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FOR CREATION OF SELF-LEARNING EQUIVALENT-CONVOLUTIONAL
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In the paper, we consider the urgent need to create highly efficient hardware accelerators for machine learning
algorithms, including convolutional and deep neural networks (CNN and DNNS), for associative memory models, clustering,
and pattern recognition. We show a brief overview of our related works the advantages of the equivalent models (EM) for
describing and designing bio-inspired systems. The capacity of NN on the basis of EM and of its modifications is in several
times quantity of neurons. Such neural paradigms are very perspective for processing, clustering, recognition, storing large
size, strongly correlated, highly noised images and creating of uncontrolled learning machine. And since the basic
operational functional nodes of EM are such vector-matrix or matrix-tensor procedures with continuous-logical operations
as: normalized vector operations "equivalence", "nonequivalence”, and etc. , we consider in this paper new conceptual
approaches to the design of full-scale arrays of such neuron-equivalentors (NEs) with extended functionality, including
different activation functions. Our approach is based on the use of analog and mixed (with special coding) methods for
implementing the required operations, building NEs (with number of synapsis from 8 up to 128 and more) and their base
cells, nodes based on photosensitive elements and CMOS current mirrors. Simulation results show that the efficiency of NEs
relative to the energy intensity is estimated at a value of not less than 1012 an. op. / sec on W and can be increased. The
results confirm the correctness of the concept and the possibility of creating NE and MIMO structures on their basis.

Keywords: Neuron-Equivalentor, Hardware Accelerator, Self-Learning Equivalent-Convolutional Neural Structures,
continuous logic, current mirror.

B. I'. KPACUJIEHKO, H. I1. FOPYYK
BiHHUNBKHI HAI[iOHANBHUN arpapHUil yHIBEpPCHTET
. B. HIKITOBHUY

BiHHUIBKHI HAL[iOHATBHUH TEXHIYHHN YHIBEPCUTET

MPOEKTYBAHHS TA MOJEJIOBAHHSI MACUBY HEMPOH-EKBIBAJIEHTOPIB
JJISI CTBOPEHHSI CAMOHABYAJIBHNX EKBIBAJIEHTHO-3TOPTKOBUX HEHPOHHUX CTPYKTYP (CHE3HC)

Y cmammi mu poszasidaemo 2ocmpy HeobXiOHicmb CMBOpeHHs BUCOKOeeKMUBHUX anapamuuxX nNpuckoprosadis 04s
as20pummie MAWUHHO20 HABYAHHMS, K/ANOYANOYU 320pMK06I | 2au6boki Heliponni mepexci (3HM i I'3HM), das modeseii acoyiamugHoi
nam'smi, kaacmepusayii ma po3nizHasaHHsi 06pasie. Mu nokasyeMo 8 KOPOMKOMY 02415101 HAWUX No8'si3aHux po6im nepegazu
ekeisasneHmHicmHux modesetl (EM) das onucy i npoekmysanHs 6io-HamxHeHHUX cucmem. Emuicms HM Ha ocHosi EM i ii modugpikayiii e
Ki/nbKa pasie nepesuwye Kiabkicmbs HelipoHis. Taki HelipoHHI napaduamu dyxce nepcneKmusHi 0451 06po6Ku, Kaacmepusayii, po3ni3Hag8aHHs,
36epieaHHsl CUIbHO KOPEAbOBAHUX I 3aWYMAEHUX 306paxceHb Ha8iMmb 8eAUK020 PO3MIpY i 0151 CMBOPEeHHS1 HEKOHMPO.1b08AHOI HABYANbHOT
MmawuHu. bazogumu onepayitinumu gyHkyioHanrvHumu gyziramu EM e eekmopHo-mampuuni a6o mampuvHo-meH30pHi npoyedypu 3
maxkumu 6e3nepepeHo-102iMHUMU Onepayiamu, SK: HOpMaaizoeaHi eekmopHi onepayii «eksigaseHmHicmby, «HeekgigaseHmHuicmvy». Mu
po3aas10aemo 8 Yiti cmammi Ho8i KoHyenmyaavHi nioxodu 0o cmeopeHHs: NOBHOMACUWMAGHUX MACUBI8 MakuXx HelipoH-ekgieaseHmopie
(HE) 3 poswupeHumu @YHKYIOHANbHUMU MONCAUBOCMSAMY, 6KAlovYalovu pisHi @ynkyii akmueayii. Haw nioxid 3acHoeaHuli Ha
BUKOpPUCMAHHI aHa/0208ux i 3MiwaHux (i3 cneyianbHUM KodyesaHHsIM) Memodie peanizayii HeobXxidHUX onepayiil, ho6ydosu mepedxrcesux
esnemeHmis (3 yucsaom cuxancie 8id 8 do 128 i 6invwe) i ix 6azosux esemenmis, gy3aie ma Mody/1i8 HA OCHOBI CBIMAOYYMAUBUX eeMeHMi8 |
sid6usayie cmpymy (cmpymosux dsepkasn) Ha CMOS. Pezysomamu Mode/108aHHSI NOKA3ylomMb, ujo 8I0HOCHA eHepzoedekmusHicms HE
OYIHIEMbCA 8eNUYUHOW He MeHwe 10 * 12 aH. op. / cek Ha Bm i modce 6ymu 36inbweHa. Pe3ysbmamu nidmeepaxcyoms npasuibHicms
KoHyenyii i moxcaugicme cmeopeHHs Ha ix ocHosi cmpykmyp HE i CHE3HC.

