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Abstract  
The limited use of profile services in the corporate and government segments of cyberspace 

suggests that the task of recognizing the speech of more than one speaker in non-laboratory 

conditions is still relevant. The article presents the technology of improving the process of 

recognition of language units by integrating the model of the variability of their phonation in 

the decision rule. In the proposed technology, in contrast to existing ones, recognition occurs 

at the level of comparison of sound schemes of empirical and etalon language material in the 

common parametric space of acoustic, generative and language models. This allowed us to 

formalize the concepts of taking into account the influence of phonation variability in 

determining the etalon sound schemes of language units in the paradigm of pattern 

recognition theory and to formulate a UML activity diagram of the mechanism for 

calculating the parameters of these concepts. The classification results demonstrated in the 

test sample with high variability of speech material prove the functionality of the author's 

mechanisms to compensate for the influence of phonation variability at the level of the 

decision rule and increase the accuracy of recognition by 5-8% (from the original 52% to 57-

60%, respectively). Experiments have shown that for all test samples, the decision-making 

rules formulated based on the author's concept, which took into account the optimal and 

suboptimal etalon sound schemes, respectively, exceeded the solving rule, which took into 

account the etalon sound schemes, but their frequency was ignored. It turned out that it is not 

advisable to use the author's mechanisms to compensate for the influence of phonation 

variability in the classification of speech material with a low or moderate degree of 

variability.  
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1. Introduction 

At the present stage of the development of computer technology, automated recognition and 

synthesis of speech signals are probably one of the most relevant services of human-machine 

interfaces of control systems, in particular, in case of emergency. Indeed, the built-in control system 

of the signal recognition and synthesis subsystem will save the time needed to enter information, alert 

subscribers and make decisions, and thus prevent or at least reduce the damage caused by an 

emergency. Consider the current systems of speech signal recognition in more detail. 

The profile for our study system of speech signal recognition [1-5] in general can be described as 

an asynchronously functioning conglomerate of acoustic models, vocabulary, language model and 
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classifier. If acoustic models estimate the probabilities of recognition of individual language units of a 

certain level in speech, then language models estimate the probability of the order of location of those 

language units in the signal. The dictionary must contain all possible variants of pronunciation of 

language units that will be recognized during the operation of the profile system. The classifier 

determines the best hypothesis in the recognition network. It is a software mechanism that operates on 

large amounts of data and has to decide in the shortest possible time on the sequence of segments of 

the phonogram of the input speech signal. The functionality of language unit recognition systems is 

determined mainly by the speed of the recognition process and its accuracy. 

When determining the system of speech signal recognition, it is necessary to take into account 

several aspects, namely [3, 6-10]: 

1. The size of the vocabulary. The larger the size of the vocabulary with which the speech signal 

recognition system operates, the higher the frequency of errors in the recognition of language units. 

For example, the frequency of errors in vocabulary recognition in one hundred thousand lexemes can 

reach 45%. The uniqueness of lexemes in the vocabulary should be taken into account. If the lexemes 

are phonetically similar, the recognition error will increase. 

2. Speaker addiction. There are speaker-dependent and speaker-independent profile systems. The 

first type of system is intended to be operated by only one user (a person whose speech material was 

used to train the system), while systems of the second type are focused on the operation by an 

arbitrary user. At the current stage of development of speech signal recognition systems, the 

frequency of errors in speaker-independent systems is 5-8 times higher than a similar quality indicator 

for speaker-dependent systems. 

3. The level of structural representation of the speech signal. Phrases, lexemes, two or three 

phonemes, diphones, allophones, etc. can act as structural units in speech signal recognition systems. 

Profile systems in which whole lexemes or phrases are analyzed are called templates. They are 

usually speaker-dependent, and their implementation is much less time-consuming than creating 

systems that recognize speech signals at the phonetic level (a sequence of phonemes, diphones, 

allophones). 

