \theta_n - ctg \theta_z = \frac{L_{ЩК} \left(L - \frac{M_2}{K_{У2}} \right)}{L - \left(\frac{M_2}{K_{У2}} - \frac{M_1}{K_{У1}} \right) V^2}. \tag{7.12}
\]
Із зіставлення формул (7.11) і (7.12) випливає, що в автомобілі з еластичними шинами кут θ_H менше відрізняється від кута θ_B, чим в автомобілі з твердими шинами. Це означає, що в автомобілі із твердими шинами кермова трапеція за формою повинна наближатися до прямокутника. Крім того, із збільшенням швидкості руху повинно змінюватися також співвідношення кутів повороту керованих коліс. Однак це може бути досить просто шляхом автоматичного регулювання кермового привода, введення якого досить ускладнює його конструкцію.

7.5 Власні й вимушені коливання керованих коліс

Встановлено, що під час руху автомобіля передні (керовані) колеса автомобілів роблять коливання («танцюють») навколо осі шворня, і не тільки на нерівній дорозі, але й на асфальті. Разом з переднім мостом керовані колеса можуть коливатися у вертикальній площині, а разом з кермовою трапецією - навколо шворнів у горизонтальній площині. Водії говорять: «б'є кермо».

Які причини коливань коліс? Цих причин багато, але головні з них такі:

− неоднаковий опір кочення лівого й правого коліс при русі одного або обох коліс по нерівній дорозі;
− неврівноваженість коліс;
− непогодженість коливань ресор і кермових тяг; гіроскопічна дія колеса.

Вісь шворня не може збігатися із площиною колеса не тільки тому, що шворню наданій бічний нахил для стабілізації колеса, але й через наявність гальма й маточини, які звичайно перешкоджають поглибленню шворня усередину колеса. Тому між точкою перетинання осі шворня з поверхнею дороги й точкою контакту шини з дорогою є відстань. До точки контакту шини прикладена сила опору, що створює момент, який може повернути колесо навколо осі шворня, але, якщо обоє колеса йдуть по рівній дорозі, моменти на обох колесах урівноважуються, тому що колеса зв'язані поперечною тягою. Але якщо, наприклад, ліве колесо йде по бруковому полотні трамвайних шляхів, а праве – по асфальті, або ліве – по асфальті, а праве – по узбіччю, то сила опору, прикладена до одного з коліс, зростає, моменти на внутрішньому і зовнішньому колесах стануть різними, і колесо, що йде по кругляку або узбіччю, прагне повернутися. Тому що зчеплення з нерівною поверхнею дороги мінливе, колесо, утримуване поперечною тягою, увесь час злегка повертається під дією зазначеного моменту, та повертається у вихідне положення. Почнуться коливання колеса навколо шворня.

Колеса автомобіля здаються ідеально круглими, а маса їх – рівномірно розподілена по обхорах. Однак на окружностях майже всіх коліс є точка або сектор, де зосереджена більша маса, чим в інших точках і
секторах. Це може бути місце розташування вентиля шини, стовщення вливка гальмового барабана, місце вулканізації камери або покришки й т. д. Можливе положення, при якому неврівноважені частини двох передніх коліс спрямовані в різні сторони: на лівому колесі – уперед, на правому – назад. Відцентрова сила колеса, викликана його обертанням, найбільш велика саме там, де велика маса. Ця сила створює момент навколо осі шворня, і обида колеса на якусь мить повертають вправо, а потім після здійснення півоберту – уліво. Починаються кутові коливання коліс.

Рисунок 7.11 – Дисбаланс керованих коліс:
а – сили, що діють на неврівноважені колеса;
б – схема виникнення обертального моменту

Кутові коливання керованих коліс неприпустимі, тому що при цьому деталі ходової частини й рульового керування сприймають значні знакомінні динамічні навантаження, а коливання з великою амплітудою приводять до втрати автомобілем керованості.

Найнебезпечнішими є стійкі коливання коліс, тобто такі, які безупинно повторюються (самозбуджуються).

При виникненні поперечних кутових коливань (перекошування переднього мосту) керовані колеса нахиляються. У результаті зміни положення мосту й обертання коліс з'являється гіроскопічний момент, під дією якого керовані колеса повертаються в горизонтальній площині навколо шворнів. При повороті коліс з'являється інший гіроскопічний момент, що діє у вертикальній площині й прагне збільшити нахил коліс.

Основним засобом зменшення кутових коливань коліс є застосування незалежної передньої підвіски. У цьому випадку при переміщеннях керованих коліс не відбувається великого їхнього нахилу. Розглянуті коливання є власними, вони залежать тільки від характеристик пружних елементів, моментів інерції й мас окремих деталей. Крім власних коливань можуть виникати також змушені коливання, викликані періодично діючою збурювальною силою. Така сила може, наприклад, виникнути внаслідок дисбалансу (неврівноваженості) коліс. При обертанні неврівноваженого
колеса напрямною є відцентрова сила P_{yx} (рисунок 7.11, а), яку можна розкласти на вертикальну P_{y} і горизонтальну P_{x} сили. Під дією сил P_{yx} колесо прагне повернутися відносно шворня, а під дією сили P_{yx} – переміститися у вертикальному напрямку. Тому що при коченні колеса напрямку сил P_{yx} і P_{yx} змінюються, то виникає виляння колеса. Найбільш неприємний випадок, коли обидва колеса мають дисбаланс, і неврівноважені ділянки розташовані в одній площині, яка проходить через вісь, але з різних сторін від осі обертання коліс (рисунок 7.11, б). У цьому випадку обертальні моменти, які діють на колеса, додаються, і кутові коливання стають особливо сильними.

![Рисунок 7.12 – З'єднання ресори з рамою спереду простим шарніром](image)

Збурюючі сили з'являються при наїзді колеса на нерівності, які можуть чергуватися через приблизно рівні проміжки шляху. Якщо автомобіль рухається по дорогі з таким покриттям, то при певній швидкості частоти вимушених і власних коливань виявляться однаковими, тобто наступити резонанс, при якому амплітуда коливань різко зростає.

Вплив керованих коліс може виникнути також через подвійний зв'язок цих коліс із кузовом автомобіля (за допомогою кермового привода й підвіски).

При прогинах ресори 2 (рисунок 7.12), з'єднаної з рамою попереду простим шарніром 5, а позаду – сергою 4, балка передньої осі 1 переміщається по дузі MM, причому центр її хитання розташовується біля шарніра 5. Передній кінець поздовжньої рульової тяги 3, що гойдається відносно пальца рульової сошки, описує дугу NN. Криві MM і NN розходяться, тому вертикальні переміщення коліс супроводжуються поворотами їх щодо шворнів, що погіршує керованість автомобіля й підвищує стомлюваність водія.

135
Для зменшення впливів коліс потрібно зблизити трасекторії руху передньої осі й переднього кінця поздовжньої рульової тяги. Із цією метою передній кінець ресори з'єднують із рамою сергою 4, а задній – простим шарніром 5 (рисунок 7.13) або рульовий механізм розташовують попереду передньої осі (рисунок 7.14).

