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A B S T R A C T

This paper introduces a novel methodology to enhance privacy in Cooperative Intelligent Transport Systems
(C-ITS) by improving unlinkability in vehicle-to-everything (V2X) communication. Focusing on the Cooperative
Awareness Basic Service, we employ a Hidden Markov Model (HMM) to model the unlinkability of Cooperative
Awareness Messages (CAMs) exchanged between vehicles and roadside units (RSUs) under the surveillance of
a Global Passive Adversary (GPA). Implementing a joint obfuscation approach maximizes unlinkability by
transforming the CAMs’ original data within a distortion threshold, preserving data utility while confounding
the GPA’s ability to reliably link messages to specific vehicles. The experimental evaluation confirms the
superiority of our method when compared with multivariate independent noise models, including Gaussian
and Laplace. Our approach also incorporates an authentication protocol, ensuring the secure and collaborative
execution of the obfuscation algorithm by the vehicles involved.
1. Introduction

Current transport systems are evolving with a significant focus on
automation, embodied in Cooperative Intelligent Transport Systems
(C-ITS). These systems leverage real-time information sharing across
diverse network entities, including vehicles and infrastructure, to en-
hance service delivery based on the current state of the transport
environment [1]. C-ITS harnesses advanced communication, sensor,
and control technologies, aiming to improve road safety, efficiency,
sustainability, and user comfort. A key technology within this ecosys-
tem is Vehicle-to-Everything (V2X), which enables various applications,
such as collaborative forward collision warnings and electronic brake
light alerts during emergencies [2,3]. Despite its benefits, V2X raises
critical privacy concerns. For instance, Cooperative Awareness Messages
(CAMs), which transmit unencrypted geospatial data at high frequencies
(1–10 Hz) to boost traffic safety and flow, can be intercepted by a Global
Passive Adversary (GPA). This growing dependence on V2X and CAMs,
therefore, highlights a pressing question: What techniques can enhance
the privacy of V2X communications?
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Germany, project KOMSENS-6G (funding label 16KISK122).
∗ Corresponding author.
E-mail addresses: yevhen.zolotavkin@barkhauseninstitut.org (Y. Zolotavkin), yuriy.baryshev@vntu.edu.ua (Y. Baryshev),

jannik.maehn@barkhauseninstitut.org (J. Mähn), lukichov.vitalyi@vntu.edu.ua (V. Lukichov), stefan.koepsell@barkhauseninstitut.org (S. Köpsell).
URL: https://www.barkhauseninstitut.org (S. Köpsell).

The question above is complex due to the inherent tension between
data utility and privacy. Our work focuses on developing a privacy
model grounded in unlinkability as defined in ISO/IEC 15408-2 [4].
Unlinkability ensures that an adversary cannot determine whether
multiple observed data points are related to the same user. Achiev-
ing unlinkability in V2X is particularly challenging because it is not
attainable by a single user acting alone; it requires the cooperation of
multiple users. Consequently, our approach involves a joint obfuscation
methodology where two users (Alice and Bob) – driving their vehicles –
collaborate to unlink their CAM data, thereby enhancing privacy with-
out significantly compromising the utility of the information shared
with the roadside unit (RSU).

The effectiveness of privacy-preserving techniques in V2X is heav-
ily influenced by assumptions about potential adversaries’ capabilities.
Experts are divided on this front. Some assume that the GPA is weak,
lacking access to actual identities and precise locations of vehicles or
individuals [5,6]. Under this assumption, the GPA relies on heuristics
such as multiple target tracking to infer information, making it difficult
to quantify private information leakage with confidence due to the
reliance on uncertain adversarial strategies [7].
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Conversely, other experts, including ourselves, assume a strong
PA, possess comprehensive knowledge of real vehicle identities, and
an observe all communications within the network [8,9]. However,

if effective privacy measures are in place, this adversary may still be
uncertain about how to link obfuscated CAMs to specific identities.
Adopting the strong GPA assumption allows us to utilize information-
theoretic approaches to quantify the leakage of personally identifiable
information (PII) [10]. This facilitates the development of privacy-
reserving strategies with higher assurance levels, as the adversary’s
apabilities are more clear in that case.