4. The principle of allocation of language units in speech. In modern profile systems, several 

approaches are used to extract the language units from the phonogram of a speech signal. The most 

common approach is based on the Fourier transform, which translates the input signal from the 

amplitude-temporal space into the frequency-temporal space. For the analysis of the speech signal in 

the temporal area, the linear prediction method is most often used, which allows describing the 

analyzed signal as a model of autoregression. However, Fourier analysis has several shortcomings, 

which are manifested in the loss of important information about the short-term amplitude-frequency 

characteristics of the processed signals. Therefore, the use of, for example, wavelet transform, which 

allows for the analysis of the properties of the studied signal in both temporal and frequency spaces, is 

justified for the selection of language units. 

5. Classification mechanism. After segmentation of the input speech signal, the sequence of the 

received fragments of the phonogram is parameterized and the software mechanism-classifier 

performs a probabilistic estimation of the affiliation of each of them to the reference elements from 

the vocabulary. The most widespread in modern systems of speech signal recognition have become 

various methods of machine learning, among which we note the hidden Markov models and artificial 

neural networks.  

The field of application of speech recognition systems is constantly expanding – from software 

applications for converting speech information into text and ending with on-board hardware control 

devices. Depending on the area of application, the following classes of profile systems are 

distinguished [2, 7, 11-13]: 

1. Software cores for hardware implementations of speech signal recognition systems. Depending 

on the purpose, systems of this class are divided into Text-to-Speech (TTS) and Automatic Speech 

Recognition (ASR). TTS cores are focused on converting text into a speech signal, and ASR cores are 

designed to represent the speech signal as text. 

2. Libraries of utilities for the development of specialized software services for speech signal 

recognition, which are later integrated into human-machine interfaces. 

3. Independent user programs designed for voice control and/or conversion of the speech signal 

into text.  



4. Focused on critical use programs for speech signal recognition. 

5. Devices for speech recognition, such as neural network microcontrollers VP-2025 from 

Primestar Technology Corporation. 

Thus, the problem of creating a universal system for recognizing speech signals is relevant and far 

from being solved. Based on the analysis of existing analogues, we formulate the object of study as a 

speaker-dependent process of phonation of the speech signal. The subject of the study is the 

provisions of the theory of pattern recognition and the theory and mathematical statistics.  

2. Models and methods 
2.1. Research statement 

An applied result of automated phonetic analysis of the phonogram of the speech signal is the 

sound scheme of the latter. However, the sound scheme characterizes a certain lexeme both 

semantically and acoustically. The variability of sound schemes, due to the speaker-dependence of 

speech, is a source of uncertainty for the task of recognition of language units in speech. We 

formalize this variability in the mathematical apparatus of pattern recognition theory [14, 15]. 

Let  tX x= , 1,t T= , be a parameterized pattern of the phonogram of the speech signal, and 

 iW w= , 1,i N= , be a phrase or a sequence of lexemes, which is presented in the vocabulary of the 

corresponding language. 

The result of the recognition of the empirical pattern X  is finding the most probable sequence of 

lexemes W  , which can be analytically described by the expression 

( )
( )

( )
( )argmax argmax

W

P W
W P W X P X W

P X

 = = , (1) 

where the relative probability ( )P X W  characterizes the plausibility of empirical data in the 

parametric space of the selected acoustic model of a corresponding sequence of lexemes; the 

probability ( )P W  characterizes the etalon phonation of a corresponding sequence of lexemes 

generated by the acoustic model; probability ( )P Х  characterizes the representation of the empirical 

phonogram of the speech signal by an acoustic model and performs in expression (1) the function of 

normalization. In this context, we define the acoustic model of phonation of the lexeme w  as a sound 

scheme wt . The variability of phonation leads to the fact that the lexeme w   will be characterized not 

by a single sound scheme wt , but by their plural, generalized by the set wТ . Continuing this symbolic 

chain, the variability of the phonation of the entire vocabulary of lexemes is characterized by the set 
WT , where the parameter Wt , W Wt T , identifies a certain individual trajectory of the phonation in 

the set of sound schemes of the vocabulary W . 