7.6 Стабілізація керованих коліс

Стабілізацією керованих коліс називають їхня властивість зберігати центральне положення й автоматично вертатися до нього при різних впливах дороги.
Розглянемо стабілізацію коліс при виході автомобіля з повороту. Визначимо реакції дороги, що діють на керовані колеса. При повороті автомобіля, що рухається по горизонтальній дорозі, на його передню частину діють відцентрові сили P_{KU1} підресорених і P_{KU1} непідресорених мас, показані на рисунку 7.15. Рівняння моментів всіх сил відносно точки перетинання вертикальної осі з дорогою:

$$ (Z_{1H} - Z_{1B})0,5B = P_{KU} \cdot r + P_{KU1} \cdot (h_{KP1} + h_1) + G_k \cdot S_{KP1}. $$

Нехтуючи малою величиною моменту одержуємо:

$$ (Z_{1H} - Z_{1B})0,5B = c_{y1} \cdot \psi_{KP} + P_{KU1} \cdot (h_{K1} + h_{kp1}), $$

де c_{y1} – жорсткість передньої підвіски (Н · м /рад).
Якщо кузов автомобіля не деформується, то кути крену передньої і задньої його частин рівні між собою. Тоді для задньої частини автомобіля:
\[(Z_{2H} - Z_{2b})0,5B = c_{y2} \cdot \psi_{KP} + P_{KY2} \cdot (h_{K2} + h_{kp2}),\]

де \(c_{y2}\) – кутова твердість задньої підвіски (Н \cdot м/рад).

Збільшення нормальних реакцій, що діють на кожне передне й задне колесо:

\[
\Delta Z_1 = 0,5(Z_{1H} - Z_{1b}) = \frac{c_{y1} \cdot \psi_{KP} + P_{KY1} \cdot (h_{K1} + h_{kp1})}{B},
\]

\[
\Delta Z_2 = (Z_{2H} - Z_{2b})0,5 = \frac{c_{y2} \cdot \psi_{KP} + P_{KY2} \cdot (h_{K2} + h_{kp2})}{B}.
\]

Нормальні реакції дороги, що діють на колеса:

\[
Z_{1H} = 0,5G_1 + \Delta Z_1; Z_{1b} = 0,5G_1 - \Delta Z_1,
\]

\[
Z_{2H} = 0,5G_2 + \Delta Z_2; Z_{2b} = 0,5G_2 - \Delta Z_2.
\]

Сума поперечних реакцій дороги на обоє передніх коліс дорівнює силі \(P_{yi}\). Якщо знехтувати впливом вертикального навантаження, то можна вважати, що твердості в поперечному напрямку в шини обох передніх коліс однакові. Поперечні деформації їх також рівні між собою, тому що колеса жорстко зв'язані передньою віссю. Отже, поперечні сили, сприймані кожним з передніх коліс, а також поперечна реакція дороги визначаються на внутрішньому і зовнішньому колесах:

\[
Y_{1H} \approx Y_{1B} \approx \frac{1}{2P_{y1}}.
\]

Моменти поперечних реакцій дороги \(Y_H\) і \(Y_B\) спрямовані в одну сторону й, додаючись, впливають на стабілізацію керованих коліс.

Характеристиками стабілізації в цьому випадку служить кутова швидкість кермового колеса при поверненні його в нейтральне положення. Стабілізуючий момент викликано поздовжнім і поперечним нахилами шворнів, а також поперечною еластичністю шин.

Вплив розвалу керованих коліс на керованість автомобіля пояснюється явищем відведення. Кут відведення, викликаний розвалом, прямо пропорційний куту розвалу. Кут розвалу коліс, рівний 1°, викликає відведення шини на кут, рівний у середньому 10 –15°.

З вищевикладеного водно, що на стабілізацію керованих коліс в основному впливає поперечна еластичність шини й поздовжній нахил шворня, зміна яких викликає зміну моментів.

Від поперечного нахилу стабілізуючий момент залежить тільки при більших кутах повороту коліс або під час руху по кривих малого радіуса.
Контрольні запитання

1. Назвіть вимірники керованості автомобіля.
2. Яка умова кочення передніх коліс без поперечного ковзання?
3. Що таке відведення колеса, від яких факторів воно залежить і як впливає на керованість автомобіля?
4. Як визначити критичні швидкості автомобіля за умовами керованості й відведення?
5. Як впливають коливання колеса на керованість автомобіля?
6. Що таке стабілізація керованих коліс і від яких факторів вона залежить?
7. Від чого залежить стабілізуючий момент?
8. Яким чином відбувається стабілізація керованих коліс?
9. Які коливання коліс є найнебезпечнішими?
10. До чого призводить дисбаланс керованих коліс?
11. Які причини коливання коліс?
12. Як визначається центр повороту автомобіля з причепом?
13. За допомогою схему повороту автомобіля з еластичними шинами.
14. Що таке недостатня, надлишкова або нейтральна поворотність автомобіля?
15. Як визначається критична швидкість відведення коліс?
16. Порівняйте керованість автомобілів із твердими й еластичними в поперечному напрямку шинами.
17. Що викликає відведення керованих коліс?
18. Зобразіть схему сил, що діють при русі автомобіля на повороті.
19. Як визначається критична швидкість за умовами керованості?
20. Що таке стійкість автомобіля?
21. Які вимірники використовують для оцінювання керованості автомобіля?
22. Що таке коефіцієнт опору відведення?
23. Що таке кутові коливання коліс?
8 ПРОХІДНІСТЬ АВТОМОБІЛЯ

8.1 Прохідність автомобіля і її геометричні показники

Прохідністю автомобіля прийнято називати його здатність рухатися не тільки по гарних (твердих і рівних) дорогах, але й по поганих, нерівних, слизьких або м'яких, а також без доріг, або переборювати окремі перешкоди.

Звичайні автомобілі із задніми ведучими колісьми призначені для руху в основному по шосе; до них висуваються не занадто високі вимоги в частині прохідності. Однак є багато доріг низької якості, яка ще знижується в сезони бездоріжжя, дощів і взимку. Дорожні автомобілі повинні мати можливість пересуватися й при таких умовах.

Промисловість випускає спеціальні автомобілі підвищеної або високої прохідності, у яких всі колеса ведучі. У конструкції й характеристиках цих автомобілів усе підлягає досягненню найкращої прохідності, навіть на шкоду іншим якостям: ваговим показникам, комфортабельності, економічності, зовнішньому вигляду.

Єдиного критерію, що дозволяє повною мірою оцінити прохідність автомобіля, не існує. Прохідність залежить від багатьох факторів, основними з яких є опорно-тягові властивості й геометричні параметри автомобіля, а також конструкції інших агрегатів трансмісії (диференціала, коробки передач і ін.). Швидкість руху автомобілів по бездоріжжю значно нижча, ніж на дорогах із твердим покриттям.

