YK 004.89

C. M. JIeBinbKui

ITOPIBHAJIbHUI AHAJII3 MOXX/IMBOCTEHN BEJIMKUX
MOBHUX MOJIEJIEM ALPACA, VICUNA, FALCON HA
OCHOBI TPAHCO®OPMEP-APXITEKTYPU

BinauibKyii Hal[ioHa/IbHUN TeXHIUHUN YHiBEDCUTET

AHomayis

PozensHymo nonyaspHi eenuxki MoeHi modeni 3 e8i0Kpumum OOCMYNnoM HA OCHO8i
mpatcgopmep-apximekmypu. [IpoaHanizoeaHo ixHi nepeeazu, HedoNKU ma 0bMedHceHHsl.

Krouosi ciioBa: Alpaca, Vicuna, Falcon, Tpanchopmepy, TOHKe Ha/allTyBaHHS 3 YUUTeIEM.

Abstract

Popular large language models with open access based on the transformer architecture are
considered. Their advantages, disadvantages, and limitations are analyzed.

Keywords: Alpaca, Vicuna, Falcon, transformers, supervised fine-tuning.

Bcryn

BigOyBcs Benmmuesnuii mporpec 'y o0OpoOiji MpUpoOAHOI MOBM 3 Hacy TIOSIBH
TpaHcdopmep-apxiTektypu y 2017 poui [1]. Tpanchopmepu abo iX yaCTMHM CTaJud OCHOBOKO
CyuyaCHHMX MOBHHUX Mogesiel. Benuki MoBHI Mozesii cTBOpIOlOTbCS Ha 0cHOBI eHkozepa (BERT Ta iH.),
eHkozepa-gekogepa (BART, T5 rtomio) i Tinbku gekogepa (GPT-1 Ta iHmi). Y cBiTi crioctepiraerscst
CripaBXHill OyM HaBKOJIO BeJTMKUX MOBHHUX MO/jlesieli Ha OCHOBI Jiekofiepa [2], 3aBAsKY iX BpaXkKarounm
pe3ysbTataM B MalllMHHOMY TepeK/iaZi, TeHepyBaHHI i y3arajbHeHHI TEeKCTY, BiJ[IOBi/li Ha 3anUTaHHA
Towo. KoHKypeHLid B L[bOMY HamlpsIMKY MiJIITOBXYE KOMIAaHil BUyCKAaTH HOBI BeJIMKI MOBHI MOZei
O[lHa 3a OJHOIO, TOKpALyKUM iX XapakTepUCTUKU I pe3yybTaTh BiJHOCHO CBOIX KOHKYDEHTIB UM
TrorepesiHiX BepCiil MPOAYKTY.

Orisaj BeJIMKMX MOBHHX MoJiesIeid, 110 3HaX0AAThCS Y BIJKPUTOMY AOCTYIIi

MeToro [JOCTi/PKEHHST € OIVIsif, TIOMY/SIPHUX BeJUKAX MOBHMX MoOjeseid, 1[0 3HaXO[SAThCS Yy
BiJKDUTOMY [IOCTYTIi Ta aHasli3 iXHiX MOX/TUBOCTEeH i 0OMeXKeHb.

Po3ngHemo i mpoaHasiizyeMo TP BeIMKiI MOBHI MOZesIi 3 7 MiIbsIpiaMH NlapameTpiB, B OCHOBI SIKMX
JIeXXUTh fekoep: Alpaca, Vicuna i Falcon.