In current systems of automated speech signals recognition, when defining the criterion (1) 

substitution of concepts is carried out, which can be described by the expression 

( )
( )

( )argmax
W

W

W W

t

P t
t P X t

P X



= , (2) 

That is, the actual result of recognition is not a sequence of lexemes, but a sequence of sound 

schemes defined in the selected a priori imperfect acoustic model. The desired result (1) based on (2) 

is formed as a result of the literal application of the operations of lexeme classification of the form: 
Wt W

 → . (3) 

If the phenomenon of the variability of phonation of language units can be neglected, then 

concepts (1) and (2) become identical: 

( ) ( )

( )
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W

W

t

P t W P W
W P X t

P X

 = , (4) 



where ( ) ( ) ( )W WP t W P W P t= . Based on this thesis, we state that the variability of phonation in 

the task of recognition of language units in speech is determined by the composite probability 

( ) ( ) ,W W W WP T W P t W t T=  .  

Thus, the research aims to substantiate the probability ( )WP T W  in the context of the task of 

recognition of language units in speech. The objectives of the study are: - to mathematically define the 

recognition of language units in speech as a stochastic process of comparing the sound scheme of the 

empirical phonogram with the etalon sound scheme, determined taking into account the variability of 

phonation of language units from the acoustic-phonetic vocabulary; - to formulate the concept of 

applied use of the proposed model of the recognition process; - to conduct empirical research of the 

proposed approach to the recognition of language units in speech. 

2.2. Mathematical formalization of the investigated process 

Defined in general form in expression (4), the parametric space of the desired model of phonation 

variability of language units is a subspace of the general parametric space formed by three models – 

acoustic (performs direct-inverse representation of "phonogram"-"sound scheme"), generative 

(describes empirical phonogram). signal) and speech (describes the etalon phonogram, which 

probably corresponds to the empirical signal). The method of maximum a posteriori probability 

allows defining this subspace as in the first approximation as 

( ) ( ) ( )
( ) ( ) ( )

argmax
W

W W

W W

W W
t

t T

P t W P W P X t
W

P t W P W P X t





=


. (5) 

The parameters of acoustic, generative and speech models can be considered a priori independent 

because the first focuses on the parameterization of the speech signal, the second focuses on the 

reproduction of the speech signal, and the third focuses on determining the sound schemes of the 

vocabulary. The characteristic parameters of the language model ( )P W  do not depend on the 

phonation of empirical speech signals. For their estimation, it is necessary to use the material of the 

profile language corpus. At the same time, the characteristic parameters of the generative model of 

phonation ( )WP Т W  directly depend on the empirical speech signals. This fact determines the 

feasibility of studying generative and acoustic models together because the first provide empirical 

material, and the second determines the way of its compact presentation.  

The applied use of criterion (5) is complicated by an objective problem – the potential lack of a 

representative corpus for the studied language. The authors are familiar with representative corpora 

for the English language, such as the TIMIT acoustic-phonetic Continuous Speech Corpus [16, 17]. 

For the Ukrainian language, the General Regionally Annotated Corpus of Ukrainian (GRAC) is a 

fundamentally comparable analogue. 

The method of maximum likelihood [18, 19] allows estimating the configuration of the parametric 

space of the phonation variability model easier than the method of maximum a posteriori probability. 

We can limit ourselves to determining only the numerator of criterion (5). Suppose that there is such 

an acoustic-phonetic corpus Х  for the studied language that for an arbitrary phrase not only the 

sequence of sound schemes of lexemes 
1 2 Nw w w  is known, but also phonograms with their etalon 

phonation 
1 2

w w w

Nt t t . Analytical interpretation of the method of maximum likelihood for estimating 

the characteristic parameters of phonation variability will look like this: 

( ) ( )
 
 , ,

COUNT
argmax

COUNTw w

w

w w

w t w t

t
p t w p t w

w
= = , (6) 

where COUNT   is the function of counting the number of elements in the set-argument. 



From expression (6) it can be concluded that the estimation of the probability of observing a model 

of a lexeme is directly related to the relative frequency of the presence of this lexeme in the etalon 

training material. 

Let’s use the adapted form of the method of maximum likelihood (6) for "by-coordinate" 

estimation of the characteristic parameters of interdependent generative and acoustic models. "By-

coordination" is implemented as follows: 

1. Despite the variability of phonation but taking into account the a priori known order of lexemes 

in phrases, let's recognize empirical acoustic models based on etalon data from the relevant language 

corpus; 

2. Determine the most probable sequences of lexemes (5) and by expression (6) to determine the 

most commonly used variants of their phonation;  

3. Based on the information obtained in st. 2, update the default parameters of the acoustic model, 

focusing it on the most common version of the generation of speech signals inherent in the studied 

language. 