Залежно від прохідності автомобілі умовно поділяють на три групи. В основу класифікації покладена так звана «осьова формула», що складається із двох цифр: перша цифра відповідає загальному числу мостів автомобіля, а друга – числу ведучих мостів. До першої групи відносять автомобілі обмеженої (нормальної) прохідності типів 2×1 і 3×1, до другого – автомобілі підвищеної прохідності типів 2×2, 3×2 і 3×3, до третього - автомобілі високої прохідності типу 4×4, що мають спеціальне компонування.

![Рисунок 8.1 – Геометричні показники прохідності автомобіля](image)
Розглянемо геометричні показники, що характеризують прохідність автомобіля у вертикальній площині.

Просвіт – це відстань h між нижчою точкою автомобіля й площиноко дороги (рисунок 8.1), що характеризує можливість руху автомобіля без дотикання до зосереджених перешкод (каменів, півів і т. п.).

Передній $\alpha_{пр}$ і задній $\beta_{пр}$ кути прохідності, а також передній l_p і задній l_z звиси характеризують прохідність автомобіля по нерівних дорогах при в'їзді на перешкоду або при з'їзді з неї, наприклад, у випадках наїзду на бугор, переїзду через канави й т. п. Для визначення кутів $\alpha_{пр}$ і $\beta_{пр}$ проводять дотичні до зовнішніх окружностей шин передніх і задніх коліс і до найбільш відалених точок передньої й задньої частин автомобіля.

Поздовжній $P_{пр}$ і поперечний $P_{поп}$ радіуси прохідності визначають обриси перешкоди, яку, не зачіпаючи, може подолати автомобіль.

Радіуси прохідності дорівнюють радіусам кіл, проведених відповідно до зовнішніх кіл шин і найбільш низької точки автомобіля, у межах бази ($P_{пр}$) або колії ($P_{поп}$). Чим менший поздовжній і поперечний радіуси прохідності, тим краща прохідність автомобіля. Зменшуючи, наприклад, базу автомобіля, можна зменшити радіус $P_{пр}$.

Нижче наведені радіуси $P_{пр}$ поздовжньої прохідності для деяких типів автомобілів (у м):

- легкові типу 2×1……………………………………3,2 – 8,3
- вантажні типу 2×1……………………………………2,7 – 5,5
- вантажні типу 2×2, 3×2, 3×3…………………………1,9 – 3,6

Рисунок 8.2 – Показники маневреності:
a – одиночного автомобіля; б – тягача з причепом; в – тягача з напівпричепом
Властивість автомобіля повертатися на мінімальній площі називають маневреністю. Ця властивість характеризує прохідність автомобіля в горизонтальній площині.

Показники маневреності автомобіля такі (рисунок 8.2): мінімальний радіус повороту зовнішнього переднього колеса R_H – ширина смуги руху A, що займає автомобіль при повороті й максимальний вихід окремих частин автомобіля за межі траєкторій руху зовнішніх передніх і внутрішнього заднього коліс (відстані a і b, рис. 8.2).

Максимальну ширину смуги руху (u м) визначають за формулою:

$$A = R_H - R_B + a + b,$$

де R_B – мінімальний радіус повороту внутрішнього заднього колеса, м.

Найменший радіус повороту приблизно становить подвоєну довжину бази автомобіля $R_{\text{min}} = 2L$ і звичайно виражається в метрах.

Найбільш маневрені одиночні автомобілі з усіма керованими колісами. При буксуванні причепів маневреність автомобіля трохи погіршується, тому що при поворотах автопоїзда причіп і напівпричіп зміщаються до центра повороту (рис. 8.2, б і в), і ширина смуги руху збільшується. Ширина смуги руху автопоїзда росте зі збільшенням числа буксувальних причепів, бази причепа й довжини дишля.

У всіх автомобілях граничний кут повороту напрямних коліс дорівнює приблизно 30°.

8.2 Тягові й опорно-зчіпні показники прохідності

Тяговими показниками прохідності автомобіля є максимальна сила тяги й динамічний фактор, а опорно-зчіпними - зчіпна вага, тиск коліс на дорогу й коефіцієнт зчеплення.

Погані дороги й бездоріжжя характеризуються насамперед підвищеним опором руху автомобіля. Щоб перебороти цей опір, автомобілі повинні мати більшу силу тяги або більший динамічний фактор, чим автомобілі, експлуатовані на гарних дорогах.

Для збільшення сили тяги й динамічного фактора в трансмісію автомобіля високої прохідності вводять додаткову коробку передач (демультиплікатор). Збільшити динамічний фактор можна також зниженням маси автомобіля, однак це пов'язано зі зменшенням маси перевезеного вантажу.

Зчіпну вагу автомобіля можна підвищити, збільшуючи число ведучих коліс або зміщаючи центр ваги у бік ведучого мосту.

Для легкових і вантажних автомобілів з передніми або задніми ведучими мостами відношення $G_{\text{ВК}} / G_a$ (де $G_{\text{ВК}}$ – вага, що доводиться на ведучі колеса) перебуває в таких межах:

- легкові автомобілі0,45 – 0,5;

142
вантажні автомобілі …………………., 0,65 – 0,75.

Максимальний динамічний фактор \(D \) для зазначених автомобілів перебуває в межах \(0,25 – 0,35 \). Для вантажних автомобілів з усіма ведучими колісами відношення \(G_{BK} / G_a = 1 \), а \(D_{max} = 0,6 – 0,8 \).

Основним показником прохідності автомобіля по дорогах з м'яким покриттям (по нещільному ґрунті, снігу, піску й т. п.) є тиск коліс на дорогу, що визначають за формулою:

\[
P_{\text{уд}} = \frac{G_K}{F_K},
\]

де \(G_K \) – вага автомобіля, сприймана колесом, Н;
\(F_K \) – площа контакту шини з дорогою, м\(^2\).

При русі автомобіля по м'якому вологому ґрунті можливе буксування ведучих коліс внаслідок ковзання або зрізання ґрунту. Зниження тиску коліс на дорогу в цьому випадку може знизити прохідність автомобіля, тому що чим менше тиск, тим гірче ведуче колесо видавлює вологу в контакті шини з опорною поверхнею й раніше починає буксувати. Тому для підвищення прохідності автомобіля по м'яких вологих ґрунтах необхідно збільшувати тиск ведучих коліс на дорогу. Разом з тим для запобігання їхньому буксуванню через зрізання ґрунту бажано зменшити тиск у шинах. Максимальну силу тяги в цьому випадку визначають за формулою:

\[
P_{T_{\text{МАКС}}} = \sigma \cdot F_K,
\]

де \(\sigma \) – напруга зрізу в ґрунті, Па.

Коли напруга зрізу більша напруги, що може витримати ґрунт, відбувається зрізання ґрунту й колесо пробуксовує, утворюючи глибоку колію.

Суперечливі вимоги до величини тиску при русі автомобіля по м'яких вологих ґрунтах можуть бути частково задоволені, якщо використовувати шини, що мають протектор з більшими виступами (ґрунтозацепами). До занурення ґрунтозацепів у ґрунт через малу площу контакту шини з опорою поверхнею тиск колеса великий, у результаті чого волога добре видавлюється з області контакту. Із зануренням колеса в ґрунт збільшується площа ґрунту, що зрізується, та знижується напруга зрізу.