Our obfuscation methodology aims to optimize certain parameters
within our privacy model to maximize uncertainty for the adversary
while adhering to distortion constraints. These constraints ensure that
the obfuscated data remains within acceptable limits of accuracy and
utility for V2X applications. Striking this balance is crucial; exces-
sive obfuscation can degrade the quality of information necessary for
safety-critical functions, whereas insufficient obfuscation may fail to
adequately protect user privacy. By defining optimal obfuscation under
distortion constraints, we provide a framework that enhances privacy
without undermining the fundamental benefits of V2X communica-
tions.

Based on the above considerations, the contribution of this paper
is as follows.

• We propose a model based on Hidden Markov Model (HMM) de-
scribing transitions between the joint states of Alice and Bob. We
then introduce an assumption about a strong GPA who knows the
original locations of the users and demonstrate how it simplifies
reasoning about a lower bound on unlinkability;

• We develop a new methodology for optimal joint obfuscation
where unlinkability is expressed using a Shannon entropy, which
is maximized by modifying the original data under the constraint
on distortion;

• We propose an algorithm implementing the developed obfus-
cation methodology and an authentication protocol, improving
security assurances for the proposed obfuscation algorithm.

This paper has the following structure. In Section 2, we briefly
systematize the works on obfuscation dealing with different types of
GPAs. In Section 3, we set the grounds for our study: we provide
initial definitions and assumptions. This is followed by Section 4, where

e commence with a simplified model for obfuscation. We extend
he model to include possible dependencies between CAMs produced
t consecutive times; as a result, we obtain a Hidden Markov Model

(HMM) to study the unlinkability of CAMs. In Section 5, we refine and
ormalize assumptions, define unlinkability through entropy, and opti-
ize joint obfuscation, capable of producing observable states in HMM.
ext, Section 6 describes a compact and efficient algorithm calculating

the unlinkability in C-ITS and implementing previous findings to im-
prove privacy. In Section 7, we experimentally evaluate the developed
joint obfuscation approach and compare it with Gaussian and Laplacian
obfuscation models. In Section 8, we develop a protocol for mutual
authentication of users using Public Key Infrastructure (PKI) facilitating
the use of the newly proposed obfuscation approach. Finally, we discuss
our results, their novelty, advantages, and limitations in Section 9.

2. Existing works

We survey some existing approaches for privacy evaluation and
mprovement in the context of location-based services (LBS) utilizing
2X communication. The prevailing view of the role and capability
f adversaries in the literature dealing with LBS privacy in V2X is as
ollows. All types of passive adversaries observe users’ attributes in the
ntercepted (and often unencrypted) V2X communication (e.g., CAMs’)
ontent. The original attributes of the intercepted content are altered
obfuscated) by the users (prior to message transmission) to improve
heir privacy. Conditioned by these altered attributes in the intercepted
 I

2 
messages, the adversary infers the ids (or actual locations) of the users
who produced these messages. Such a non-consensual interception and
inference may cause the linking of the messages. We further classify
the privacy approaches in the literature based on the information that
is available to the passive adversary for inference. First, we will survey
papers dealing with weak Global Passive Adversary (GPA). Second, we
will examine papers dealing with strong GPA. Third, we will review pa-
pers adopting the strong GPA concept and executing jointly optimized
simultaneous obfuscation of multiple data items.

2.1. Weak GPA

Here, we consider literature where an adversary infers the links
etween modified (obfuscated) data items and ids (or ground truth
ata) of the users. The probabilities for the links are defined based
n the distribution available to the adversary. This general distribution
an be further refined if the actual subset realization of the original

(e.g., ground truth) data at time step 𝑖 is also known to the adversary.
However, such a subset is usually hidden and must be first estimated
based on the modified data observed at time steps preceding 𝑖. The
eed to estimate the hidden subset for a refined inference makes the
dversary weaker.

