
UDC 004.4

Бабюк Н. П.

Наконечний В. В.

MVI Architecture in Android
Вінницький національний технічний університет

Анотація
Стаття містить загальну інформацію про сучасний архітектурний стиль MVI та деталі його

реалізації в Android розробці.

Ключові слова: MVI, архітектура, архітектурний стиль, Android розробка.

Abstract
The article contains general information about the modern MVI architecture pattern and its implementation

details in Android development.

Keywords: MVI, architecture, architecture pattern, Android development.

Introduction

Architecture patterns play a crucial role in structuring and organizing code for Android

applications. Their main purpose is to divide the code into certain layers or to separate concerns. There

are several existing patterns with their advantages and disadvantages, for instance, MVC [1]. The MVC

pattern is one of the oldest Android app architectures. It aims to separate concerns and provide a clear

structure for code. MVC stands for Model View Controller where Model is responsible for data storage,

domain logic, and communication with databases and networks. View handles the UI layer, visualizing

data from the Model. The Controller contains core logic, responding to user behavior and updating the

Model. But this pattern has disadvantages: code layers still depend on each other and it lacks a

mechanism for handling UI logic explicitly. So later on more architectural patterns started to appear. The

most widely-used pattern is MVVM (Model View Viewmodel) and it was the most modern one until

MVI (Model View Intent) was founded. MVI provides a more rigid structure, emphasizing unidirectional

data flow, immutability, and explicit Intent handling. While MVVM remains popular, MVI offers

additional guarantees for maintainable and predictable Android app development.

About MVI

MVI [2], short for Model-View-Intent, is an architectural pattern that emphasizes unidirectional

data flow and a reactive approach to building user interfaces. It draws inspiration from concepts like

Redux in web development and combines them with the principles of reactive programming. As Android

app development matured, developers encountered challenges related to managing complex UI states,

handling user interactions, and maintaining codebases as applications scaled. Traditional architectures

like Model-View-Controller (MVC) and Model-View-Presenter (MVP) struggled to address these

challenges effectively. MVI emerged as an alternative that offered a more structured and predictable

approach to handling state and UI updates. In MVI, the architecture is divided into three main

components:

• Model: Represents the state of the application. It encapsulates all the data required for rendering

the user interface.

• View: Represents the user interface. It observes the state changes emitted by the Model and

renders the UI accordingly.

• Intent: Represents the user's intention or action. It captures user interactions such as button clicks,

text input, etc., and converts them into immutable objects.

MVI follows a strict unidirectional data flow, ensuring that data flows in a single direction: from

the Model to the View. This simplifies the flow of information, making it easier to reason about the

application's behavior and maintain consistency. The state in MVI is immutable, meaning once created, it

cannot be modified. Any state change results in the creation of a new state object. This immutability

ensures predictability and helps in managing the application state more effectively. MVI leverages

reactive programming principles, typically using libraries like RxJava or Kotlin Coroutines with Flow.

Observables are used to represent streams of data, allowing components to react to state changes

reactively.

MVI has several advantages over other patterns:

• MVI encourages a clear separation between the Model, View, and Intent, making it easier to

understand and maintain codebases.

• Since business logic is contained within the Model, it becomes easier to write unit tests for

individual components. Testing becomes more predictable due to the unidirectional data flow.

• With an immutable state and strict data flow, managing the application state becomes more

predictable, reducing the chances of bugs related to state inconsistency.

• MVI facilitates reactive UI updates, where the View reacts to changes in the Model's state. This

leads to a smoother and more responsive user experience.

Implementation in Android

 In other architectures such as MVP or MVVM, the definition of the Model typically refers to the

data layer and the domain layer. This Model acts as a bridge between the application and remote data

sources. In contrast, within the MVI pattern, the Model represents data but is structured as an immutable

state. This implies that state modifications occur solely within the app's business logic, ensuring that

alterations to the state are confined to a single location. Consequently, the business logic becomes the

only source of truth responsible for generating the immutable Model [3].

The View reacts to state changes emitted by the ViewModel and updates the UI. In the

ViewModel, process intents and update the application state accordingly. Emit the new state to be

observed by the View. Capture user interactions (intents) in the View layer and pass them to the

ViewModel.

Conclusion

The Model-View-Intent (MVI) architecture pattern offers a structured and efficient approach to

building Android applications. By enforcing a unidirectional data flow and emphasizing reactive

programming principles, MVI promotes maintainability, testability, and a better user experience. While it

may require a learning curve for developers unfamiliar with reactive programming concepts, the benefits

it brings to the table make it a compelling choice for modern Android app development.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

• https://www.geeksforgeeks.org/android-architecture-patterns/

• https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a

• MVI Architecture with Android. The application lifespan is tied to its… | by Rim Gazzah | The
Startup | Medium

Наконечний Влас Володимирович – студент групи 3ПІ-22б, Факультет інформаційних технологій та

комп’ютерної інженерії, Вінницький національний технічний університет, м. Вінниця, Україна, e-mail:

vlas.nak.05@gmail.com
Бабюк Наталя Петрівна – кандидат технічних наук, доцент кафедри програмного забезпечення,

Вінницький національний технічний університет, м. Вінниця, e-mail: babiuk@vntu.edu.ua.

Nakonechnyi Vlas – student of group 3PI-22b, Faculty of Information Technology and Computer Engineering,

Vinnytsia National Technical University, Vinnytsia, Ukraine, e-mail: vlas.nak.05@gmail.com

Babiuk Natalia – Ph. D., associate Professor at the Department of the Software Engineering, Vinnytsia National

Technical University, Vinnytsia, e-mail: babiuk@vntu.edu.ua

https://www.geeksforgeeks.org/android-architecture-patterns/
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a
mailto:babiuk@vntu.edu.ua

