MiHICTEepCTBO OCBITH i HAYKH YKpPaiHU
Onecbknil HAIOHAJIBLHUH TEXHOJIOTIYHNN YHIBEPpCUTET
BiHHUIbKHHA HAIOHAJIbHUM TEXHIYHUMA YHIBEPCUTET
[HCTUTYT KOMIT FOTEPHOI iH:KeHepil, aBTOMAaTU3allil,
podororexHiku Ta nporpamyBanna iM.IL.H.IliaTonoBa

ITPOI'PAMA

111l BCEYKPATHCBKOI
HAYKOBO - TEXHIYHOI KOH®EPEHII
MOJIOJIUX BUEHUX, ACHIIPAHTIB
TA CTYJEHTIB

«KOMIT'IOTEPHI ITPU I MYJbTUME/JIIA
AK IHHOBALIIHUI MIIX1]
IO KOMYHIKALII - 20235

28-29 Bepecnsn 2023 p.
OAECA

Mamepianu konghepenyii «Komn'otepHi irpu Ta MmyabTuMeaia sik iHHOBaliiHUM miaxia 10 komyHikamii - 2023»

MPE3UIISA TA OPTKOMITET KOH®EPEHIIII

I'OJIOBA IPE3U 1L
€ropos Bb.B., I[Ipesunear OHTY, akanemixk HAAH Ykpaiau, 1.71.H., mpodecop
YJIEHU NPE3UIII

IBanyenkoBa JI.B., Pextop OnechbKOro HaIIOHAIBHOTO TEXHOJOTTYHOTO
YHIBEPCHUTETY, 1.€.H., mpodecop
IMoBaposa H.M., mpopekTop 3 HAyKOBOi poOOTH, K.T.H., TOIIEHT

I'OJIOBA OPTKOMITETY

Kotnuxk C.B., 1upekTop HaB4aJIbHO-HAYKOBOTO 1THCTUTYTY KOMIT IOT€PHOT 1HXKEHEpii,
aBToMaTHu3allii, poboToTexHiku Ta nporpamyBanus OHTY, k.1.H., gor.

3ACTYHHMUK I'OJIOBHU OPTKOMITETY
Cepriii lecTronanos, k.T.H., Ao1., kad. Komn'torepHoi imxenepii, OHTY

YJIEHU OPTKOMITETY

Ouaexciii I3BasioB, perionaibHuil koopauHaTop Global Game Jam B Cxianiit €Bporri,
ETI im.EnbBOpTI,

Cepriii Apremenko, 3aB.ka¢d. Kommn'torepHoi inxenepii, OHTY,

Mmuxaiizo Kucienko, Unity Developer, DALS Games,

Oaexkcanap Pomaniok, 3aB.kad. [Iporpamuoro 3abesneuenns, BHTY,

Oabra Youmwkina, aupekrop IHCTUTYTY KOMI'FOTEpHO-1HGOpMALIITHUX
TEeXHOJIOT1H 1 nu3aiiny, MAVII,

Ouxaexcanap Tepwomun, Unity 3d developer, BlueGoji,

ITaBjo IBaciok, Senior Snapchat JS Developer, BeVisioned,

Ilerpo I'opBat, 3aB.kad. Komm'torepaux cucrem i mepex, JABH3 "Yxkropoacekuii
HalllOHAJBLHUHN YHIBEpCHUTET'.

Mamepianu konghepenyii «Komn'otepHi irpu Ta MmyabTuMeaia sik iHHOBaliiHUM miaxia 10 komyHikamii - 2023»

YK 004.01/08

KomMmm'toTepHi irpu Ta MyJabTUME/IIa K 1IHHOBALIMHUAN MiaXia 10 KomyHikarii - 2023 /
Martepianu III BceykpaiHchbkoi HayKOBO-T€XHIUHOT KOH(EpEeHIT MOJOIUX BYCHHX,
acmipanTiB 1 ctynentiB, Oneca, 28-29 xostHs 2023 p. - Oneca, BugaBaunreo OHTY,
2023 p. — 270 c.

30ipHHUK BKJIIOUa€ MaTepiai JOMOBiAEH y4acHUKIB KOHGepeHiii, aki 00'eqHani 3a
TEMaTUYHUMHU HalpSIMKaMHU KOH(EpeHIIii.