Knatouosi csno8a: HellpoH-eKksisaseHmMop, anapamHuill npuckoprosay, camMoHag4a/bHi eKeisa/ieHmHiCmHo-320pmko8i HelipoHHI
CMpyKmypu, HenepepeHda /102ika, cmpymoae d3epKaso.

Introduction

For many applications applied in the creation of biometric systems, machine vision systems are necessary
to solve the problem of object recognition in images. The basis of most known methods and algorithms is to
compare two different images of the same object or its fragment. Discriminant measure of the mutual alignment
reference fragment with the current image, the coordinate offset is often a mutual two-dimensional correlation
function. In paper [1-3] it was shown, that to improve accuracy and probability indicators with strong correlation
noise-damaged image, it is desirable to use recognition methods based on mutual equivalently 2D spatial functions,
nonlinear transformations and adaptive-correlation weighting. For the recognition and clustering of images, various
models of neural networks are also used. Models of equivalence (EM) of auto-associative memory (AAM) and
hetero-associative memory (HAM) were proposed [2—6]. Investigations of AAM and HAM using EMs have shown,
that these advanced equivalence models allow the recognition of vectors with 1024-4096 components and a
significant percentage (up to 25-30 %) of damage, at a network power that is 3 to 4 times higher than the number of
neurons [3, 5, 6]. For of analysis and recognition should be solved the problem of clustering of objects. This
previous clustering allows organizing proper automated grouping data, to cluster analysis, to evaluate on the basis of
many signs each cluster, put a class label and improved subsequent learning procedures and classification. At the
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same time, knowing the significant advantages of EM when creating on their basis improved neural networks (NNs),
multiport AAM and HAM, there was a suggestion about the possibility of modifying EM and MHAM for parallel
clustered image analysis [6—8]. At the same time, an urgent task is to study a more general, spatially invariant (SI)
equivalence models (SI EMs) that is more invariant to spatial displacements and the possibilities of its application
for image clustering [7-9]. And the latter are basic operations in the most promising paradigms of convolutional
neural networks (CNN) with deep learning [8, 9]. In our previous paper [8] questions of new possible ways of self-
learning in such advanced models, explaining some important fundamental concepts of diverse associative
recognition and understand the principles of the functioning of biological NN structures, perform modeling of
processing processes, training and extraction of regularities in such models, and propose their implementation were
considered. These questions were considered for binary-maps of multi-level images.

In paper [9] we showed that the self-learning concept works with directly multi-level images without
processing of the binary-maps. In SI EM, we compute the spatially dependent normalized equivalence functions
(SD_NEF) whose elements will correspond to the value of the normalized equivalence of the fragment of the input
image X and one of the selected fragments from the training matrix. For implementation SLECNS [9], we need
certain new or modified known devices capable of calculating normalized spatial equivalence functions (NSEqFs)
with the necessary speed and performance. Such specialized devices by authors of papers were previously called
"image equivalentor". There are known connections of equivalent functions with correlation functions that make it
possible to calculate NSEqFs. Thus, the image equivalentor is itself a doubled correlator or a doubled convolver. In
paper [8, 9] we showed models for the recognition and clustering of images that combine the process of recognition
with the learning process. For all known convolutional neural networks, as for our equivalence models, it is
necessary to calculate the convolution of the current fragment of the image in each layer with a large number of
templates which are used, selected or formed during the learning process. But, as studies show, large images require
a large number of filters to process images, and the size of the filters can also be large. Therefore, the problem of
increasing the computing performance of hardware implementations of such CNNs and SLECNS is acute. It should
be noted that the accuracy of calculations, especially for large filter sizes and a large dynamic range (8 bits) of
halftone images, is required to make the correct decisions when determining neuron-winners. The last decade was
marked by the activation of works aimed at the creation of specialized neural accelerators, which compute the
function of comparing two 2D arrays and using the operations of multiplication and addition-accumulation. But, as
our experiments show, our models allow not only creating advanced SLECNS, but also faster and more compact
arrays of equivalentor-neurons, which are so necessary as accelerators.