In [5], the authors analyze the privacy of Location-Based Services
(LBSs) using Hidden Markov Models (HMMs). Among other attacks, the
authors consider De-Anonymization and Tracking attacks on the loca-
tion information of mobile users. According to the authors’ convention,
an adversary knows the probability distribution of users’ pseudonyms
over a set of modified (obfuscated) geographic positions conditioned
by their actual ids and actual locations. Because actual locations are
unknown, they need to be estimated: these estimations are improved
if previously reported locations and transition probabilities are known
and taken into account by the adversary. To incorporate the latter,
the authors use several techniques, including Forward-Backward and
Viterbi algorithms. Finally, the authors use the Hungarian algorithm to
find the most likely assignment of users’ pseudonyms to the original
ids.

In [11], the authors extend on their previous results considering
privacy in LBS: they propose a new location-privacy protection mech-
nism (LPPM) which is based on Stackelberg Bayesian game where

various privacy objectives may be admitted. Among other objectives,
the authors aim at protecting the correlation between past, current, and
uture locations. The relations between the actual locations (e.g., hid-
en from the adversary) and pseudo locations (e.g., observable) can
e modeled using HMM or any other suitable methodology. In the
ame, the defender maximizes the expected error that the optimal

adversary incurs in reconstructing the user’s actual trace. In turn, the
dversary produces inference (e.g., best response), minimizing such an
rror after the defender completes their move in the game. To find
quilibrium, the authors perform a linear optimization: as a result,
hey define a conditional distribution dubbed ‘defensive mechanism
ncoding function’. Nevertheless, such an optimization relies on other
arameters that need to be estimated: the optimality of the existing
stimation methodologies is questionable. For example, an adversary
s using prior probability distribution on the inference target location
t time step 𝑖, given the adversary’s prior knowledge derived from
revious time steps, while the details of obtaining (e.g., estimating)
uch a distribution are not discussed.

The authors of Khodaei and Papadimitratos [6] present a novel
scheme to exchange vehicular pseudonyms in cooperative and crypto-
raphically protected mix zones. Thanks to disseminating decoy traffic

(e.g., CAM messages), the authors report an improved unlinkability: for
this, a special group of relaying vehicles emulate nonexisting vehicles.
The vehicles participating in the scheme can filter these decoy messages
out. This is done using a specially designed Cuckoo Filter, whose
parameters are known to the legitimate vehicles and part of the C-

TS infrastructure, including RSU. The unlinkability of the scheme is
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Computer Networks 257 (2025) 110972 
tested against GPA, and a tracking algorithm is used before and after
ix zones to infer the users’ ids. The tracking algorithm considers

information in CAMs (timing, velocity, and location) and the road
layout. The authors neither reason about the optimality of the tracking
algorithm nor constrain its design. Instead, they propose a heuristic
algorithm achieving some tangible results in tracking. As a result,
inference about the links between the observable data items and users’
ids can be improved if a more efficient tracking algorithm is discovered.

The hidden state estimation is one of the most significant limitations
f the weak GPA models. The methodology for such an estimation
s often sub-optimal, which causes additional uncertainties for the

adversary. These additional uncertainties are difficult to quantify: the
confidence in quantitative privacy statements is low, resulting in a low
ssurance level for corresponding claims. The level of privacy assurance
an be strengthened for situations assuming a strong GPA.

2.2. Strong GPA

Similarly to the convention about the adversary in Section 2.1, here
we analyze the literature where an adversary infers the links between
modified (obfuscated) data items and ids of the users. However, in con-
trast to Section 2.1, at any time step 𝑖, the probabilities for such links
are derived from a known distribution and do not need to be refined.
As a result, adversarial inference cannot be further strengthened based
on the estimation of additional parameters. The latter brings a higher
confidence in the quantitative assessment of unlinkability and privacy
n general.

