VIIK 004.43
1. B. [eiidyx

THE FUTURE OF THE PYTHON PROGRAMMING LANGUAGE
WITHOUT GIL

Vinnytsia National Technical University

AHoTanisa

YV yiii cmammi onucano nomounuii cman KouKypenmuocmi 6 Python, 3 Haconocom Ha 00MedCceHHs, HAKAAOeHI
Inobanvnum onoxysanuam inmepnpemamopa (GIL). Bona docnioscye pisni moOeni KonKypeHmHocmi, maxi ax threading ma
multiprocessing, a makooc 6ioniomexu, maxi ax AsynclO. Cmamms gucgimaroe Hamazantna noooramu oomexcenns GIL ma
nomenyian mandymuvoco Python 6e3 GIL 0na nokpawjenmHs npoOyKmugHoOCmi ma GION0GIOHOCMI UMO2AM CYHUACHUX
00UUCTIOBATILHUX CepedosULY.

Koarouosi ciioBa: Python, konkypenTHicTb, GIL

Abstract

This article discusses the current state of concurrency in Python, emphasizing the limitations imposed by the Global
Interpreter Lock (GIL). It explores various concurrency models, such as threading and multiprocessing, as well as newer
additions like AsynclO. The article highlights ongoing efforts to overcome the constraints of the GIL and the potential for a
GIL-free Python future to enhance performance and meet the demands of modern computing environments.

Keywords: Python, concurrency, GIL

The future of Python, particularly concerning the Global Interpreter Lock (GIL) and its concurrency
capabilities, is a subject of significant interest within the development community. This article delves into the
current landscape of concurrency in Python, the implications of the GIL, and the anticipated trajectory Python
might follow should it move beyond the GIL.

Concurrency in Python is facilitated through several frameworks and modules, each catering to different
programming needs. Threading, for instance, allows Python to execute multiple threads concurrently. However,
the GIL — a mutex that prevents simultaneous execution of Python byte codes by multiple threads — means that
threading is primarily beneficial for I/O-bound tasks rather than CPU-bound tasks. For CPU-bound operations,
the multiprocessing module offers a workaround by enabling parallel execution across multiple processors,
sidestepping the GIL's limitations.

AsynclO emerged as a significant addition to Python's concurrency toolkit, introducing a single-threaded,
single-process model that uses coroutines for concurrent task management. This model is particularly adept at
handling high I/O-bound operations, like network communications or file handling. Additionally, the concurrent
futures module simplifies concurrent programming by abstracting the complexities involved in thread and
process pool management, providing a more accessible interface for parallel execution.

The presence of the GIL in Python has long been a contentious issue. While it facilitates thread safety within
the CPython interpreter and simplifies certain aspects of Python’s implementation, it also constrains the
language’s ability to fully utilize multicore processors for parallel execution of CPU-bound tasks. This limitation
has started ongoing debate and various proposals for overcoming or eliminating the GIL to unlock true parallel
processing capabilities in Python.

PEP 703 proposes several changes to CPython, including modifications to reference counting, garbage
collection, memory management, and the integration of deferred and biased reference counting. It also
introduces a new build configuration that allows for a version of CPython without the GIL, which can be toggled
on or off during compilation. [1]

The Steering Council of Python has accepted PEP 703 with a proviso that the rollout be gradual and
disruptive changes be minimized. There is an understanding that if necessary, all changes related to PEP 703
could be rolled back, or even the entire proposal could be reversed. [1]



The implementation of PEP 703 is expected to be a long-term project, involving multiple stages over several
years. During this time, the CPython interpreter will transition to make the no-GIL version optional, then
supported, and eventually the standard version of CPython. [2]

The quest for a Python without the GIL is not merely a technical challenge; it represents a pivotal evolution in
Python's concurrency model. As Python continues to dominate in fields ranging from web development to data
science, enhancing its concurrency capabilities is crucial to meeting the demands of contemporary computing
environments. The road to overcoming the GIL's constraints is fraught with challenges, yet it offers Python an
opportunity to evolve and better serve its diverse and growing user base. This ongoing journey reflects the
vibrant dynamism and innovative spirit that characterize the Python community.

REFERENCES

1. PEP 703 — Making the Global Interpreter Lock Optional in CPython | peps.python.org [Enexrponnuii pecypc] / PEP 0 — Index of

Python Enhancement Proposals (PEPs) | peps.python.org. — Pexxum moctymy: https:/peps.python.org/pep-0703/ (nata 3BepHEHHS:
10.02.2024).

2. Python moves to remove the GIL and boost concurrency [Enextponnuit pecypc] // InfoWorld. — Pexum pgoctymy:

https://www.infoworld.com/article/3704248/python-moves-to-remove-the-gil-and-boost-concurrency.html (nara 3BCPHCHHS:
10.02.2024).

Heiidyk Jlenuc BanepiiioBua — cryment rpynu 2I11-226, dakynsrer iHopMaLiiiHnX TeXHONOTiH 1 KOMII I0TepHOI
imkeHepii, BIHHUIbKHI HalllOHATBHUI TEXHIYHUN YHIBepcuTeT, M. Binnuus, e-mail: deibukdenys@gmail.com

HaykoBmii kepiBHmk: MenpHuk Mapuna bBopuciBHa, Bukianau aHDIiidchkoi MOBH, Kadenpa IiHO3EMHUX MOB,
BiHHUIbKUIT HAI[IOHATBHUI TEXHIYHUN YHIBEPCUTET.

E-mail: melnykmaryl@gmail.com

Deibuk Denys V. — Student of the Department of information technologies and computer engineering, Vinnytsia
National Technical University, Vinnytsia, e-mail: deibukdenys@gmail.com

Scientific supervisor Melnyk Maryna Borysivna — teacher of English, Department of the Foreign Languages, Vinnytsia
National Technical University.

E-mail: melnykmaryl@gmail.com



mailto:deibukdenys@gmail.com
mailto:melnykmary1@gmail.com
mailto:deibukdenys@gmail.com
mailto:melnykmary1@gmail.com