30ipHUK OyJile KOPUCHUM SIK JUIsl (PaxiBIIiB 1 MPAIiBHUKIB (QipM, 3alHATHX B 001acTi
pO3pOOKH Ta MPOCYBAHHS KOMI'IOTEPHUX Irop, Tak 1 JJis BHUKIAJAdiB, MAaricTpiB 1
CTYJICHTIB BHIIMX HAaBYAJIbHUX 3aKJaJiB, SKI HABYAIOThCS 3a HampsMaMHu 1
CHEIIaJbHOCTSIMU TPOrPAMHOIO 3a0€3MEeUYeHHs, KOMIT'IOTEpPHUX HayK, KOMI'FOTEpHOL
IHKEHepil, NPUKIAJAHOI MaTeMaTHKu Ta o0poOku iHopmarlii, Oyae KOPUCHUM
npodecionanam y cepax reitmidikariiii, KibepcrnopTy, CTpIMIHTY, BIpTyajabHOT PEAIbHICTI,
JIOTIOBHEHOI PEANbHICTI, IITYYHOTO I1HTEJIEKTY, MAIIMHHOTO HaBYaHHA, Teimi3aiiHy,
cayHJII3aiiHy.

PesynbraTtu AochikeHb y 30IpHUKY MPEICTaBISIIOTH COOOI0 CBOEPITHUN 3pi3
Cy4acHOTO CTaHy CIpaB B MEPEPAXOBAHMX Taly3sX 3HAHb, KU MOXKE JOMOMOITH SIK
cpaxuau;IM TaK 1 CTyJ€HTaM YHIBEPCUTETIB CKJIACTH 3arajlbHy KapTUHY PO3BUTKY
KOMITFOTEPHHX irOp bI MyJIbTUME/Iia Ta MOB'I3aHUX 3 HUMH TTUTAHb.

HayxoBi mpaiii 3rpymnoBaHi 3a HampsMKamMu poOOTH KOH(pEpeHIli Ta HaBeIEHI B
anQaBiTHOMY MOPSIKY MPi3BUILl ABTOPIB.

Martepianu (Te3u OMOBiACH) JAPYKYIOTbCS B aBTOPCHKIM pelaKiiii.
BianoBiganpHICTh 3a SAKICTh Ta 3MICT ITyOJIiKaIliif Hece aBTop.

Martepianu nogaHo yKpaiHChKOIO Ta aHTJIIHCHKOI0 MOBaMH.
Penakrop 36ipanka Kotk C.B.

©Onecbkuii HAIllOHAIBHUI TeXHOJNOTTYHUN yHiBepcuTeT, 2023

Mamepianu konghepenyii «Komn'otepHi irpu Ta MmyabTuMeaia sik iHHOBaliiHUM miaxia 10 komyHikamii - 2023»

Trends and prospects for the development of artificial intelligence and neural
networks in the modern world. Kazantsev R., Zharikov T., Kim Ye.R. (Turan
University, Kazakhstan)

132

Problems of evaluating and eliminating performance bottlenecks in
computer games. Khoshaba O.M. (Vinnitsia National Technical University)

133

Research on the estimation of process modeling effort and cost.
Andrii Kopp, Ibrahim Dag (National Technical University «Kharkiv Polytechnic
Institutey)

135

Software tool for bpmn diagrams evaluation against modeling rules.
Andrii Kopp, Gulden Egemen (National Technical University «Kharkiv
Polytechnic Institute»)

138

Software tool for business process model comprehensibility assessment.
Andrii Kopp, Vadym Sheveliev, Yagiz Ali Turgut (National Technical University
«Kharkiv Polytechnic Institutey)

141

Educational school of English language. Niyazdzhanov R.R., Ismailova R.T.
(Turan University)

144

Analysis of hard drive operating methods for gaming software. Oliinik M.,
Khoshaba O. (National Technical University, Vinnitsia, Ukraine)

147

Research application of the spam filtering and spammer detection algorithms
on computer games comunications. Oliinyk V., Podorozhniak A.,
Liubchenko N. (National Technical University “Kharkiv Polytechnic Institute™)

148

The impact of the development of embedded processor systems on gaming
software. Ovod D., Khoshaba O. (National Technical University, Vinnitsia,
Ukraine)

151

General methods for investigating performance bottlenecks in game
software. Sychenko V., Khoshaba O. (National Technical University, Vinnitsia,
Ukraine)

153

Increasing game software performance due to threads and processes in the
Linux operating system. Yavorskyi D., Khoshaba O. (National Technical
University, Vinnitsia, Ukraine)

154

Beam scheme development work based on arduino pro micro c¢ using solar
panel. Vladyslav Yevsieiev (Kharkiv National University of Radio Electronics)

155

AHauni3 NPOAYKTHBHOCTI MOOLIbHUX 3aCTOCYHKIB Ha 0asi
kpocmiiarpopmennux ¢QpeiimBopkiB. AHTOHOBa A.P., Oueperenko JI.B.
(Onecbkuii HAIIOHATBHUN TEXHOJIOTTYHHI YHIBEPCUTET)