To improve unlinkability in the V2X communication scenario, the
authors of Li et al. [8] develop a new method to swap vehicles’
seudonyms. For reasoning about adversarial inference, the authors
tilize generalized differential privacy: the vehicles swap their pseudo-
yms based on the exponential mechanism satisfying the pseudonym
ndistinguishability condition. These settings imply that the probability
istribution for the links between the modified (swapped) pseudonyms
nd actual ids of the vehicles is available to the adversary. The au-
hors assure that no further improvement of the adversarial inference
e.g., through additional parameter estimation) is possible: the swaps
re only conducted between the small subsets of the vehicles whose
riving states are similar and cannot be easily distinguished. The
imilarity criterion is a weighted sum of individual speed, direction,
nd position similarities for different vehicles.

In [12], the authors develop a new framework protecting the pri-
acy of the users in a variety of location-based services (LBS) where

users submit (and may also query) location-related data to a dis-
trusted server, which further processes and manages it. The framework
helps users protect their privacy (prior to the submission) through
a perturbation-based obfuscation technique: it combines the concept
of Local Differential Privacy (LDP) with the Staircase Randomized
Response (SRR). The authors claim that such an L-SRR framework
optimizes an LBS-oriented utility while guaranteeing strict 𝜖-LDP pri-
vacy. Only parameters of the randomized obfuscation are known to
the adversary who may control the server. Therefore, the knowledge
of the adversary cannot exceed the knowledge about the probability
distribution for the links between the modified data and the actual ids
of the users. As such, the authors maintain that further improvement
of the adversarial inference based on estimating additional (e.g., latent)
parameters is impossible.

The authors of Takbiri et al. [9] develop a model for the use cases
where 𝑛 users change their pseudonyms once after every 𝑚(𝑛) steps. The
uthors introduce the obfuscation and anonymization steps to avoid

pseudonym linking. During the obfuscation, some of the 𝑚 data items
of every user are altered: the number of the altered items may differ
among the users. During the anonymization, the order of representing
𝑚-tupled data collections of all 𝑛 users is randomized: based on the
order of a collection, it is no longer possible to tell the id of the

corresponding user with certainty. At every time step 𝑖, an adversary d

3 
knows the probabilities of the states producing data items for every
ser, parameters of obfuscation, and anonymization algorithms. How-
ver, the exact realizations of random obfuscation and anonymization
utcomes are unknown to the adversary. Also, the adversary has no
ther auxiliary or side information about users’ data.

In situations involving a strong GPA, it is essential to provide
he best level of privacy protection, which is still an open question.
or example, among the existing publications, very few implement
bfuscation methodologies that provide the optimal balance between
nlinkability and the distortion introduced during the obfuscation.

2.3. Optimal obfuscation under strong GPA

Differential privacy (DP) is a popular methodology that can be
dopted for obfuscation in C-ITS assuming a strong GPA. However, in

such a context, multiple data items (e.g., CAMs produced by different
vehicles) must be obfuscated simultaneously at every time step 𝑖.
Here, we question the adequacy of the DP for the task of joint data
modification in ITS.