Для підвищення прохідності автомобіля по ріллі, дорозі, що сильно розмокнула, піску або снігу застосовують шини з особливо широким профілем і низьким тиском повітря.

Сила зчеплення колеса з дорогою приблизно пропорційна довжині поверхні контакту. У звичайній автомобільної шини в контакті з дорогою
перебуває близько 8% довжини її окружності, а у шини з регульованим тиском до 16%. Однак шини з регульованим тиском при мінімальному тиску в них мають обмежений пробіг і значні втрати на опір коченню.

Прохідність автомобіля можна підвищити, збільшивши діаметр колеса. Так, на автомобілях високої прохідності встановлюють колеса діаметром 1,5 – 2 м, а на деяких спеціальних автомобілях до 3 м.

При русі по вологих ґрунтах і по слізькій (зледенілій) дорогі прохідність автомобіля лімітується коефіцієнтом зчеплення.

8.3 Вплив конструкції автомобіля на його прохідність

Ведені колеса значно гірше переборюють вертикальні перешкоди, чим ведучі. На рисунку 8.3, а показана схема сил, що діють на ведене переднє колесо автомобіля при подоланні ним вертикальної перешкоди висотою h.

![Рисунок 8.3 – Схема сил, які діють на передні колеса при подоланні ними вертикальної перешкоди: а – ведене колесо; б – ведуче колесо](image)

На колесо діють такі сили: штовхальна сила P_X сприймана переднім колесом від рами автомобіля, і сила реакції перешкоди R.

З умов рівноваги колеса маємо $Z = P_Z; \ X = P_X$. Сили, що діють на колесо, пов'язані між собою рівностями:

$$Z = X \cdot \tan \alpha_1 = P_X \cdot \tan \alpha_1; \ P_X = P_Z \cdot \tan \alpha_1.$$

Визначимо значення $\tan \alpha_1$ і P_X із трикутника АОС:

$$\tan \alpha_1 = \frac{\text{OC}}{\text{AC}} = \frac{r - h}{\sqrt{2r \cdot h - h}}.$$
отже,

\[P_x = \frac{P_Z}{\tan \alpha_1} = P_Z \frac{\sqrt{2rh - h^2}}{r - h}. \]

З отриманої формули видно, що при \(h = r \) сила \(P_x \) стає нескінченно великою, тобто при наїзді ведених передніх коліс на перешкоду висотою \(h = r \) автомобіль не зможе її подолати навіть при досить великій силі тяги на ведучих колесах.

На ведуче переднє колесо, крім сил \(P_x \) і \(P_Z \), діє також тяговий момент \(M_m \), внаслідок чого з'являється сила тяги \(P_T \) (рисунок 8.3, б).

Розкладемо силу \(P_T \) на горизонтальну \(P'_T \) і вертикальну \(P''_T \) складові. У результаті дії сил \(P_x \) і \(P_Z \) виникають реакції \(X \) і \(Z \).

Спроектувавши всі сили на вертикальну й горизонтальну осі, одержимо:

\[P_x = X - P'_T, \]
\[P_Z = Z + P''_T. \]

Виникнення додаткової сили \(P''_T \) дозволяє ведучому колесу переборювати перешкоди висотою, рівною радіусу колеса, а сила \(P'_T \) зменшує складову сили опору руху \(X \).

При утворенні колії під час руху автомобіля по м'яких ґрунтах виникає значний опір коченню коліс. Тому у випадку незбігу колії задніх коліс із колією передніх опір руху більший, ніж при їхньому збігу.

Розбіжність колії може бути як в автомобілів з усіма односкатними колісами, так і в автомобілів з передніми односкатними і задніми двоскатними колісами.

Різниця передньої й задньої колії односкатних коліс не повинна перевищувати 25 – 32% ширини профілю шини. При більшій різниці прохідність автомобіля істотно знижується.

Рух автомобілів типів 3×2 і 3×3 по пересічній місцевості без відриву коліс від ґрунту може бути обмежений максимально припустимим перекосом їхніх осей (рисунок 8.4), що залежить від типу підвіски. При незалежній і балансирній підвісках припустимий перекіс більший. Це сприяє підвищенню прохідності.

Розглянемо вплив диференціала на прохідність автомобіля. При пробуксовці одного з ведучих коліс, наприклад лівого, диференціал розподіляє крутний момент між колісами в такий спосіб:
де M_D – крутний момент на веденій шестерні головної передачі,
M_{TR} – момент тертя в диференціалі, що виникає через відносний рух його деталей.

Рисунок 8.4 – Розташування осей при русі по пересічній місцевості

З погляду прохідності автомобіля тертя в диференціалі є корисним, тому що воно дозволяє передавати більший крутний момент на колесо, яке не буксує, і менший – на те, що буксує, а це сприяє припиненню буксування. Диференціал з малим внутрішнім тертям розподіляє крутний момент по півосях нарівно, причому реалізація крутного моменту обмежується буксуванням того ведучого колеса, що перебуває на грунті з меншим коефіцієнтом зчеплення. Тому при установленні диференціала різко погіршується прохідність автомобіля, тому що величина сили тяги на ведучих колесах визначається колесом, яке має менше зчеплення з дорогою. Внаслідок цього сила тяги може виявитися недостатньою для подолання автомобілем опору руху. Тертя в типовому диференціалі невелике, внаслідок чого сумарна сила тяги збільшується всього лише на 4 – 6%.

У диференціалах підвищеного тертя, черв'ячному і кулачковому, які встановлюють на автомобілі підвищеної й високої прохідності, тертя значно більше, і сила тяги зростає на 10 – 15%.

Перевагою диференціалів, які самоблокуються з муфтами вільного ходу є можливість забезпечення максимальної сили тяги (вимикання
диференціала) при будь-якому співвідношенні коефіцієнтів зчеплення між дорогою й правим і лівим колісами автомобіля. Диференціал, що самоблокується, поліпшує прохідність автомобіля при русі по слизьких ґрунтах, тому що діє автоматично, і при коченні одного з ведучих коліс по дорозі з малим коефіцієнтом зчеплення дозволяє переборювати цю ділянку без втрати автомобілем кінетичної енергії.

На прохідність автомобіля впливає величина тиску повітря в шинах. Автомобілі, обладнані централізованою системою регулювання тиску повітря в шинах, за інших рівних умов мають підвищену прохідність при русі по п'яких ґрунтах.

Для підвищення прохідності автомобілів збільшують число коліс до восьми й десяти, причому звичайно всі колеса роблять ведучими. Прагнення встановити на автомобілі колеса великого діаметра при тій же ширині рами, знизити масу, поліпшити поворотність і прохідність автомобіля привело до створення автомобілів зі складовою («ламкою») рамою.

Ще одна перешкода на поганих дорогах (і бездоріжжі) – брод. Глибина броду, подоланого автомобілем, залежить від висоти розташування частин двигуна, які не повинні перебувати у воді (повітряний фільтр і фільтр системи вентиляції картера, свічі й розподільник запалювання). Автомобілі обмеженої прохідності можуть переборювати неглибокі броди (0,5 – 0,6 м) із твердим дном, а автомобілі підвищеної прохідності при герметизації окремих механізмів – броди глибиною до 1,5 м.