Alpaca - 11e BenMKa MOBHa MOJiefb 3 BiIKDUTUM KOJ,OM, CTBOpeHa focaijHuKamu CTeH(OopACbKOro
YHiBepcuTeTy Ha OCHOBi iHIIOI Be/ukoi MOBHOI mogeni LLaMA Big Meta Al, musxoM TOHKOIO
HaJlalTyBaHHs 3 yuutesieM (supervised fine-tuning (SFT) abo behavior cloning), BUKopucTOByrOUM
JIEMOHCTpALiiHU# Ha0ip AaHuX. J[oC/IiJHUKY MiArOTyBa/Id EMOHTPALIIMHUN Habip AaHuX 3 52 TUCSY
iHCTpYKIIili (3arUT-Bi/ITIOBi/Ib) 3a JOTIOMOTO¥O I1fe OfHieT BesMKoI MOBHOI Mogerti text-davinci-003 Bif,
OpenAl [4]. Takuii miaxis TOHKOTO HanalITyBaHHS 3 yuuTeseM Haj TIOMepeHbO HaBUEHOK Ha
MiJIbSIpZIaX TOKEHIB MOBHOIO MOJIe/UTIO Jla€ Habararo Kpaiti pe3ynbTatd. OpenAl goBesny, 110 MOJeNb 3
1,3 MinbsIpZIiB TapaMeTpiB MOKa3ye Kpallli pe3y/sTaTH, HiXk MoJiesb 3 175 MisbsipiaMmul apameTpiB 6e3
TOHKOTO HaJ/IallITyBaHHS 3 yuuTteseM [5]. 3aBAsku HeBe/UKil, TOPiBHSIHO 3 aHAMOTIUHUMU MOJe/sIMHU,
MaKCHMaJbHIN JOBKKHI KOHTEKCTY, L]0 CTaHOBUTH 512 cumBomiB [5], 3MeHIIyIOTbCS BUMOTH [0
orepatuBHOI MlamM’sATi rpadiyHoro mpouecopa. basaHc MK BiJHOCHO sSIKiCHUM pe3y/bTaToM po6oTH Y
CBOEMY Kjaci Ta TIOMipHUM BUKODHUCTaHHSIM BHYTPILIHBOI omepaTWBHOI Tam’saTi rpadiuHoro
niporiecopa pobuts Alpaca HaUMOMy/SPHIILIOW cepes MOZesiel, 10 po3rsgatoThes. [1po e cBigunTh
po3Mip CHiIBHOTH i Ki/MbKicTh Mopudikariiii gaHoi MoBHOI Mojeni. Hemomikamu i oOMexeHHSIMU

MoBHOI mMofieni Alpaca MOXyTb OyTH: 03Bi/l HA BUKOPUCTaHHS Ti/TbKU B JOC/iAHULBKUX MPOEKTaX,
3[laTHiCTb reHepyBaTH TeKCTH HEeTUYHOTO i TOKCUYHOTO 3MiCTY, ra/IroLjHaLlil.

Ha ocuoBi LLaMA cTBOpeHO Ije OfHY BeJVMKY MOBHY MOAe/Ib 3 BiJKPUTUM KOZOM - Vicuna.
3aranbHi KPOKU TTpoliecy HaBUaHHS JaHOI Mofesii Taki X K i B Alpaca. Ane TOHKe HaJlallITyBaHHS 3
yuuTeseM MPOBOJUIOCH 3 HabopoM ganux (70 THcSY map 3amuTiB-BiAmoBigedi), mjo 3i6panuii 3
Beb-caiity sharegpt.com, sie KopucTyBaui AingaThcs cBoiMu fiasoramu 3 ChatGPT. Bapto 3a3HaumTH,
III0 aBTOpU Ifi€l MOBHOI MOJge/i 3arpOIOHYBa/d HOBUM CHOCIO OL[iHKA $IKOCTi pe3y/bTaTy,
BUKOpUCTOBYtOUM GPT-4 K ekcnepra-ouiHiOBaya. 3riJHO 3 UM MiAXoAoM, Vicuna IMokKa3ye MoHaz
90% skocti ChatGPT i Bard Ta mepeBepiiye 3a SIKiCTIO pe3ynbTaty Mojent Alpaca B Oisbiie, HiXK
90% Bumnaakis [6]. ABropy Vicuna mokpaiy/Inu po3yMiHHS MO/Ie/III0 [TOBIIIOr0 KOHTEKCTY MOPiBHSIHO
3 Alpaca. [Iyif1 1IbOTO BOHM 30i/bIININA MaKCUMasbHY ZOBKUHY KOHTEKCTy Ao 2048 cumBosniB. OfHak
1[e Ma€ CBili HeJJOMIK, OCKiJIbKM 3HAYHO 30i/TbIINI0 BUKOPUCTAHHS OTIepaTUBHOI Mam’ATi rpahiyHoro
nipotiecopa mopiBHsiHO 3 Alpaca. Heposiku i oOmexxkenHsi mogeni Alpaca takok BiactuBi Vicuna, a
Tako)K BOHA MOTaHO CHPaB/SETLCSA i3 3aBJaHHAMH, OB’ I3aHUMU 3 MipKYBaHHSIMM UM MaTeMaTHKOHO
[7].