The authors of Geng and Viswanath [13] propose an optimal data-
independent staircase additive noise to protect the privacy of scalar
query function (QF). Unfortunately, the scalar nature of the proposed
mechanism for QF is a substantial limitation for joint obfuscation in
ITS, where simultaneous processing of multiple entries is required.
The authors of Sun et al. [14] aim at protecting the privacy of multi-
dimensional and correlated queries. For the obfuscation task, the au-
thors utilize a new criterion of 𝜀-proximity under a constraint on
additive noise variance. However, their results suffer from the following
limitations: (i) the usage of a new criterion of 𝜀-proximity remains
unjustified; (ii) the reasoning about optimality is limited by the popular
types of additive multi-variate noise only (e.g., uniform vs. Gaussian
and Laplacian). The authors of both [15,16] maintain that adding i.i.d.
noise to each matrix element (of a matrix-valued QF) typically leads to
sub-optimal solutions. To address this issue, the authors of Chanyaswad
et al. [15] introduce a new Matrix Variate Gaussian (MVG) mechanism:
parameters sufficient to satisfy (𝜖 , 𝛿)-DP exist for the additive MVG
noise. In [16], the authors address the non-optimality of the multi-
variate obfuscation caused by the full-rank covariance matrices in the
Gaussian noise model: they propose a new Rank-1 Singular Multivariate
Gaussian Mechanism (R1SMG) and provide parameters sufficient for
(𝜖 , 𝛿)-DP. Nevertheless, the authors of Chanyaswad et al. [15], Ji and
Li [16] consider specific additive noise models (e.g., multivariate Gaus-
sian) only. Furthermore, a global optimum requires that the obfuscation
conditions sufficient for (𝜖 , 𝛿)-DP are also necessary, which has not
been demonstrated. Paper [17] elaborates on universal optimality for
the d-DP criterion, which was first introduced in [18]. In deriving
optimal obfuscation conditions, the authors of the former source utilize
the Quantitative Information Flow (QIF) technique, which does not
restrict the dimensionality of the QF and its arguments. Nevertheless,
the practicality of Fernandes et al. [17] is limited: the d-DP criterion in-
orporates a distance metric whose application has not been sufficiently

justified and is hardly generalizable.
The analysis of the literature sources provided above indicates

numerous gaps in the methodology dealing with the optimal DP-based
bfuscation of multivariate data records, which is required for joint
ata modification in C-ITS. The results of this paper are meant to fill
hese gaps partially.

3. Preliminaries

We introduce contextual information supporting our aim, settings,
and privacy assumptions to justify the subsequent modeling steps.

3.1. Aim of the study

In specifying our aim, we follow privacy definitions derived from
opular international standards and C-ITS domain-specific recommen-
ations [4,19]. These sources emphasize the importance of pseudonymity
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and unlinkability while producing, exchanging, and processing basic ITS
afety messages (such as CAM).

Definition 1 (Unlinkability of Operations). Requires that users and/or
subjects are unable to determine whether the same user caused certain
specific operations in the system, or whether operations are related in
some other manner.

In the context of V2X communication in C-ITS with many users,
he messages broadcast by the vehicles should have the property of

Definition 1 [19,20]. Unfortunately, usage of this definition is intri-
cate as it describes an exclusively qualitative characteristic: ‘...unable
to determine...’ clause is either false or true. The latter implies that
the privacy of the whole C-ITS (with many vehicles and observable
during many hours) is expressed through a binary value. This issue
has been recognized by practitioners and researchers alike resulting
n extended set of instructions for privacy impact assessment [21].

For example, impact rating criteria for privacy can be expressed using
severity degrees (e.g., negligible, moderate, major, and severe) for the
privacy impact rating indicator. The degrees can be defined based on
two aspects: (a) the level of sensitivity of the information about road
users and (b) how easily it can be linked to a PII (Personally Identifiable
Information) principal. Based on this, we incorporate the easiness of
linking into Definition 1 to obtain a more versatile definition:

Definition 2 (Unlinkability of Operations*). Is the degree of inability to
determine (by users and/or subjects) whether the same user caused
certain specific operations in the system, or whether operations are
related in some other manner.

To compare privacy indicators in C-ITS, we use Shannon entropy: it
s an integral criterion of uncertainty in a system that expresses the
‘...degree of inability to determine...’ [10]. Henceforth, the main aim
f our paper is to develop a methodology maximizing entropy as a
riterion of unlinkability in C-ITS.