158

MeTtoa nmpakTH4YHOI MOOYA0BH PO3Mi3HABA4Ya 00’€KTIiB y peajbHOMY CBITI.
bamra A.P., IlaBmoBa O.0. (XMeIbHUUBKWANM HaIlIOHAJBHUN YHIBEPCHUTET,
M. XMEJbHUIIBKUN)

160

Po3poOka wmeroay Ta mnporpamMHoOro 3a0e3snedYeHH MOAYJS IITYYHOrO
inTesekty s rpu "Mononodais'. boromazo J[.B., Karensniko JI.1.
(BiHHUIIbKUH HAIlIOHAJBHUIA TEXHIYHUN YHIBEPCHUTET)

162

MeTtoa oprasizamii CaMOHABYAJIBLHOI KOMII'IOTEPHOI TpPpH AJTrOPUTMOM
€BOJIOLIHHON0 HABYAHHSA INTYYHMX HeillpoHHux Mepexk. boxuk [.C,
Masypenr O.B., Barpiii P.O., Knimenko B.I.,Tumenko O.0. (XmenbHHIBbKHI
HaI[lOHAIBHUN YHIBEPCUTET)

165

13

Mamepianu konghepenyii «Komn'otepHi irpu Ta MmyabTuMeaia sik iHHOBaliiHUM miaxia 10 komyHikamii - 2023»

UDK 681.3.07

GENERAL METHODS FOR INVESTIGATING PERFORMANCE BOTTLENECKS IN
GAME SOFTWARE
SYCHENKO V., KHOSHABA 0. (Oleksandr.Khoshaba@gmail.com)
National Technical University, Vinnitsia, Ukraine

The work describes general methods for investigating performance bottlenecks in gaming
software. Particular attention is paid to the relevance and necessity of methods for identifying bottlenecks
in gaming software using the example of program code optimization. This example highlights the impact
of hardware in supporting modern computer games. For commonly used methods for studying gaming
software performance bottlenecks, methods for profiling, optimizing program code and graphics, and
using multithreading and multiprocessing in program code are described.

Relevance and necessity of performance bottleneck methods in gaming software.

Performance bottleneck analysis and optimization methods are highly relevant and necessary in
gaming software development for several reasons. It is known that the quality of a game's performance
directly impacts the user experience. Players expect smooth, responsive gameplay with high frame rates,
low input lag, and minimal interruptions. Identifying and addressing performance bottlenecks is crucial
for delivering a gaming experience.

Gaming software runs on various hardware configurations, from high-end gaming PCs to mobile
devices and consoles. As a result, performance bottlenecks can vary depending on the hardware, so
optimization is necessary to ensure the game performs well across different platforms.

Modern computer games become increasingly complex, with intricate graphics, physics
simulations, Al, and large open worlds. This complexity can strain hardware resources, making
performance bottlenecks more likely. Some game designs also require high-performance hardware to
achieve their intended gameplay experiences. Optimization is necessary to meet these goals and ensure
the game is playable.

Program code optimization improves performance and efficiently uses system resources such as
CPU, GPU, memory, and storage. That is why efficient resource usage can extend the game's reach to
lower-end hardware.

Thus, computer games may offer us various graphics settings and performance profiles to
accommodate a range of hardware capabilities. Identifying and optimizing performance bottlenecks
allows for better scalability across different settings.

Often used methods for research performance bottlenecks in gaming software.

There are a lot of methods for researching performance bottlenecks in gaming software. Let's look
at some of them in more detail. Profiling tools help developers identify specific performance bottlenecks
by analyzing where the most time or resources are spent during gameplay. Profilers like Intel VTune,
NVIDIA Nsight, or built-in profiling tools in game engines help developers pinpoint precisely where
performance bottlenecks occur. They provide insights into CPU and GPU usage, memory allocation, and
other performance metrics.

Code optimization allows developers to optimize code to reduce computational or memory
overhead. This may involve optimizing algorithms, reducing unnecessary calculations, or improving data
structures. Code optimization involves making code more efficient by reducing unnecessary operations or
improving algorithms. Game developers often use profiling data to identify specific parts of the code that
need optimization.

Multithreading and multiprocessing can significantly boost game performance by utilizing
multiple CPU cores efficiently. Leveraging multithreading and multiprocessing can distribute tasks across
multiple CPU cores to improve performance, especially in rendering, physics, and Al calculations.