Для подолання широких і глибоких водних перешкод будується спеціальні плаваючі автомобілі (амфібії), які звичайно виготовляють на базі автомобілів типу 2×2 або 3×3.

8.4 Простосування, що підвищують прохідність автомобіля

Для подолання особливо важких ділянок шляхів й підйомів, а також витаскування застряглого автомобіля застосовують лебідки із приводом від коробки відбору потужності. Звичайно в автомобілях малої й середньої вантажопідйомністі лебідку встановлюють у передній частині. Перевагами такого розташування є простота привода лебідки й зручність обслуговування, а недоліками – перевантаження передньої осі автомобіля, зменшення переднього кута прохідності й утруднення пуску двигуна за допомогою пускової рукюкати. Привод барабана лебідки звичайно має черв'ячний редуктор. Для утримання барабана під навантаженням він постачений гальмом.

З метою запобігання елементів лебідки від поломки при перевантаженні привод, що сприймає крутний момент від коробки передач, має обмежник моменту, наприклад штифт, що зрушується, якщо крутний момент стане більшій припустимої величини. Довжина троса лебідки повинна бути 80 – 110м. Середня швидкість намотування троса на
нижчих передачах і при малій кутовій швидкості колінчастого вала двигуна перебуває в межах 0,15 – 0,5 м/с.

В автомобілях великої вантажопідйомності лебідку нерідко встановлюють у середній частині автомобіля.

Перед самовитягуванням автомобіля, обладнаного лебідкою, кінець троса прикріплюють до опори, що може витримати максимальну силу тяги, що розвивається лебідкою. Як опору використовують пні, дерева й інші предмети. При відсутності природних опор використовують різні якірні пристрої, наприклад якір штопорного типу, який втягують у грунт за допомогою лома. Цей якір виготовляють зі сталевого прутка діаметром 10 – 16 мм і довжиною до 1 м. Він може бути використаний для витаскування автомобілів малої вантажопідйомності. Трос лебідки при цьому закріплюють у вушку штопора. У замозаглиблюваного якоря сошник під дією сили тяги, сприйманої тросом і тягою, прагне глибше поринути в грунт.

Для самовитягування можуть бути використані ведучі колеса автомобіля, на маточині яких установлюють лебідки самовитягування. Для цієї мети на ведучих колесах є постійно укріплені на півосях з допомогою шпильок і гайок фланці, на які надівається лебідка із тросом. Троси розміщують і їхні кінці прикріплюють до опор на місцевості. Сумарна сила тяги на тросах самовитягувача більша сили тяги на ведучих колесах автомобіля в стільки разів, у скільки разів радіус колеса більший радіуса барабана, і досягає 70 – 80% сили ваги автомобіля.

У важких дорожніх умовах на автомобілях застосовують ланцюги різних конструкцій, що збільшують силу тяги за умовами зчеплення. Ланцюги закріплюють на ведучих колесах автомобіля.

Найпростішим пристосуванням для збільшення зчеплення коліс із дорогою є кручені ланцюги із замковими пристроями на кінцях. Такі ланцюги за 20 хв можна рівномірно намотати на обіди і шини, а потім замкнути замками.

Ланцюга браслетного типу надягають на обід і шину одного або двох коліс (при двоскатних колесах). На ухвачених сніжних й зледенілих дорогах, а також на розмоклих грунтових дорогах із твердою основою такі ланцюги збільшують силу тяги на 20 – 45% у порівнянні зі звичайнимишинами. На слабких ґрунтах (пухких піщаних і болотистих ґрунтах, сніжній ціліні) установлювати ці ланцюги не треба, тому що зрив ґрунту виступами ланцюгів може привести до швидкого «заривання» коліс у ґрунт, тобто до застрягання автомобіля.

Прохідність автомобіля по глибокому пухкому снігу можна підвищити, використовуючи тракові ланцюги протиковання.

Для тривісних автомобілів використовують гусеничний ланцюг.

Розглянуті вище пристосування необхідно використовувати тільки для тимчасового підвищення прохідності автомобіля на важких ділянках
шляху. При роботі автомобіля на дорогах із твердим покриттям ланцюги потрібно знімати.

Приклад. Чи зможе вантажний автомобіль типу 2×1 перебороти бордюрний камінь висотою \(h = 0,45 \) м, якщо штовхальна сила сприймана передніми колісами \(P_x = 19550 \) Н; вага, що доводиться на передню вісь, \(P_z = 12875 \) Н, а радіус колеса \(r = 0,49 \) м.

Розв’язання. За формулою

\[
P_x = \frac{P_z}{\tan \alpha_1} = P_z \frac{\sqrt{2r \cdot h - h^2}}{r - h}.
\]

Маємо:

\[
19550 = 12875 \frac{\sqrt{2 \cdot 0,49h - h^2}}{0,49 - h}.
\]

Звідки одержуємо \(h = 0,39 \) м.
При даній штовхальній силі автомобіль не переборе бордюрний камінь висотою 0,45 м.

Контрольні запитання

1. Назвіть основні геометричні показники прохідності автомобіля.
2. Яке їхнє значення для автомобілів високої прохідності?
3. Як збільшити прохідність колісних автомобілів по ґрунті?
4. Які конструктивні фактори впливають на прохідність автомобіля?
5. Назвіть спеціальні типи автомобілів високої прохідності.
6. Які вимоги висуваються до прохідності автомобілів?
9 ПЛАВНІСТЬ ХОДУ АВТОМОБІЛЯ

9.1 Коливання кузова й основні вимоги до комфортабельності автомобілів

Плавністю ходу автомобіля називається його здатність рухатися із заданими експлуатаційними швидкостями без значних поштовхів і таких коливань кузова, які могли б зробити шкідливий вплив на пасажирів, що перебувають у кузові транспортного засобу, або вплинути на фізико-технічні параметри вантажу й самого автомобіля в цілому. Під плавністю ходу маємо на увазі відсутність хитувань і тряски або, інакше кажучи, відсутність неприємних і шкідливих коливань. Тому при вивченні плавності ходу автомобіля в основному розглядають коливання його мас (коліс, осей, кузова й інших частин) на нерівностях дороги, тобто при повторюваних переміщеннях цих частин машини.

Плавність ходу залежить від багатьох обставин, але в основному на неї впливають:
- вага автомобіля, тобто вага підресорених і непідресорених мас;
- компонування автомобіля, тобто розташування сидінь і приміщення для вантажу й механізмів;
- довжина бази і ширина колії автомобіля, розташування центра ваги автомобіля й його підресорених мас по довжині й по висоті;
- розміри коліс і шин;
- твердість передньої й задньої підвісок, тертя в системі підвіски, твердість амортизаторів, внутрішній тиск у шинах і їхня твердість;
- розташування осі крену, тобто осі, навколо якої відбувається розгойдування кузова.