3.2. Settings for the study

A general setup for our study is provided in Fig. 1. In Fig. 1(a), two
vehicles are driven by Alice and Bob, respectively. Both vehicles trans-
mit CAMs with the same frequency (synchronously), and the roadside
unit (RSU) receives them without losses. The role of the adversary is
played by the RSU, who tries to separate CAMs of Alice from CAMs of
ob: this allows the adversary to link CAMs received at different times

but belonging to the same entity. The separation is done based on the
content of CAMs and the order of their arrival within each time interval
– see Fig. 1(b). We consider the ordering of CAMs’ arrivals within the
same time interval 𝑖 to be either (𝐴, 𝐵) or (𝐵 , 𝐴). For example, in an
extreme case, the order is (𝐴, 𝐵) on any time interval 𝑖. If an adversary
knows about such a unique property, she can link messages without
nalyzing their payload. However, such extreme cases are unlikely,
eaning that an adversary should also infer the source (e.g., ‘from Alice’

r ‘from Bob’) of a CAM based on its content. The requirements for the
ontent of CAMs can be found in [22]. In particular, we maintain that
eo-position, velocity, and acceleration are essential: these parameters
re mandatory in CAMs.

In this study, we exclude from further consideration the following
types of CAM payload: (1) cryptographically produced proofs of au-
thenticity (e.g., signatures); (2) categorical data (e.g., vehicle role). The
xclusion of ‘(1)’ is due to substantial attention to this issue from the
embers of the cryptographic community. For example, pseudonym
nlinking solutions were proposed in [20,23]. The exclusion of ‘(2)’
s due to categorical data is OPTIONAL in CAMs [22]. We also exclude
VehicleLength and VehicleWidth, which otherwise are likely to
e of great use in discriminating different vehicles [24]. This informa-
ion can be omitted in CAMs if the codes 1023 and 62 are used in place
f the vehicle’s length and width, respectively [25].
4 
Fig. 1. Simplified diagram for awareness communication in C-ITS: (a) RSU receives
message from Alice at 𝑡𝐴𝑖 and from Bob at 𝑡𝐵𝑖 ; (b) Messages from both cars arrive within
time interval 𝑖.

Because of the above arrangements, we further model CAM as a
ector in R𝑧 where 𝑧 ≥ 1. The latter allows us to apply commonly used

distortion measures such as, for example, Squared Error (SE): this is
 simple and straightforward way to express quality degradation of es-

sential location services [11]. Further discussions about the advantages
nd disadvantages of such a distortion metric are beyond the scope of

our paper.

3.3. Privacy assumptions and threats

Here, we briefly outline the rationale behind position obfuscation,
adversarial inference, and the major factors affecting unlinkability
provided by our approach. Subsequent sections introduce additional
details.
Obfuscation: users Alice and Bob coordinate their efforts. They split the
total distortion (e.g., ‘budget’) of obfuscation among 𝑁 − 1 time steps:
as a result, the users know the distortion limit for every time step 𝑖.
At the beginning of every time step 𝑖, Alice and Bob know the true
measurements (including position, speed, acceleration, etc.) of each
other. To obfuscate the data in their CAMs at every time step 𝑖, they
agree on a random order of arrival (at RSU) for their CAMs. The users
efine a joint distribution according to which they change (obfuscate)
heir actual measurements in CAMs: the expected distortion does not
xceed the limits.
Adversary: is strong GPA (as per Section 2.2). In addition, the adver-
sary may know other information, such as the original geo-positions
of the users at every time step 𝑖 and the probabilities for the order
of CAMs’ arrivals. We, however, stress that the links between the
bfuscated CAMs and the original data/identifiers are unknown to the
dversary. She attempts to infer the source of every pair of CAMs
bserved at time 𝑖: entropy is calculated for such a statistical inference,
hich aligns with Definition 2. Specifically, the adversary uses the joint

distribution utilized by Alice and Bob during the obfuscation.
Unlinkability factors: include (i) statistics for the order of CAMs’
arrival, (ii) the limit for the obfuscation distortion, and (iii) the distance
between the actual measurements of Alice and Bob at every time step 𝑖.