Formulation of the problem and goal of the work

Therefore, in this paper, using our approaches to designing one-dimensional neuron-equivalentors, we
consider the structure of the neuron-equivalentors, generalized for processing 2D arrays.

Presentation of the main material, research results
Brief review and background of mathematical operators, which are implemented by neurons.
Almost all concepts, models, structures of neural networks use informational mathematical models of
neurons, which are reduced to the presence of two basic mathematical components-operators: the first component

computes a function from two vectors X and W, where X — vector of input signals of a neuron, W — vector of
weights, and the second component corresponds to some nonlinear transformation of the output value of the first
component to the output signal. The input operator can be implemented as the following expressions [10-13].

N
— sum of the self-weighted inputs f(Y’W) = Z WX,;
i=1
— maximal value of the self-weighted inputs f (Y’W) = max(w,x,);

N

— product of the self-weighted inputs FOXW) = I—l Wox.:
i=1

— minimum value of the self-weighted inputs f (ZW) = min(w.x;);
But lately the set of such operators broadened substantially [10-13]. For example appearance of equivalency
models of neural networks which possess some advantages, requires a calculation and such below resulted

operators:
—normalized equivalence of vectors:

3l N N
0 FOEW) =e(XW) =3 (5 Bw) = (v +(1=x) (1)

b) £ (X.W) =%Z<l—lxi ) = (X W)

SN N 0 N - - ~
o) f(X,W) :%Z(x,. ~w,) :%Z(xi Ow, Ox;:Ow;) =e(X,W);
i=1

i=1
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—normalized nonequivalence of vectors:

. |:| N 1 N 1 N _ _
a) f(X,W):ne(X,W):FZ(xi mw,.):WZ(x,. Wit Xi W)
i=1 i=1

+

D N N — —
b) F(X.W)=ne(X.W) :%lei —wi|:%2(l—xi Ow, = x;Owi);
i=1 i=1

a

—_— 1 & o ~ . 1 & — —

FXW)=—>"(x, = w)=ne(X.W)=—>"((x, Ow) O(x: Owy)
<) N3 N3 )

Because we consider how to realize these input operators. We examine a case, when components of vectors

X and W are normalized, i. e. unipolar coded. In our previous works [3]. we used just normalized equivalences
(nonequivalence), but time-pulse coding was used for analog signals. The simulation was performed only for small
dimensions of the input vectors with a calculation time of 100 ps. In addition, the activation functions were not
simulated and shown. The positive aspect of that work was the use of a modular principle that allowed the
calculation of the operator of the normalized equivalence of a vector to the calculation of normalized equivalent sub-
vectors and their output signals. In paper [14] the mathematical basis of creation of neurons of equivalents
calculating the function of normalized equivalence is described in detail, using the modular principle. It shows that
all algorithmic procedures in the equivalence paradigm of neural networks and hetero-associative memory on their
basis are reduced to the calculation of normalized equivalences from two vectors or matrices, and the elemental
nonlinear transformations of transformations that correspond to the activation functions, and for the above
equivalence models of neural networks, reduce to the calculation of auto-equivalences (auto-non-equivalences).
Consider the structural design, using the approaches in [14].