У результаті тривалого впливу коливань кузова, що виникають при русі автомобіля, пасажири й водій сильно стомлюються. Коливання кузова відображаються також на схоронності перевезеного вантажу й самого автомобіля. Тому однією з основних вимог, пропонованих до сучасного автомобіля, є підвищення плавності ходу й поліпшення комфортабельності (зручності) їзди.

Дія коливань на організм людини залежить від їх частоти, амплітуди, тривалості дії й напрямку.

Найбільш істотні коливання у вертикальному напрямку (вертикальні коливання) і коливання навколо будь-якого центра (кутові коливання) у поздовжній площині. Розглянемо коливальний процес спочатку на прикладі маятника.

Усім відома найпростіша коливальна система – маятник. Якщо до нього умовно прикріпити олівець і пересувати під ним папір, то маятник викреслить криву. По горизонтальній осі відкладемо час, а по вертикальній осі – відхилення маятника від середнього положення.
Коливання маятника характеризуються періодом цих коливань, їхньою частотою, амплітудою й прискоренням.

Період коливань – це час між двома послідовними поверненнями до того самого положення тіла, що виражається в одиницях часу.

Частота коливань – це число коливань в одиницю часу, тобто величина, зворотна періоду. Якщо період коливань становить, скажемо, 2 с, або 1 / 30 хв, то частота становить 2 (або 0,5) коливання в секунду, або 30 коливань у хвилину (кол/хв).

Амплітуда – це найбільша відстань, на яку при коливаннях відходить тіло від середнього положення. Амплітуда коливань вимірюється в одиницях довжини, наприклад у міліметрах.

Прискорення – це зміна швидкості за одиницю часу. Прискорення визначається нахилом дотичних до кривої коливань. Якщо нахил змінюється поступово, прискорення невелике, якщо спостерігається різка зміна нахилу, прискорення більше. Для правильного уявлення про величину того або іншого прискорення можна порівнювати його із прискоренням сили ваги \(g = 9,81 \text{ м/с}^2 \), тобто із прискоренням, що виникає при вільному падінні тіла на землю без урахування опору повітря.

Визначивши параметри коливального процесу, продовживимо його розгляд. Після того як тіло виведене зі стану спокою або відхилено від сталого напряму руху (наприклад, кузов автомобіля після поштовху, переданого ресорами від коліс при переїзді через нерівність), воно робить вільні коливання, якщо цьому не перешкоджають які-небудь інші сили.

Усякій пружній системі властиві вільні коливання з певною частотою, називаною частотою власних коливань. Частота власних коливань і залежить від маси тіла (або від ваги тіла, діленого на прискорення сили ваги) і від твердості системи й може бути виражена формулою:

\[
 n = \frac{30}{\pi} \sqrt{\frac{c}{m}} = \frac{30}{\pi} \sqrt{\frac{cg}{G}} \text{кол/хв},
\]

де \(m \) – маса коливального тіла в кгс \(\text{c}^2/\text{м} \);

\(G \) – вагу тіла в кгс;

\(\pi \) – число «пі», рівне 3,14;

\(c \) – жорсткість системи підвіски в кгс/см (тобто кількість кгс, необхідна для її прогину на 1 см).

Коливання автомобіля можна розділити на низькочастотні (приблизно до 15 – 18 коливань у секунду) і високочастотні, або коливання вібрації. Частота коливань вимірюється в герцах (Гц). 1Гц – це одне коливання в секунду. Вібраційна чутливість організму становить 15 – 1500 Гц. З високою частотою переважно коливаються непідресорені маси, а з низкою – підресорені маси, розташовані на ресорах, наприклад кузов.

151
У цей час немає єдиної думки про ті межі частот коливань, які відповідають тій або іншій діі на організм людини. Людина не відчуває коливань при ходьбі, тому що з дитинства звикла до частоти, яка становить, залежно від числа кроків у секунду, 1,7 – 2,5 Гц. Прийнято вважати, що частота близько 80 кол/хв (відповідна ходьбі людини зі швидкістю 3 – 4 км/год) сприймається ним безболісно.

Зі збільшенням швидкості коливань плавність ходу автомобіля погіршується. Нижче наведена характеристика коливань, які відчуваються людиною, залежно від швидкості коливань (у м/с):

- невідчутні ..0,035;
- ледь відчутні0,035 – 0,1;
- цілком відчутні0,1 – 0,2;
- сильно відчутні0,2 – 0,3;
- неприємні й дуже неприємні0,3 – 0,4.

Вплив знакозмінних прискорень на організм людини більшою мірою залежить від частоти коливань. Зі збільшенням частоти навіть невеликі прискорення коливань можуть викликати неприємні або хворобливі відчуття (табл. 9.1).

| Таблиця 9.1 – Оцінка плавності ходу втомобіля |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Оцінка | Приблизна характеристика плавності ходу | Число поштовхів на 1 км шляху при прискоренні у вертикальному напрямку, м/с |
| | | 2 | 2–3 | 3–5 | 5–7 | 7–10 | Більше 10 |
| Відмінно | Плавный хід автомобіля | 15–20 | 2–5 | — | — | — | — |
| Добра | Незначні коливання | 25–30 | 12–15 | 1–2 | — | — | — |
| Посередня | Коливання середньої сили, поштовхі | — | 30–40 | 10–12 | 0–1 | — | — |
| Незадовільна | Різні поштовхі | — | — | — | Більше 10 | Більше 1 | — |
| Дуже погана | Безперервні різні поштовхі й сильні коливання, пасажири змушені триматися | — | — | Більше 1 | 2–5 | Більше 1 | — |

Повернемося до розгляду коливань, але вже підросореної частини автомобіля. Для оцінювання процесу коливання тіла, вагою G, з одним

152
ступенем вільності, розташованого на пружині з жорсткістю \(c \), розглянемо рис. 9.2.

Рисунок 9.2 – Коливання тіла з одним ступенем вільності

Коли пружина перебуває у вільному стані, тіло займає положення \(I \). Пружина під дією ваги \(G \) стиснеться, і тіло переміститься в положення \(II \), причому деформація (прогин) пружини \(f_0 \) складе:

\[
f_0 = \frac{G}{c}.
\]

Стиснемо пружину, перемістивши тіло в положення \(III \), і потім відпустимо його. Тіло почне коливатися, переміщаючись вверх і вниз. Якщо із цим тілом зв'язати самописний прилад і протягати з постійною швидкістю стрічку, то на ній буде записана крива коливань тіла. На отриманій кривій відзначимо амплітуду \(A \), рівну найбільшому відхиленню тіла від положення рівноваги, і період, який дорівнює проміжку часу, що відповідає двом найближчим однаковим положенням тіла (наприклад, крайнім верхнім).

Підставивши у вираз \(9.1 \) значення жорсткості \(c \) із формули \(9.2 \), а також виразивши масу тіла через \(G_r / g \) одержимо:

\[
n = \frac{1}{2\pi} \sqrt{\frac{g}{f_0}}.
\]

Коливання кузова автомобіля в основному аналогічні описаному процесу.