4. Mathematical model

The following systematization applies to the theoretical results in
this paper.
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Fig. 2. Hidden Markov Model for 2 users sending CAMs. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

The purpose of the model is to (i) describe obfuscation in terms
f random joint distribution utilized by Alice and Bob; (ii) provide
nference expressions to calculate entropy.
The kind of model is HMM since it is the most generalizable and
lexible in the context of C-ITS. Such an HMM-based description is
uitable for situations dealing with weak and strong GPAs alike. In this
aper, however, we do not explore the full depth of the weak GPA

implications.
The meaning of the components of the model is the following. Hidden
states describe original data and ids directly identifying vehicles and/or
users driving them. Colored states describe the obfuscation algorithm’s
inner workings (e.g., concatenation order of users’ data) and must
ot be revealed to the adversary. Observable states are the results of
bfuscation and are known to the adversary. Using HMM terms, the

main difference between weak and strong GPAs is that a strong GPA
knows hidden states while a weak GPA tries to estimate them. The end
oal of both GPAs is to infer the colored states.
The structure: this section starts with a simplified model where an
dversary is strong and there is no need to estimate additional pa-
ameters for linking. We then consider an HMM to model unlinkability
or situations that include other kinds of adversaries and contexts. The
atter comes at the cost of increased computational demands and an

overall lower level of confidence in the obtained results. To address
this issue, in Section 5, we demonstrate how certain assumptions about
adversaries can simplify reasoning about unlinkability using HMM.

4.1. Simplified model for unlinkability

Here, we provide a preliminary description of the unlinkability
problem in C-ITS using common sets and operations. A generic informa-
tion system with a GPA Eve includes sets of users’ indices (e.g., unique
identifiers) 𝐔, data (e.g., CAMs) 𝐃, and algorithms 𝐏. We consider
subsets  ⊂ 𝐔 and  ⊂ 𝐃, where  = {𝑢1,… , 𝑢𝜄,… , 𝑢

| |

} and
 = {𝑑1,… , 𝑑𝜄,… , 𝑑

||

}, respectively, | | = ||. There is a one-to-one
mapping (which may be known to GPA) between  and  such that
corresponding tuples (𝑢1, 𝑑1), ..., (𝑢𝜄, 𝑑𝜄), ..., (𝑢| |

, 𝑑
||

) can be obtained
nd a set  =

{

(𝑢𝜄, 𝑑𝜄)
}

1≤𝜄≤| |

can be formed. We then define an
lgorithm for joint obfuscation 𝙾 ∈ 𝐏 and a permutation algorithm 𝙼 ∈

𝐏 (the both are known to Eve). We obtain an obfuscated set ∗ = 𝙾
[


]

,
here |∗

| = ||, but in general ∗ ≠ . Algorithm 𝙼 is probabilistic:
the instruction on permuting indices 1,… , | | is a random vector
which particular realization is not known to Eve) 𝐦 = 𝙼

[

| |

]

, 𝐦 ∈
N| |, such that {𝑚 ,… , 𝑚 } = {1,… , | |}, but Pr

(

𝐦 = (1,… , | |)
)

<
1 | |

5 
Table 1
Notations.

Notation Description

ITS Intelligent Transport Systems
C-ITS Cooperative Intelligent Transport Systems
V2X Vehicle-to-Everything
CAM Cooperative Awareness Message
RSU Roadside Unit
HMM Hidden Markov Model
𝐃 Set of user-and-information system related data
𝐔 Set of information system’s users
𝐏 Set of data processing procedures at the information system
P Set of users including Alice and Bob
𝑥𝐴𝑘 , 1 ≤ 𝑘 ≤ 𝜇 A hidden state for Alice
X𝐴 = {𝑥𝐴𝑘 } Set of hidden states for Alice
𝑥𝐵𝑗 , 1 ≤ 𝑗 ≤ 𝜔 A hidden state for Bob
X𝐵 = {𝑥𝐵𝑗 } Set of hidden states for Bob
X(𝐴,𝐵) Set of joint hidden states for