HemonaBHo THCTUTYT TexHOMoriuHux iHHoBarjiki B A6Gy-/1a6i (Technology Innovation Institute -
TII) BuMycTHB HOBY BelMKy MOBHY Mogenb Falcon y nBox BapianTax - 40 i 7 minbsipZiB nmapameTpiB.
Falcon-40B feMoHCTpye HaMKpallli pe3y/ibTaTy i 3aliMae repiiie miciie B Tabmuti mifiepis [3], Tozi sk
Falcon-7B € opHieto 3 Halikpalux y cBoemy kiaci. JliteHsiss Apache 2.0 1o3BoJisie BUKOPUCTOBYBaTH
JlaHy MOBHY MOJejb B [AOCTIAHULIBKMX i KOMEpLiMHHX TMpOeKTax, Ha BiMiHYy BiJ momepeaHix
Mogieneid. Po3pobuuku HaBuamu Falcon-7B Ha 1,5 TpusibiioHa TOKeHiB 3 BHCOKOSIKICHOTO Habopy
nanux RefinedWeb, 1mo oumienuii Bix gy6smboBanux 3ammcie. ABropu Falcon omyOsikyBanmu kof
Mogenelt i ixHi Barm. Takox y BigkputoMy goctyni HasBHI SFT-Bepcii 3a3HaueHUX Mogeseit.
OcobmuBicTio MOBHUMX Mojiesieli Falcon € BUKOpPHCTaHHsS B HUX MeXaHi3My 0arato3aruToBOl yBaru
(multiquery attention) [8], 11{0 3MeHIITye BUKOPUCTaHHS ONepaTUBHOI Nam’sATi TpagiyHoro rnporecopa.

Pe3ynbTaTu AoCTiHKeHHS
INopiBHsIEMO SIKiCTB BifATIOBizZIeN Mogesti 3 Bigkputum poctyroM - Alpaca 3 ChatGPT. TToctaBumo 5
3aMuTiB KOXKHIM 3 Mofeneii: fABa 3amUTU - PO3B’s3aTH 3ajauy 3 mporpaMmyBaHHsS Ha Python 3

leetcode.com, 3 3anuTH - 3 Teopii 06POOKK MPUPOJHOT MOBH.

Tabnuuga 1. Bianoeizi Ha 3amuTH 0 BeMMKMX MOBHHX Mogesel - ChatGPT i Alpaca Ta orjiHKU 3a
BiAMOBiAl

3arnur Bignosigs ChatGPT Biamosigs Alpaca KomeHnTa
p/OuiHka
Explain Certainly! In the context of the The layer of ChatGPT
layer of | transformer architecture, an attention | attention mechanism | : 5/5
attention mechanism is a crucial component that | is the part of the Alpaca:
mechanism in | helps the model understand the | model that | 2/5
simple terms relationships between different elements | determines which
in a sequence. parts of the input
Let's say we have a sentence: "The | data should be
cat sat on the mat." In this sentence, | focused on. This
there are different words, or "tokens," | layer is responsible
such as "cat," "sat,” "on," "the," and | for determining
"mat." The attention mechanism allows | which parts of the
the model to determine which tokens are | input data should be
most relevant to each other. focused on. This
To do this, the attention mechanism | layer is responsible
assigns weights to each token, indicating | for determining
their importance or relevance. These | which parts of the

weights are calculated based on the
similarity or compatibility between the
tokens. Tokens that are more related to
each other will have higher weights.