This mechanism of adaptation of generative and acoustic models to the variability of phonation of 

speech signals is focused on the application by presenting in the form of UML activity diagrams (see 

Fig. 1). 

 
Figure 1: UML activity diagram for adaptation of generative and acoustic models to the phonation 

variability of speech signals 

 

Naturally, speech is a dynamic object [20, 21], so the content of the language corpus must be 

periodically updated to reflect changes in generally accepted trends in the phonation of language 

units. If the language corpus focuses on the task of recognizing language units, then this update must 

be carried out based on expressions (2) & (3) according to the procedure defined in Fig. 1. 

However, this approach, although strategically correct, is not computationally efficient. Let's try to 

get rid of this shortcoming. Convert expression (1) as follows: 

( )
( )
( )

( )

( )

( ) ( )

( )

,
W W W W

W W W

t T t T

P X t P X t P t
P W X

P W X
P X P X P X

 = = =

 
. (7) 

If we substitute expression (7) into criterion (4), then we define the most probable sequence of 

lexemes as 

( ) ( )argmax
W W

W W

W t T

W P t X P t



=  . (8) 



Criterion (8) is directly focused on the task of speech signal recognition because it allows 

determining the most probable sequence of lexemes in the empirical phonogram of the speech signal, 

rather than the most probable sequence of sound schemes available in it (this is the criterion (2) & 

(3)). The concept of applied use of criterion (4) differed from the concept of applied use of criterion 

(2) & (3) in that the latter has to take into account the probability of realization of the sound scheme 

of the lexeme, i.e. the decision on the lexeme's plausibility is obtained as a weighted the sum of the 

plausibility of the implementation of all its sound schemes. In the implementation of the concept 

generalized by criterion (8), the sequence of actions presented in Fig. 1, will have to be supplemented 

by the operation of selecting the best sequence of lexemes. 

Accordingly, if each lexeme w  from the language corpus X  corresponds to the probability 

( ) ( )
w w

w

t T

P w P t X


=  , (9) 

then the acoustic component of the language corpus can be represented by tree-like architecture, 

where the "tree"-the phrase is formed by "branches"-lexemes, each of which is characterized by 

"leaves"- variations of its phonation, characterized according to expression (9). To ensure the 

computational efficiency of the target operation of such a tree in the calculation of expression (9) 

should ignore the unlikely variants of phonation of lexemes. This can be achieved by replacing in 

expression (9) the weighted sum of the plausibility of the phonation models of lexemes by the 

corresponding value of the maximum plausibility: 

( ) ( )
,

argmax
W

W W

W t

W P t P t X = . ` 

It is the term ( )WP t X  in expression (10) that takes into account the unlikely variants of 

phonation of language units. 

3. Results 

Applied use of the decision-making models presented in the previous section will be based on the 

material of the acceptable language corpus GRAC. It will be recalled that the basic element that 

determines the possibility of using the proposed mathematical apparatus is the availability of data on 

the frequency of presence of certain language units in the acoustic vocabulary of the language corpus. 

We choose numerals as the focus set of lexemes for the study. The precondition for such a choice is 

the limited number and clearly defined structure of such lexemes, their prevalence in the language 

material of any style. However, this choice has its drawbacks. In particular, the pronunciation duration 

of most numeral lexemes is short, in the phrases of these language units is characterized by a high 

semantic load, so their pronunciation is treated with extreme care, which reduces the variability of 

phonation. The training sample included language material from 250 speakers (over 44 10  

sentences). The focus group included 28 unique lexemes and their combinations: voiced numbers 

from “one” to “hundred”. 

Considering that the results proposed in section 2 are aimed at improving the classification process 

in the task of recognition of language units in speech, as well as to ensure the reproducibility of 

experimental results, direct lost implementation of theoretical results was conducted in Simon 

(https://simon.kde.org/). It is an open-source speech recognition software. The software environment 

provides the ability to customize the classification process. It is possible to connect acoustic and 

generative models from such well-known specialized projects as KDE, CMU SPHINX, Julius, HTK 

[22, 23]. There is an interface for connecting language corpora based on dialects (sound schemes). 