Let vectors X and w have dimension NV = K LQ | For every i-th ((01+k) subvector Yi and [ subvector

—- 1 g -
o fi(xi’wi)=_Z(xi[~""}[)=ei(xi’wi)
i » the dimension of which equal to 0 , it is possible to calculate 075 . Then it
R . 1 & -
) ) f(x’w)z_z.f;'('xi’wi):_Z(f;‘~1):e(fk’lk) 7 1
is possible to show that: k= k3 , where f k and % are vectors of K

dimension, the components of which are equal fz and “1” accordingly. Like: S (x,w) =ne(f k,ok) . Hence, for
increase of vectors dimension, given at inputs of our complementary-dual NE (CDNE), it is possible to use base
analogical CDNE of less dimension. Easily to see that by changing the tuning vector the second stage can works as
neuron-equivalentor (NEq), neuron-nonequivalentor (NnEq) or dual neuron-equivalentor (DNEq). If an element has

two outputs, thus on the first output S or €, and on the second — S or n;, by changing tuning vector at the same
input vectors on the first output in place of S it will be f (n; ), and on the second — f (; ).

It substantially extends functional possibilities of such base CDNE, especially at their association in more
difficult hierarchical structures. It consists of N blocks which execute a scalar operation ( f ) nonequivalence of i-th
component of vectors X and it , for example: (i # Wiy =X =W =max(x;, w;) ~min(x;, W;) Tt is needed to

have a block of subtraction of currents and adder-normalizer only, whether adders and block of subtraction. That we
realize circuit after formulas:

” N z N max(x, w,)—min(x, w,
ne(x, w) :izmaxi(xi,wi)_izmjni(xi,wi) :Z( (xw) (x; ,))
N i=1 N i=1 =1 N . (1)
To realize the operation of for e (x’ w) it is possible also to use formulas:
Py 1N . 1 N 1 I N
e(x,w)=— 3 (I+min; (x;,w;))—— ¥ max;(x;,w;)=1—— ¥ max;+— 3 min;
N Ni=l Ni=l o NiEL @

We will note that on a current mirror more easily to execute these operations of addition or subtraction of
currents. The experiments in work [9] show great promise of the proposed methods and models of self-learning-
recognition of images, including multilevel images. But for their work in real time, taking into account the large
requirements for performance and the amount of calculations, it is necessary to have appropriate high-performance
and energy-efficient arrays with parallel principles of operation and picture input-outputs, whose design was
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partially considered in papers [15-22]. And here we will offer a new structure. For all known CNNs, as for our
equivalence models, it is necessary to calculate the convolution of the current fragment of the image in each layer
with a large number of templates that are used, which are a set of standards that are selected or formed during the
learning process. But, as studies show, large images require a large number of filters to process images, and the size
of the filters can also be large.

Therefore, the problem of increasing the computing performance of hardware implementations of such
CNNs is acute. It should be noted that the accuracy of calculations, especially for large filter sizes and a large
dynamic range of halftone images, is required to make the correct decisions when determining neuron-winners. The
last decade was marked by the activation of works aimed at the creation of accelerators, which compute the function
of comparing two 2D arrays and using the operations of multiplication and addition-accumulation.

Unlike most papers, in our works we use those functions of normalized equivalence in which there is no
multiplication operation. But as our experiments show, equivalent models also allow the construction of equivalence
convolutional structures and self-learning systems. Therefore, in this paper, using our approaches to designing one-
dimensional neuron-equivalents, we consider the structure of the neuron-equivalent, generalized for processing 2D
arrays.

The Fig. 1 shows the block diagram of the main unit of SLECNS. The matrix X forms a certain number of
convolutions in the form of matrices e using a set of defined filters-templates W which, in our case, are multilevel
values, in contrast to the binary ones we used earlier. Thus, we compare each filter with a current fragment in the
matrix X. As a measure of the similarity of the fragment of the matrix X and the filter the equivalent measures of
proximity or other measures such as a histogram can be used.

Thus, we compare for each filter similar fragments in the matrix. Fig. 1 shows the new structure of our
proposed system, allowing parallel, with a high rate, equal to the speed of selection from the processed image of its
shifted current fragment, to compute a set of stream components (elements) immediately one-cycle all the
equivalents convolutions of the current fragment with the corresponding filters. It consists of a micro-display
dynamically displaying current fragments, an optical node in the form of a micro-lens array (MLA) with optical
lenses (not shown!) and a 2D array of neuron-equivalentors (NEqs) with optical inputs. Each NEq is implemented
in a modular hierarchical manner and can consist of similar smaller sub-pixel, also 2D type, base nodes.

The NEq has a matrix (ruler) of photo-detectors, on which a halftone image of the fragment is projected
through the microlens array (MLA), and the number of electrical analog inputs equal to the number (number) of
photo-detectors, to which by means of any known method: from the sample and hold device (SHD), from the analog
memory, with subsequent conversion using a set of DACs, etc. the filter components are fed. These components are
represented in the form of microcurrents. Each NEq has its own filter mask from a set of filters selected or formed
by training.