The attention mechanism works in
three main steps:

1. Query, Key, and Value: Each
token in the sequence is
transformed into three vectors: a
query vector, a key vector, and a
value vector. These vectors
capture different aspects of the
token's information.

2. Similarity = Calculation: The
attention mechanism calculates
the similarity between the query
vector of a token and the key
vectors of all the other tokens in
the sequence. This is usually
done wusing a mathematical
operation called dot product,
which measures the similarity
between two vectors.

3. Attention Weights and
Aggregation: The similarity
scores obtained in the previous
step are transformed into
attention weights using a
softmax function. The softmax
function normalizes the scores,
ensuring that they sum up to 1.
These weights represent the
importance of each token in
relation to the others. Finally, the
attention weights are used to
compute a weighted sum of the
value vectors, resulting in a
context vector that represents the
attended information from the
sequence.

In simple terms, the attention
mechanism allows the model to focus on
different parts of the input sequence
while considering the relationships
between the tokens. It assigns weights to
the tokens based on their relevance to
each other and combines their
information to create a meaningful
representation.

This mechanism has proven to be
powerful in capturing long-range
dependencies and understanding the
context in NLP tasks. It has significantly
contributed to the success of the

input data should be
focused on. This
layer is responsible
for determining
which parts of the
input data should be
focused on. This
layer is responsible
for determining
which parts of the
input data should be
focused on. This
layer is responsible
for determining
which parts of the
input data should be
focused on. This
layer is responsible
for determining
which parts of the
input data

transformer architecture in various
applications.
What are Hallucinations in large language Hallucinations in ChatGPT

hallucinations | models refer to instances where the | large language | : 5/5
in large | model generates outputs that are | models refer to the Alpaca:
language incorrect, nonsensical, or unrelated to the | phenomenon in | 3/5
models? input or the desired task. It can produce | which the model

seemingly plausible but false | generates text that

information that does not exist or may
even contradict reality.

Hallucinations can occur due to

several reasons:

1. Over-optimization: Large
language models are trained to
generate coherent and
contextually relevant text based
on the patterns and examples

they have learned during
training. However, they can
sometimes become overly

confident in their predictions,
leading to the generation of
plausible-sounding but incorrect
information. This occurs when
the model has "memorized"
patterns in the training data but
fails to truly understand the
underlying concepts.

2. Inference from incomplete or
biased data: Language models
are trained on vast amounts of
text from the internet, which
contains a wide range of
information, including errors,
biases, and unverified claims.
The model may unintentionally
generate responses that reflect or
amplify these biases or
incorporate false information
from unreliable sources.

3. Lack of contextual
understanding: ~ While large
language models excel at
generating text that appears
coherent on a sentence level,
they may struggle with deeper
understanding of context, world
knowledge, or logical reasoning.
This can lead to responses that
are contextually incorrect or
nonsensical, resembling
hallucinations.

does not correspond
to the input data.
This can occur when
the model is
overfitting to the
input data, or when
the model is
generating text that
does not make sense.

4. Exposure to adversarial inputs:
When large language models are
exposed to deliberately crafted
inputs designed to deceive or
exploit their weaknesses, they
may produce misleading or false
outputs. Adversarial inputs can
exploit vulnerabilities in the
model's architecture or training
process, causing it to generate
hallucinatory responses.

Addressing hallucinations is an

ongoing challenge in the development of
language models. Researchers and
engineers continuously work on
improving model architectures, training
methodologies, and evaluation
techniques to mitigate the occurrence of
hallucinations and enhance the reliability
and accuracy of large language models.

Explain
transformer
architecture
simple terms

in

Sure! The transformer architecture is
a type of deep learning model that has
revolutionized natural language
processing (NLP) tasks. It's called a
"transformer" because it transforms input
data into meaningful representations.