We experimented to recognize the mentioned alphabet of lexemes on a series of test samples, the 

content of which does not intersect with the material of the training sample. Since the variability of 

phonation affects the probability of both errors of the first and second kind, to assess the results of 

recognition chosen the basic for the classification task characteristic – the accuracy А . 

During the experiment, the classifier of the recognition system consistently functioned in four 

modes:  0 1 2 3, , ,R R R R , where: - in 
0R  the phenomenon of phonation variability in the decision rule is 

not specifically taken into account (criterion (1)); - in 
1R  the phenomenon of phonation variability in 



the decision rule is taken into account (criterion (4)); - in 
2R  the phenomenon of phonation variability 

in the decision rule is taken into account (criterion (8)), - in 
3R  the phenomenon of phonation 

variability in the decision rule is taken into account (criterion (10)). The phenomenon of phonation 

variability for the content of an arbitrary test sample was determined by the value of the parameter 

1

N

i

i

V t N
=

= , where 
it  is the number of phonation variants (sound schemes) for the і -th lexeme in the 

vocabulary, N  is the number of the lexeme in the vocabulary. For the experiment, 28N =  is the 

focus group of unique lexemes-numerals. For a random test sample we have: 

 0 0 1 2 30
; , ,V V R V R R R=   . 

Three test samples  1 2 3, ,S S S S=  were formed for the experiment. The test sample 
1S  included 

800 phrases sounded by one speaker-man (400) and one speaker-woman (400). The test sample 
2S  

included the material of the test sample 
1S , supplemented by 800 phrases sounded by members of a 

gender-symmetrical team of 10 speakers. The test sample 
3S  included the material of the test sample 

1S , supplemented by 800 phrases sounded by members of 50 speakers team balanced on gender, age 

group (1: 16-20 years; 2: 25-40 years; 3: 45-60 p.) and dialect. The sounded language material of the 

sample 
1S  was included in the test samples 

2S  and 
3S  for normalization. In all test samples from the 

set S , each phrase included from 2 to 20 lexemes, at least one of which was a numerator from the 

focus group. The variability of the test samples  1 2 3, ,S S S S=  was characterized by such values of 

the parameter V  as       1 1 3 2 1 3 3 1 30
1,3: , ;1,9 : , ;3,1: , ;V S R R R S R R R S R R R=        and 

  0 1 3 01,0 : ,V S S S R R=   =  (phonation variability is not taken into account in a decision rule 
0R ). 

The results of the experiments ( )1 3 1 3 0
; ;A f S S R R V=    and ( )1 3 0 0; ;A f S S R V=   are presented 

in the diagrams in Fig. 2a and 2b, respectively. 
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Figure 2: The results of the experiment: a) ( )1 3 1 3 0
; ;A f S S R R V=    b) ( )1 3 0 0; ;A f S S R V=   

4. Discussion 

Before proceeding to the direct analysis of the experimental results, let us recall that with the 

growth of the test sample index, the degree of phonation variability in the sounded language material 

also increased. Note that the total duration of a sounded language material in test samples from the set 

S  does not exceed 15% of the total duration of a sounded language material in the training sample, 

which is sufficient for effective use of not only simple classifiers (k-Means, Support Vector 

Machines) [22] but complex classifiers (Bayesian Classification, Monte Carlo Classification, Neural 

Network Classification, etc. [24]). 



The generalization of the classification results was carried out by one of the  0 3R R R=   

decision rules proposed in section 2, where: - in the classical decision rule 
0R  the etalon sound 

schemes were not taken into account; - the decision rule 
1R  took into account the etalon sound 

schemes, but their frequency (expression (6)) was ignored; - the decision rule 
2R  took into account 

the optimal etalon sound scheme, which was determined according to expression (7); - the decision 

rule 
3R  took into account the suboptimal etalon sound scheme, which was determined according to 

expression (9). As the expected accuracy of the classification increases, these decision rules can be 

arranged as follows: 
0R , 

1R , 
3R , 

2R . As the computational complexity of the classification process 

increases, these decision rules can be arranged as follows: 
0R , 

1R , 
3R , 

2R . Let's analyze whether the 

results of the experiments confirmed these expectations. 