Graphics are a critical aspect of gaming performance. Techniques like LOD models and efficient
shader code can significantly impact GPU performance. Reducing the graphical workload through
techniques like occlusion culling also helps. Graphics optimization can help use graphics rendering
techniques, using level-of-detail (LOD) models, and employing efficient shader code can improve GPU

153

Mamepianu konghepenyii «Komn'otepHi irpu Ta MmyabTuMeaia sik iHHOBaliiHUM miaxia 10 komyHikamii - 2023»

performance. Also, compressing textures, reducing polygon counts in models, and optimizing asset
loading can reduce memory and storage overhead.

Efficient memory management is essential for preventing performance degradation over time.
Minimizing memory leaks and fragmentation ensures stable and consistent performance during gameplay.
Efficient memory management practices, such as minimizing memory leaks and reducing memory
fragmentation, are essential for stable performance in computer games.

Reducing input latency and maintaining a consistent frame rate is essential for a smooth gaming
experience. Techniques like frame rate capping, adaptive sync, and proper input handling help achieve
this. Input and frame timing allow us to reduce input latency, and ensuring consistent frame timing can
result in smoother gameplay experiences.

Efficient asset streaming and loading mechanisms minimize load times and prevent stutter during
gameplay. This becomes more critical as games become more open-world and data-heavy. Streaming and
loading let users implement efficient streaming and loading mechanisms to reduce load times and
minimize stutter during gameplay. That is why regular testing and benchmarking on various hardware
configurations help ensure performance remains consistent and acceptable in computer games.

In summary, performance bottleneck analysis and optimization are critical aspects of gaming
software development. They must deliver a satisfying gaming experience, meet design goals, and remain
competitive in the gaming industry. Developers must continually assess and address performance issues
to create successful games that run smoothly on diverse hardware.

UDK 004.451

INCREASING GAME SOFTWARE PERFORMANCE DUE TO THREADS AND
PROCESSES IN THE LINUX OPERATING SYSTEM
YAVORSKYI D., KHOSHABA 0. (Oleksandr.Khoshaba@gmail.com)
National Technical University, Vinnitsia, Ukraine

The work describes the increase in gaming software performance due to threads and processes in
the Linux operating system. Particular attention is paid to the comparative characteristics of threads and
processes. The most effective conditions for their use in gaming software are described.

Using threads and processes in the Linux operating system.

In the Linux operating system, threads and processes are fundamental for managing and executing
tasks. A process is an independent and self-contained unit of execution. Each process has its memory
space, file descriptors, and system resources. This isolation provides security and stability, as one process
cannot directly interfere with or corrupt the memory of another. The operating system schedules
processes for execution and ensures they have access to the needed resources. Multiple processes can run
concurrently on multi-core CPUs, enabling true parallelism. Each process runs independently of others,
and communication between processes often involves inter-process communication (IPC) mechanisms
like pipes, sockets, or message queues. Threads in the same process can easily communicate and
cooperate through shared memory, making it useful for tasks that require close coordination, like
multithreaded server applications.

In summary, processes provide higher isolation and security but are relatively heavyweight,
making them suitable for running separate, independent tasks. Threads, however, are lightweight and
share resources within a process, making them suitable for concurrent tasks that must collaborate closely
and efficiently. The choice between processes and threads depends on the application's specific
requirements. Modern programming languages and libraries often provide thread and process
management tools to simplify the development of multithreaded and multiprocessing applications.

Increased performance of gaming software due to threads and processes in the Linux
operating system.

The choice between processes and threads depends on the application's specific requirements. In
many cases, processes and threads are used together in a single application to take advantage of their

154

Mamepianu konghepenyii «Komn'otepHi irpu Ta MmyabTuMeaia sik iHHOBaliiHUM miaxia 10 komyHikamii - 2023»

I1I Bceykpaincbka HAyKOBO-TeXHIYHA KOH(epeHuist
MOJIOAMX BUYEHHUX, ACHIPAHTIB Ta CTYJACHTIB

«KOMIT'FOTEPHI ITPU TA MYJbTUMEJIA SIK IHHOBALUVHUI
MIJIXI IO KOMYHIKALTi»

Oneca
28-29 Bepecns 2023 p.
30ipHHMK BKJIIOYA€ JIOMOBIJI Y4YacHUKIB KoH(pepeHiii. Te3m mgomosineit
nyOJIIKYIOTbCS Y BUTJISA/IL, B SKOMY BOHHM OyJU TIO/IaH1 aBTOPaMH.

BignoBimanbHICTh 3a 3MICT 1 (OpMy MOJaul MaTepialy HECYyTh aBTOPHU
crarei.

Pepakniiina koJgerisi: Kornuk C.B., lllectonanos C.B.,
Kopnienko 1O.K.

Komn'rorepunii Ha0ip i BepcTka: Cokonoa O.11.

BignoBinaapuuii 3a Bunyck: Kotiauk C.B.

270