At its core, the transformer
architecture is made up of two main
components: the encoder and the

decoder. Both the encoder and decoder
consist of multiple layers of attention
mechanisms and feed-forward neural
networks.

The encoder's job is to take an input
sequence, such as a sentence, and
convert it into a set of hidden
representations. It processes the input
sequence one token at a time and applies
attention mechanisms to capture the
relationships between different tokens.
The attention mechanism allows the
model to focus on relevant parts of the

input sequence and weigh their
importance in generating the
representations.

The decoder, on the other hand, takes
the encoder's hidden representations and
generates an output sequence. It also
uses attention mechanisms, but with a
slight modification called "masked
attention" to ensure that the model only
attends to tokens that have already been

A transformer is a

type of neural
network. It is
composed of
multiple layers of

neurons. Each layer
is connected to the
previous layer, and
the output of each
layer is connected to
the input of the next
layer. The output of
each layer is used as
the input of the next

layer. The
transformer

architecture is
composed of
multiple layers of

neurons. Each layer
is connected to the
previous layer, and
the output of each
layer is connected to
the input of the next
layer. The output of
each layer is used as
the input of the next
layer. The output of
each layer is used as
the input of the next
layer. The output of

ChatGPT

:5/5

1/5

Alpaca:

generated, preventing it from "cheating"
by looking ahead in the output sequence.

During training, the transformer
learns to optimize its parameters by
minimizing the difference between its
predicted output and the desired output
using a technique called
backpropagation. This allows the model
to learn the patterns and relationships in
the input data.

One of the key advantages of the
transformer architecture is its ability to
handle long-range dependencies in
sequences. Unlike previous models that
relied on recurrent neural networks
(RNNs), which process sequences
sequentially, the transformer can process
all tokens in parallel. This parallel
processing enables faster training and
inference, making it highly efficient.

Transformers have been incredibly
successful in NLP tasks such as machine
translation, text summarization, and
question answering. They have also been
applied to other domains like computer
vision and speech recognition,
demonstrating their versatility and
effectiveness in various applications.

each layer is used as
the input of the next
layer. The output of
each layer is used as
the input of the next
layer. The output of
each layer is used as
the input of the next
layer. The output of
each layer is used as
the input of the next
layer. The output of
each layer is used as
the

Please write
a code in
Python to solve
the problem.
Given an array
of integers
nums and an
integer target,
return indices
of the two
numbers such
that they add
up to target.

You may
assume that
each input
would have
exactly one
solution, and

you may not
use the same
element twice.
You can
return the

def twoSum(nums, target):

num_map = {}

for i, num in enumerate(nums):
complement = target - num
if complement in num_map:

return
[num_map[complement], i]

num_map[num] = i

return []

def
two_sum(nums,
target):
for i in
range(len(nums) - 1):
for j in
range(i + 1,
len(nums)):
if nums[i]
+ nums|j] == target:
return
[i, j]

return []

O6ungi
Mo/ieJi
BIOPA/IUCh
i3
3aBJaHHSM,
ane
CKJIa[IHICTh
PO3B’SI3KY
ChatGPT €
MEHUIOK -
O(n), HIX
CKJ/Ia/IHiCTh
PO3B’SI3KY
Alpaca - O(

nz),
ChatGPT
:5/5

Alpaca:
4/5

answer in any
order.

Please write
a code in
Python to solve
the problem.
Given a string
s, find the
length of the
longest
substring
without
repeating
characters.