First, pay attention to the results presented in Fig. 3. The adequacy of these results is convincingly 

proved by the realities of the modern cybersphere, in which speech recognition systems are 

confidently used in personalized software environments (operating systems of smartphones, laptops, 

personal computers) (one speaker), but not for, for example, automated stenography, concerts, etc., 

(many speakers, disturbing factors). As the amount of sounded language material from different 

speakers increases (sequential transition from the test sample 
1S  to 

3S ), the recognition accuracy 

decreases from a high 98% to an unacceptable 52%. The 
0R  decision-making rule was used in this 

study, i.e. the possibility of adapting the classifier to the specifics of phonation was solely due to its 

cognitive properties at the training stage. Moreover, the variability of phonation was perceived as an 

additional source of disturbances (noise). The demonstrated results convincingly prove the relevance 

of the study of the influence of phonation variability on the result of the process of recognition of 

sounded language units. 

Unfortunately, from the shown in Fig. 2 results, it can be seen that the implementation of the 

theoretical approaches proposed in section 2, embodied in the solution rules 
1R , 

2R , 
3R , did not 

overcome the tendency to decrease the accuracy of recognition with increasing variability of 

phonation in the test language material. Moreover, the results demonstrated in test samples with low 

and moderate phonation variability (
1S  and 

2S ) showed that the use of authorial mechanisms 
1 3R R  

to compensate for the effect of phonation variability at the level of the decision rule led to a slight 

decrease in accuracy of sounded focus group lexemes recognition (in comparison with the results 

presented in Fig. 3). A potential reason for this may be the redundancy of the factor space of the 

acoustic model, which leads to "blurring" the boundaries of clusters of language units. At the same 

time, the classification results demonstrated in the test sample with high phonation variability (
3S ) 

prove the functionality of the author's mechanisms to compensate for the influence of phonation 

variability at the level of the decision rule and increase recognition accuracy by 5-8% (from the 

original 52% to 57-60 %, respectively). 

Note also that for all test samples from the set S , the decision rules 
2R  and 

3R , which took into 

account the optimal and suboptimal etalon sound schemes, respectively, exceeded the decision rule 

1R , which took into account the etalon sound schemes, but their frequency was ignored. The 

comparison of the solution rules 
2R  and 

3R  shows in favour of the latter, because, with close 

recognition accuracy, the amount of computational resources spent on classification according to rule 

3R  is 20-30% less than the same as for rule 
2R . 

5. Conclusions 

Experience with the use of speech signal recognition services in modern personal mobile and 

desktop operating systems shows that this task is currently being solved with acceptable accuracy. At 

the same time, the limited use of such services in the corporate and government segments of 

cyberspace unequivocally prove that the task of recognizing the speech signals of more than one 

speaker in non-laboratory conditions is still relevant. 



The article presents the technology of improving the process of recognition of language units by 

integrating the model of the variability of their phonation in the decision rule. In the proposed 

technology, in contrast to existing ones, recognition occurs at the level of comparison of sound 

schemes of empirical and etalon language material in the common parametric space of acoustic, 

generative and language models. This allowed us to formalize the concepts of taking into account the 

influence of phonation variability in determining the etalon sound schemes of language units in the 

paradigm of pattern recognition theory and to formulate a UML activity diagram of the mechanism 

for calculating the parameters of these concepts. 

The classification results demonstrated in the test sample with high variability of speech material 

prove the functionality of the author's mechanisms to compensate for the influence of phonation 

variability at the level of the decision rule and increase the accuracy of recognition by 5-8% (from the 

original 52% to 57-60%, respectively). Experiments have shown that for all test samples, the 

decision-making rules formulated based on the author's concept, which took into account the optimal 

and suboptimal etalon sound schemes, respectively, exceeded the solving rule, which took into 

account the etalon sound schemes, but their frequency was ignored. It turned out that it is not 

advisable to use the author's mechanisms to compensate for the influence of phonation variability in 

the classification of speech material with a low or moderate degree of variability. 

Further research is planned to focus on finding methods for optimizing the factor space of 

acoustic, generative and speech models with an active mechanism to compensate for phonation 

variability. 
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