Thus, at the inputs of each NEq we have two arrays (vectors) of analog currents representing the compared
current fragment and the corresponding filter-standard, and the output of the NEq is an analog current signal,
nonlinearly transformed in accordance with the activation function and representing some measure of their
similarity, proximity). In our case, this measure is a normalized equivalence (eq) and nonequivalence (neq), we can
calculate them by averaging the component maxima and minima currents.

Therefore, the base node, see Fig. 2, contains N two input counters of maximum and minimum currents and
one normalizer on current mirrors, which forms two output signals corresponding to normalized eq and neq from
two N-component vectors.

The basic unit for calculating the normalized Eq (NEq) by averaging the component maximal and minimal
of currents on the basis of current mirrors and the schemes of the limited difference is shown in Fig. 2. Sources of
analog currents are shown as current generators for modeling in OrCAD. The dimension of the vector inputs is 9,
which corresponds to the filter size 3%3. The results of modeling this basic unit with a nonlinear transformation are
shown in Fig. 3-5, 7.

At the instants of 11-12us and 13-14 ps, the output signals of equivalence and nonequivalence testify to
the coincidence of the input vectors (Fig. 3-5). The results of modeling the base unit for the filter size 3%3 (with 9
inputs) showed, that processing time is from 1us to 0.1us for currents Imax = SuA, consumption power is from
200uW to 50puW.

In addition to simulating the base node on 9 inputs, we additionally synthesized a neuron-equivalentor
circuit having 8 such nodes, each of which compares 8 input vectors, resulting in a neural element circuit having 2
vector inputs of 64 dimensions. For a non-linear transformation, we used a node whose circuit is shown in Fig. 6,
which realizes a piecewise linear approximation of the power-law activation function (auto-equivalence). The results
of simulating such 64 input NE with nonlinear conversion of the output signal-response for linearly rising (falling)
currents with a period T = 2.5us are shown in Fig. 8, 10.

In the same place, the results of modeling the formation processes of linear and nonlinear normalized neq
are shown. Experiments have shown that such a NE comparing two 64-component vectors from current signals
provides good time characteristics and has a total power consumption of approximately 2-3 mW, a low supply
voltage, contains less than 1000 CMOS transistors which execute summation, limited subtraction and multiplication
of analog currents on current mirrors.

By simple build-up of units and additional inputs of level-matching (Fig. 9) normalizers, our trip allows us
to increase the number of inputs and increase the dimension of the filters.
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Fig. 1. The structure of the basic unit of the SLECNS, which explains the principle of its functioning;
Figure explains the principles of learning neural network model based on the multi-port memory to find centroid cluster elements (left).
The system structure that uses an array of neuron-equivalentors (right)
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Fig. 2. The basic unit for calculating the normalized Eq (NEq) by averaging
the component peak and minima of currents on the basis of current mirrors and the schemes of the limited difference
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2us hus fus Bus 16us 12us 14us  16us
o -ID(Block_4.01) - ID(Block 4.Q4)
Tine

bus Bus 1fus 12us 14us  16us
o I(R1) + I{R2}

Tine

Fig. 3. The results of modeling the base unit for the filter size 3x3 and for current Imax=5puA, T=1ps.
Green shows all 9 input signals, yellow — the signals of the reference filter.
Below — the result: green — equivalence, yellow — nonequivalence

s AUB(-W{U1)) o -W(U1)

o IS(Block_8.01) - ID{Block_8.04) o IS(Block_8.01)

12us
o I{R1} » I{R2)

Fig. 4. The results of modeling the base unit for the filter size 3x3 (with 9 inputs):
on the left for current Imax=5pA, T=0.5us, V=1.8V, P=200uW.
On the right for current Imax=2.5uA, T=1pus, P=100uW.
Red line shows power consumption, input (green) and reference (lilac) signals are showed
on the midle graphs, on the bottom graph normalized eq (green) and neq (yellow) are showed
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o IS(Block_8.01)
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Fig. 5. The results of modeling the base unit for the filter size 3x3: (with 9 inputs)
on the left for current Imax = 1.25pA, T=1ps, V=1.8V, P=50uW.
On the right for current Imax = 0.25pA, T=1ps, P=10uW.