def lengthOfLongestSubstring(s):
unique_chars = set()
left = right =0
max_length =0

while right < len(s):

if s[right] not in unique_chars:

unique_chars.add(s[right])
max_length
max(max_length, right - left + 1)

right += 1

else:
unique_chars.remove(s[left])
left +=1

return max_length

def

longestSubstringWit
houtRepeating(s):
longestSubstring = ""

for i in
range(len(s)):

for j in
range(i+1, len(s)):

if s[i] !=
s[j] and s[i] !=s[j+1]
and s[i] != s[j+2] and
s[i] != s[j+3] and s[i]
1= s[j+4] and s[i] !=
s[j+5] and s[i] !=
s[j+6] and s[i] !=
s[j+7] and s[i] !=
s[j+8] and s[i] !=
s[j+9] and s[i] !=
s[j+10] and s[i] !=
s[j+11] and s[i] !=
s[j+12] and s[i] !=
s[j+13] and s[i] !=
s[j+14] and s[i] !=
s[j+15] and s[i] !=
s[j+16] and s[i] !=
s[j+17] and s[i] !=
s[j+18] and s[i] !=
s[j+19] and s[i] !=
s[j+20] and s[i] !=
s[j+21] and s[i] !=
s[j+22] and s[i] !=
s[j+23] and s[i] !=
s[j+24] and s[i] !=
s[j+25] and s[i] !=
s[j+26] and s[i] !=
s[j+27] and s[i] !=
s[j+28] and s[i] !=
s[j+29] and s[i] !=
s[j+30] and s[i] !=
s[j+31] and s[i] !=
s[j+32] and s[i] !=
s[j+33] and s[i] !=
s[j+34] and s[i] !=
s[j+35] and s[i] != s[j

ChatGPT otpumas 25 6aniB 3 25 MokiuBuX, Toai sk Alpaca Tineku 10. Biamorizi ChatGPT
TIOBHi i BiAMOBiZat0Th 3anuTy. Alpaca 3alMK/TIOETHCS Ha TIOBTOPEHHI TTOC/TiZIOBHOCTI CJIiB TIiC/Is Aeskol
YaCTUHU 3reHepPOBaHOr0 TEKCTY, a TAKOXK TPUBAJIICTh reHepallii pe3y/bTaTy 3HauHO TMepeBULIYE uac
Bignosigi ChatGPT i socsrae Ha edKuX 3anuTax 2,5 XBU/INH.

BucHoBKH

OTXe, oxapakTepu3yBaBLUM MOMY/ISPHi BeJWMKI MOBHI MOAesi, IO € y BiJKPUTOMY AOCTyMi, i
ropiBHsABIIM ofiHY 3 HUX 3 ChatGPT, Mo)kHa mificymyBarH, 1110 AOCATHYBIIIM Bpa)KaloUMX pe3y/bTarTiB,
Be/IMKi MOBHI Mogie/ti Bce > He To36aB/ieHi HeZo/iKiB Ta 0OMeXKeHb i BCe Iije BifIcTaroTh Bif Takoi
noty>kHoi MoBHOI Mofieni ik ChatGPT. OcHOBHI He/IO/iKK: 3[]aTHICTh TeHepyBaTH TeKCTH HEeTUUHOTO
I TOKCMYHOrO 3MICTy, Ta/IfOLMHALlii, I10raHo CIIpaB/SIOTBCS I3 3aBJaHHsAMM, I[10B’SI3aHUMU 3
MaTeMaTHUKOI YW MipKyBaHHsAMH. 3a Tabmuuero jizfepiB Big Hugging Face, 3-mOMiXK pO3MIsSTHYTHX
Be/IMKMX MOBHUX MOJie/ied Y BiJKpPUTOMY JOCTYyTI, HalKpaioro € Vicuna* (auB. Tabmurmio 1). Ase
MOTpiOHO 3Ba)kaTW Ha TOH (akT, 10 ciM’ss Momenedi Falcon 3’sBuiacs BiJHOCHO HeJABHO i Ma€
Oaratoo0ilsitoui TepCrieKTHBY, a TeXHiKaMU KBaHTYBaHHs MoOje/ield J03BOJISIOTh TMPOBOAUTH TOHKe
HaJallTyBaHHS MOBHUX Mojesielt 3 7 MinbsipZamMu nlapaMeTpiB Ha rpadiuHomy mporiecopi Tesla T4 3
16 T'6 omeparuBHOi mam’siTi B Oe3komToBHiMi Bepcii Google Colab. Tomy Bapro ouikyBaTtu
TOKpAaLLeHHs pe3y/IbTaTUBHOCTI MOZesi BiJj yUaCHUKIB CITIJIbHOTH.