З аналізу формули \(9.3 \) видно, що чим більші статичний прогин підвіски \(f_0 \), тим менша частота власних коливань. Звідси зрозуміло, що
м'які підвіски зменшують частоту власних коливань кузова й підвищують комфортабельність їзди в автомобілі.

Рисунок 9.3 – Спрощена схема коливальної системи автомобіля

Кузов автомобіля має шість ступенів свободи й робить досить складні коливання (рисунок 9.3). Для спрощення розрахунків розглядають лише коливання у вертикальній площині; лінійні вздовж осі z – підскакування, і кутові навколо осі Y (αy) – галопування.

Буквами c_1 і c_2 на схемі позначені наведені твердості передньої й задньої підвісок, тобто твердості таких пружних елементів, прогин яких дорівнює сумарним прогинам підвісок і шин, що сприймають те ж навантаження.

Для визначення наведеної твердості $C_{пр}$ розглянемо схему рисунка 9.3, б де зображений вантаж вагою G_p, установлений на пружному елементі підвіски й шини, твердості яких відповідно рівні c_p і $c_{ш}$.

Під дією ваги G_p пружна система деформується, величина деформації дорівнює сумі прогинів пружного елемента підвіски й шини:

$$ f_p = \frac{G_p}{c_p} + \frac{G_p}{c_{ш}}. $$

Разом з тим сумарний прогин цієї системи, який визначають за зміною положення осі колеса (у м), становить:

$$ f_p = \frac{G_p}{c_p}. $$

Отже:
Розв’язавши отриману рівність щодо жорсткості C_{pp}, одержимо:

$$C_{pp} = \frac{C_{p} \cdot C_{шу}}{C_{p} + C_{шу}}. \quad (9.4)$$

Рисунок 9.4 – Схема для визначення положення центра пружності

Жорсткість передньої або задньої підвіски сучасних автомобілів перебуває в межах 20 – 60 кН/м, а твердість шин – у межах 200 – 450 кН/м. Для зменшення вертикальних коливань використовують м’яку підвіску й установлюють амортизатори. Менші значення жорсткостей ставляться до легкових, а більші – до вантажних автомобілів.

Щоб уявити те, яким чином можна зменшити галопування, розглянемо центр пружності системи і його вплив на коливальний процес. Центр пружності системи – це уявна точка, при прикладенні до якої зовнішньої збурювальної сили, виникає тільки лінійне переміщення системи. Для визначення положення центра пружності розглянемо стержень, що опирається на пружні елементи підвіски (рисунок 9.4).

Якщо збурювальна сила, P прикладена не до центра пружності (ЦП), а в іншій точці, то виникають як лінійне, так і кутове переміщення стержня (лінія 1). Якщо сила P прикладена до центра пружності, то відбувається тільки лінійне переміщення стержня (лінія 2). У випадку прикладення сили до (ЦП) прогини підвісок f_1 й f_2 однакові, і, як наслідок, галопування відсутнє.
Знаючи величину x, тобто відстань від центра пружності до центра ваги, легко визначити й інші параметри.

З умови рівноваги стержня відносно центра ваги маємо:

$$R_1 \cdot a - P \cdot X - R_2 \cdot b = 0, \quad (9.5)$$

де R_1 і R_2 – реакції опор.

Розв'язавши зайдене рівняння відносно x, одержимо:

$$X = \frac{R_1 \cdot a - R_2 \cdot b}{P}.$$

Замінимо реакції R_1 і R_2 добутками жорсткості c_1 і c_2 на відповідні прогини f_1 і f_2:

$$R_1 = c_1 \cdot f_1;$$

$$R_2 = c_2 \cdot f_2.$$

Тоді,

$$P = R_1 + R_2 + c_1 \cdot f_1 + c_2 \cdot f_2. \quad (9.6)$$

Підставивши у вираз для визначення відстані x знайдені значення R_1 і R_2 одержимо:

$$X = \frac{c_1 \cdot f_1 \cdot a - c_2 \cdot f_2 \cdot b}{c_1 \cdot f_1 + c_2 \cdot f_2}. \quad (9.7)$$

Але $f_1 = f_2$, отже,

$$X = \frac{c_1 \cdot a - c_2 \cdot b}{c_1 + c_2}. \quad (9.8)$$

Якщо плече $x = 0$ і центр пружності (ЦП) і центр ваги (ЦВ) збігаються один з одним, то:

$$c_1 \cdot a = c_2 \cdot b,$$

$$c_1 = \frac{b}{a}. \quad (9.9)$$

Отже, твердості підвісок необхідно вибирати таким чином, щоб вони були обернено пропорційні відстаням центра ваги від передньої й задньої
осей. Тоді при однакових прогинах передньої й задньої підвісок кузов автомобіля буде переміщатися вертикально без галопування.

Колісна база впливає на схильність автомобіля до галопування, але при цьому не впливає на момент інерції кузова щодо поперечної осі, що проходить через центр підресорених мас.

Існують певні конструктивні особливості, спільна дія яких приводить до зв'язку коливань передніх і задніх підресорених мас. Першочерговий вплив робить взаємозв'язок між розподілом мас і колісною базою.

Нехай у двох автомобілях, що мають однакову довжину, маса силового агрегату m_1, кузова m_3 і вантажу в багажнику m_2 мають однакове розташування (рисунок 9.5). У цьому випадку незалежно від колісної бази розподіл навантаження між передньою й задньою віссю буде однаковим.

Рисунок 9.5 – Вплив колісної бази на схильність до галопування

Показаний на рисунку 9.5 унизу автомобіль має коротку колісну базу й, як наслідок цього, більші передній і задній звиси, ніж автомобіль, показаний зверху. В обох випадках рівна загальна маса $m_k = m_1 + m_2 + m_3$ і момент інерції щодо поперечної осі $m_1a_k^2 = m_2b_k^2$

Однак різними є відстані a_k і b_k між центром ваги (ЦВ) кузова й осями. Тому, хоча рівності й справедливі, але зазі розрізняються наближені значення моментів інерції, які входять в рівняння:
\[m_1 \cdot a_K^2 + m_2 \cdot b_K^2 = I = m_K \cdot \rho_2^2 \] (9.10)

Тому при точному розрахунку схильності автомобіля до поздовжніх кутових коливань треба в порядку оцінки включати значення моменту інерції.

9.2 Способи підвищення плавності ходу автомобіля

Характеристики шин впливають на високочастотні коливання автомобіля. Для поліпшення плавності ходу автомобіля доцільно мати шини можливо меншої жорсткості. Зменшити їх твердість можна зниженням тиску повітря в них і збільшенням ширини профілю.

Застосування незалежної підвіски передніх коліс дозволяє одержати відношення статичних прогинів передньої й задньої підвісок, близьке до одиниці. У результаті при наїзді автомобіля на перешкоду галопування практично не відбувається, тому що кузов переміщається паралельно самому собі.

При застосуванні незалежної підвіски для задніх ведучих коліс значно ускладнюється конструкція привода коліс. Тому, як правило, незалежну підвіску застосовують тільки для передніх коліс.