Red line shows power consumption, input (green) and reference (lilac) signals are showed

on the middle graphs, on the bottom graph normalized eq (green) and neq (yellow) are showed
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Fig. 6. Activation function circuit on current mirrors

In addition, on the basis of combining nine 9-input NEs, NE was designed and modeled for two 81-

component inputs, i.e. for convolution by a 9 x 9 filter. It has 2 bus analog inputs. Scheme of 81-input NE with dual
outputs is shown in Fig. 11, and the results of its modeling in Fig. 12 and 13.

o IS(Block_8.01) -

s I(R1}

us
I{R2)

ID{Block_8.Q4)

12us

o 1S(Block_8.01) - ID{Block_8.04)

8s
o I(R1) - I{R2)

Fig. 7. The results of modeling the base unit for the filter size 3x3 (with 9 inputs):
on the left for current Imax=5pA, T=0.5pus, V=1.8V, P=200uW.
On the right for current Imax=2.5pA, T=1ps, P=100uW.

Red line shows power consumption, input (green) and reference (lilac) signals are showed

on the middle graphs, on the bottom graph normalized eq (green) and neq (yellow) are showed
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o ID(8U_Block.Hornm_8.013)

o -ID(Activation.Q1) (Activation_1.Q1)

5 [
a I(R1) - I(R2) o -ID{Activation.Q1) « I(R1)

Fig. 8. The results of modeling the NE for the filter size 88 and for current Imax=5pA,
and a linearly rising (falling) currents with a period T=2.5us.
On the left two upper signals (pink — maximum, blue — minimum of two input currents),
green — equivalent signal, yellow — nonequivalence, below the signals after their nonlinear conversion;
on the right, the two upper signals are the maximum and minimum,
the lower the blue is the normalized equivalence, the yellow is the nonlinear normalized equivalence

T TR T

+———<">EQs

IN_MIN <> 4 s . . . <_>NEQ_S
il QE QE QEJ Q16 Jﬂo\j EQEJOE Q@0 5 (”

IN_MAX

n

%

Fig. 9. Circuit of calculator of normalized eq (in the diagram EQ_S)
and neq (in the diagram NEQ _8S) with dividers of 8 (for 4 and 2)
based on current mirrors (20 transistors when simulating a really 12)
to level the level when building NEs with 64 component inputs based on 8 basic units

(i

2us Bu bus us 8us
o -ID(Activatien_1.01) - I(R2) o I{R1) - -ID(Activation.Q1) - ID(Activation.Q5) . ID(Activation.Q8)

Fig. 10. The results of modeling the NE for the filter size 8*8 and for current Imax = SpA,
and a linearly rising (falling) currents with a period T=2.5ps.
On the left: the results of modeling the processes of formation of linear (green)
and nonlinear normalized negs (yellow), on the upper graph the peak and average consumption powers are showed.
On the right: the results of modeling the processes of formation of linear (yellow on the upper trace)
and nonlinear normalized neqs (green on the bottom trace),
red line shows the power of consumption. Blue — maximum of two signals, green — minimum of two signals for V = 3.3V
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Fig. 11. Scheme of 81-input NE with dual outputs based on 9 basic units for computing normalized eq
(in the diagram EQS)_and neq (in the diagram NEQS)
and their transformed responses (NNE outputs of activation circuits)
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Fig. 12. The results of modeling the 81-inputs HJ for the filter size 9x9 (with 81 inputs)
for current Imax = 5pA, T=1ps, V=18V, P=1-2mW (bottom):
on the left and right when comparing different input arrays (the measured levels are shown),
green and yellow are the dual outputs of the sub-blocks and the entire NE
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Fig. 13. The result of the calculation accuracy check for normalized eq for various reference DC currents
with linearly increasing currents at the second vector inputs (for Imax = 5pA, T=1ps, V=1.8V)

66 Herald of Khmelnytskyi national university, Issue 3, 2021 (297)



TexHiuHi HayKu ISSN 2307-5732

As can be seen from the Fig. 3-5, 7, 8, 10, only at the moments of coincidence of the input current vector
with one of the reference template vectors of currents at the output of the neural equivalent appear the required
signals, correctly formed with the corresponding high and low levels, reflecting the proximity (equivalence) and
distance (nonequivalence) of the compared vectors.

As can be seen from Fig. 13, the maximum deviations of the generated values of the currents at the NE
outputs from the mathematically calculated required values do not exceed 50 nA, which corresponds to a relative
error at the level of 1 % and allows to hope for the possibility of obtaining, in the produced NEs, taking into account
technological dispersion, no more than 5 %.