Tabmuust 2. Pe3ynbTaTUBHICTh BEIMKUX MOBHUX MOJeIeH 3arajJbHOr0 IpU3HAUEHHsA 3 7-Ma
MiIbsIpAaMHy NapameTpiB. I1osiCHeHHSI KOHTPOJILHUX TeCTIB:

AT2 Reasoning Challenge (25-shot) - Habip 3anvTadb 3 IPUPO/I03HABCTBA /IJIsT IOYATKOBOI ITTKOJIH;

HellaSwag (10-shot) - Tect Ha 370poBuUii T/Iy3[, KUt Jierkuit as yofent (~95%), ane ckaagHUA
st mogeneid SOTA.

MMLU (5-shot) - Tect asia BUMiproBaHHSI GaraTo3a/lauHoi TOUHOCTI TeKCTOBOI Mogesni. Tect
OXOIUTIOE 57 3aBJaHb, CepeJl SIKUX ejleMeHTapHa MareMartuka, ictopig CLIA, iHpopmaTtuka, mpaBo
TOLI.

Truthful QA (0-shot) - Tect A1 BUMipIOBaHHSI CXWILHOCTI MOJIE/i BifITBOPIOBATH HEIpaBAy, SKY
3a3BMuali MO)KHa 3HalTH B [HTepHeTi.

*[IpuMiTKa: BHUOpPaHO MOBHI MOZesi 3arajJbHOrO IpHU3HAYeHHS 3 MaKCHMa/lbHUM Cepe/iHIM
3HauUeHHsIM pe3y/bTaTy cepes ycix Mmogeseit cim’

Agrtop/Ha3zBa mogeri CepenH AR HellaSwag MM (5-s) TruthfulQ
€ 3HaueHHsa | C (10-s) A (0-s)
(25-5)
eachadea/vicuna-7b- 52.2 47 75.2 37.5 48.9
1.1
chavinlo/alpaca-nati 49.6 48.9 76.1 36.3 37.2
ve
tiiuae/falcon-7b-instr 48.4 45.9 70.8 32.8 44.1
uct

CIINCOK BUKOPUCTAHOI JIITEPATYPU

1. Ashish Vaswani, Noam Shazeer, Niki Parmar, and others. Attention Is All You Need. June
2017. https://arxiv.org/abs/1706.03762

2. Jingfeng Yang, Hongye Jin, Ruixiang Tang and others. Harnessing the Power of LLMs in
Practice: A Survey on ChatGPT and Beyond. April 2023. https://arxiv.org/abs/2304.13712

3. Open LLM Leaderboard.
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

4. Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, and others. Alpaca: A Strong, Replicable
Instruction-Following Model. March 2023. https://crfm.stanford.edu/2023/03/13/alpaca.html

5. Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, and others. Stanford Alpaca: An
Instruction-following LLaMA Model. March 2023.
https://github.com/tatsu-lab/stanford_alpaca

6.

7.

Long Ouyang, Jeff Wu, Xu Jiang, and others. Training language models to follow instructions
with human feedback. March 2022. https://arxiv.org/abs/2203.02155

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, and others. Vicuna: An Open-Source
Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. March 2023.
https://lmsys.org/blog/2023-03-30-vicuna/

Leandro von Werra, Younes Belkada, Sourab Mangrulkar, Lewis Tunstall. The Falcon has
landed in the Hugging Face ecosystem. June 2023. https://huggingface.co/blog/falcon

JleBinbkuii Cepriii MoiicelioBHUY - acripaHT Kade[pu CUCTeMHOTO aHami3y Ta iHdopMarjiitHux
TeXHOJIOTiN

Levitskyi Serhii Moiseiovych - graduate student of the Chair of System Analysis and Information
Technologies