Як пружний елемент незалежної підвіски використовують пружини, а останнім часом – пневматичні пружні елементи, рідше – торсіони. Пружини й торсіони в порівнянні з листовими ресорами мають менші маси, більшу довговічність, практично не мають внутрішнього тертя, прості у виготовленні і майже не потребують догляду.

Пневматична підвіска забезпечує високу плавність ходу завдяки невеликій твердості й сприятливому характеру зміни пружної характеристики, а також дає можливість регулювання в широких межах твердості підвісок й висоти кузова.

Існує думка, що умови для плавності ходу на маленькому автомобілі важче здійснити, ніж на великому. Захисники такої думки звичайно
приводять на доказ той факт, що плавність ходу навантаженого (тобто більше важкого) автомобіля, як правило, краще плавністі ходу ненавантаженого. Але це доводить лише те, що плавність ходу поліпшується зі збільшенням ваги підресорених мас, точніше зі збільшенням відношення ваги підресорених мас до ваги непідресорених. Адже коли збільшується навантаження автомобіля, збільшення його ваги відбувається винятково за рахунок підресорених мас.

Якщо вагу, рівну навантаженню, додати до непідресорених мас (осей, коліс і деталей підвіски), плавність ходу не тільки не покращиться, але помітно погіршиться. Вантажні автомобілі значно більш важкі, ніж легкові, але їхня плавність ходу гірша. Іншим прикладом можуть служити сучасні малолітражні автомобілі; їзда в їхньому кузові набагато спокійніша, ніж у деяких «більших» автомобілях старих випусків.

Контрольні запитання

1. Чим вимірюється плавність ходу автомобіля?
2. Які види коливань автомобіля?
3. Що таке центр пружності системи?
4. Як впливають типи підвісок на плавність ходу автомобіля?
5. Які переваги незалежної підвіски?
6. Від чого залежить плавність ходу автомобіля?
7. Які бувають коливання автомобіля?
8. Що таке вібраційна чутливість організму?
9. Зобразіть схему коливання тіла з одним ступенем свободи.
10. Зобразіть спрощену схему коливальної системи автомобіля.
11. Скільки ступенів свободи має кузов автомобіля?
12. Що таке приведена жорсткість підвіски?
13. В яких межах знаходиться жорсткість підвіски автомобіля та шини?
14. Що таке центр пружності системи?
15. Як визначається положення центра пружності автомобіля?
16. Що таке галопування?
17. Назвіть способи підвищення плавності ходу автомобіля.

159
ЛІТЕРАТУРА

ГЛОСАРІЙ

Автомобіль (car) – механічний транспортний засіб на 3, 4 чи більше колесах, призначений для перевезення людей, вантажів або спеціального обладнання.

Автомобільний поїзд, автопоїзд (Road Train, Trailer) – автомобіль-тягач з одним або декількома причепами або напівпричепами (для перевезення пасажирів – автобус з причепом). В порівнянні з одиночними автомобілями автопоїзди забезпечують велику вантажопідйомність із збереженням достатніх маневренних властивостей, поперечних і поздовжніх габаритів і питомого тиску на дорогу, верхні межі якого обмежені відповідними нормами.

Амортизатор (shock absorber) – пристрій для пом'якшення ударів в конструкціях машин для захисту від струсів і великих навантажень. Включається між тілом, яке передає ударне навантаження, і тілом, що захищається. Конструкції амртизорів грунтуються на пружних властивостях твердих тіл (ресори, торсіони, гумові елементи), рідин (гідравлічні пружини, основані на явищах стискування рідин) і газів (пневматичні пружини). У підресорюванні сучасних транспортних машин, призначених для великих швидкостей, амортизатор завжди застосовується спільно з демпфером.

Барабанні гальні (drum brakes) – конструкція являє собою прикріплені до колеса барабан, в якому розміщені гальмові колодки. Для уповільнення гальмові колодки притискаються до внутрішньої частини барабана. За ефективністю значно поступаються дисковим гальмам.

Гальмівний шлях (braking distance) – відстань, пройдена транспортною машиною від початку гальмування до повної зупинки. Залежить від ефективності гальмових механізмів, часу спрацьовування привода й гальм, швидкості руху, сили зчеплення коліс із опорною поверхнею.

Кліренс (ground clearance) – відстань від рівної поверхні, на якій перебуває автомобіль, до найнижчої його точки (не рахуєчи коліс).

Колесо (wheel) – диск або обід зі спицями, що обертається на осі. У сучасних машинах застосовується для передачі або перетворення обертового руху, а також як рушій.

Колісна база (wheelbase) – відстань між передньою та задньою віссю автомобіля. Простіше кажучи, це відстань від центра переднього до центра заднього колеса.

Незалежна підвіска (independent suspension) – система, при якій кожне колесо підвішене до рами або основи кузова незалежні одне від одного. Незалежні підвіски застосовують головним чином для передньої осі легкових автомобілів; значно рідше їх використовують для обох осей легкових автомобілів, а також для всіх осей вантажних автомобілів.
Підвіска автомобіля (car suspension) – система механізмів і деталей з’єднання опорних елементів (коліс, катків) з корпусом машини, призначена для відключення динамічних навантажень і забезпечення рівномірного розподілу їх на опорні елементи при русі. Розрізняють жорсткі, напівжорсткі і м’які підвіски.

Плечова зона (upper zone) – частина протектора, розташована між біговою доріжкою й боковою шини. Вона збільшує бічну твердість шини, сприймає бічні навантаження, переданих біговою доріжкою й поліпшуює з’єднання протектора з каркасом.

Пневматична шина (tyre) – пружна оболонка, яка встановлюється на ободі колеса транспортного засобу і заповнюється повітрям або іншим газом під тиском. В залежності від способу герметизації пневматичні шини виготовляються в камерному або безкамерному виконанні.

Повна маса (gross weight) – споряджена маса автомобіля разом із повним багажником і максимальною кількістю пасажирів (передбачених конструкцією).

Протектор (protector) – зовнішня частина шини, за допомогою якої колесо тримається за дорогу.

Пружина (spring) – пружний елемент, використовуваний для амортизації поштовхів і ударів, віброізоляції, створення заданих початкових зусиль, акумуляції механічної енергії.

Рамний кузов (frame body) – кузов, що кріпиться до ходової частини автомобіля за допомогою рами.

Седан (sedan) – тип кузова, який має триоб’ємну форму й відокремлений від салона багажник. У такому кузові кришка багажника не може відкриватися разом із заднім склом.

Споряджена маса (curb weight) – маса повністю заправленого й готового до експлуатації автомобіля, але без вантажу та пасажирів (включаючи водія).

Торсіон (torsion) – стрижень, що працює на кручення, виконує функції пружини. Виготовляється з термічно обробленої сталі, що допускає велику напругу кручення і значні кути закручування (десятки градусів).

Фургон (van) – тип кузова, який має закритий вантажний відсік, відокремлений від сала жорсткою перегородкою.
Автомобілі
Теорія експлуатаційних властивостей

Навчальний посібник

Редактор В. Дружиніна

Оригінал-макет підготовлено В. Огневим