For preliminary rough definitions of neuron-winners in neural and CNN networks this is enough. In
addition, as will be shown below, non-linear component-wise transformations allow even without WTA network to
allocate the most NEs with the greatest activity. To verify the functioning of the developed neural network elements
in the network, a mini-network of eight elements with 9 inputs was also created and modeled, the simulation results
of which confirmed the correct operation of both the elements and the entire network. To test the functioning of the
developed NEs within the network, we created a mini-network of eight 9-input NEs, shown in Fig. 14. And the
results of modeling it are shown in Fig. 15, 16.
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Fig. 14. A network of 8 9 input NEs based on 9 basic modules
for calculating the normalized eq (neq)

Simulation in different modes has shown that the base unit (9-input NE) can operate correctly in low-power
modes (1st and 2nd) and high-speed modes (3rd, 4th):

1) Imax = 0,5uA, T=1us, Vdd =1.8V, (P =20uW);

2) Imax = 0,25pA, T=2,5us, Vdd=1.8V, (P=10uW);

3) Imax = 5pA, T=0,1us, Vdd=1.8V, (P=200uW);

4) Imax = 10p A, T=0,05us, (P=500uW).

If we take into account that at least 20 analog operations (9 [2 comparisons by limited subtractions, current
additions, their divisions and nonlinear transformations (2)) are performed by the NE for the one tact T, the relative
to the energy efficiency of NEs is estimated to be not less than 20 [110° an. op./sec: 20 uW = 10'% an. op / sec per W
and can be increased by an order.

We modeled on 1.5pm CMOS, and therefore, especially considering the produced FPAA [36], there are all
possibilities for this, but much depends on the accuracy of the current mirrors and their characteristics. The analysis
of the obtained results confirms the correctness of the chosen concept and the possibility of creating NE and MIMO
structures on their basis, as hardware accelerators for compact high-performance systems of machine vision, CNN
and self-learning biologically inspired devices.
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Fig. 15. The result of a network simulation of 8 9-input NEs,
a fragment of the successive activity of three neighboring NEs
(three graphs on the left and right) with dual outputs (green -eq and yellow-neq)
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Fig. 16. On the left: The result of a network simulation of 8 9-input NEs, a fragment of the successive activity of three neighboring NEs,
green - current outputs, blue-additional threshold, red-NE outputs (voltage, potential).
On the right: The Mathcad windows on which the module of the program with formulas
and results of recognition of fragments on the image are shown,
where in 2D and 3D from left to right: the computed NE equivalent, non-linear (after activation) equivalent,
linear non- equivalent (part) functions

The figure also shows the Mathcad windows, which display the results of our modeling of the processes of
recognizing fragments in the image using the proposed elements based on equivalence models, where in 2D and 3D
from left to right: the calculated NE equivalent, nonlinear (after activation) equivalent, linear non-equivalent
(partial) functions. The pronounced peaks up and down for the complementarity of functions show an improvement
in discriminant capabilities with nonlinear processing compared to simple processing.

Summary

Optoelectronic complement dual analog neuron-equivalentors (Nes) as hardware accelerators of self-
learning equivalent-convolutional neural structures (SLECNS) are designed and modeled. The proposed NEs have a
modular hierarchical construction principle and are easily scaled. Based on the base units, 64-input and 81-input
NEs were designed and modeled, and their main characteristics were measured. It is shown that neuron-
equivalentors allow one-to-one comparison of two data sets represented as continuous current signals and calculate
the measure of their proximity (range) in the form of normalized non-linear equivalence (nonequivalence) using
continuous-logic functions of limited difference, determination of maximum and minimum. NEs have a processing-
conversion time of 0.1-1ps, low supply voltages of 1.8-3.3V, minor relative computational errors (1-5 %), small
consumptions of no more than 1-2mW, can operate in low-power modes less than 100uW) and high-speed (10-20MHz)
modes. The efficiency of NEs relative to the energy intensity is estimated at a value of not less than 10'2 an. op. / sec
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on W and can be increased by an order of magnitude. The obtained results confirm the correctness of the chosen
concept and the possibility of creating NE and MIMO structures on their basis. They can become the basis for the
implementation of CNN and self-learning biologically inspired devices with the number of such NEs equal to 1000,
to realize the parallel calculation of equivalent convolutions with filter sizes up to 32 [B2.
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