⟨

𝐴𝑙 𝑖𝑐 𝑒, 𝐵 𝑜𝑏⟩
X(𝐵 ,𝐴) Set of joint hidden states for

⟨

𝐵 𝑜𝑏, 𝐴𝑙 𝑖𝑐 𝑒⟩
 Index (label) for rose nodes
X = X(𝐴,𝐵) Set of all rose nodes
 Index (label) for blue nodes
X = X(𝐵 ,𝐴) Set of all blue nodes
L = {,} Set of labels encoding |P|! combinations
Y Set of joint observable states for Alice and Bob
𝑖 ∈ {1, 2,… , 𝑁 − 1} Time-step in discrete HMM
𝑋𝐴

𝑖 Variable on X𝐴 at 𝑖
𝑋𝐵

𝑖 Variable on X𝐵 at 𝑖
𝐗𝑖 Variable for joint hidden state on step 𝑖
𝓁𝑖 Variable on L at 𝑖
𝐘𝑖 Variable on Y on step 𝑖
Pr

(

𝐗𝑖+1 ∣ 𝐗𝑖
)

Probability of transition between hidden states
Pr

(

𝐘𝑖 ∣ 𝐗𝑖
)

Conditional probability for observable states
𝜑 Order mixing (label permuting) probability
𝜌𝑖 Distribution over hidden states on step 𝑖
𝜌𝑖+1|𝜌𝑖 Conditional distribution over hidden states on step 𝑖 + 1
𝑛 Length of keys used for cryptographic transformations

1. The released (obfuscated) set with improved unlinkability is then
 ∗ =

{

(𝑢𝜄, 𝑑∗𝑚𝜄
)
}

1≤𝜄≤| |

, and the expected distortion of obfuscation is
E
(

ℏ , ∗
)

=
∑

𝐦∈N| |
𝜍(𝐦)ℏ , ∗ , ℏ , ∗ =

∑

𝜄 ℏ(𝑑𝜄, 𝑑∗𝑚𝜄
), where ℏ(⋅, ⋅) is

ome suitable distortion measure, and 𝜍(𝐦) is a discrete probability
ensity function for a random vector 𝐦. Adversarial inference (linking)
s typically done by Eve using algorithm 𝙻 ∈ 𝐏 producing ̂ = 𝙻

[

 ∗],
here ̂ =

{

(𝑢𝑚̂𝜄
, 𝑑∗𝑚𝜄

)
}

1≤𝜄≤| |

such that 𝐦̂ = ar g max𝐦∈N| |
Pr (𝐦).

ntropy 
(

𝜍(𝐦)
)

is a widely used indicator expressing uncertainty of
nference [10]. Hence, the goal of optimization is to define algorithms
𝙾 and 𝙼 maximizing 

(

𝜍(𝐦)
)

under the constraint on the expected
E
(

ℏ , ∗
)

.
The above model assumes that Eve is a strong adversary who knows

both  and 𝜍(𝐦). Next, we will consider a model where data  is
hidden from Eve, and instead of 𝜍(𝐦) she only knows a mixture (𝐦)
of multiple possible 𝜍(1)(𝐦),… , 𝜍(𝚥)(𝐦). However, to reduce uncertainty,
Eve may use the dependency between cooperative awareness data 𝑖
and 𝑖+1 produced at time steps 𝑖 and 𝑖 + 1, respectively: based on
he observable ∗

𝑖 , 
∗
𝑖+1, she may obtain (e.g., Forward-Backward al-

gorithm) estimations ̃𝑖+1, 𝜍̃𝑖+1(𝐦) for the actual data 𝑖+1 and density
𝜍𝑖+1(𝐦), respectively.

4.2. Markov model for unlinkability

We use the Hidden Markov Model to model unlinkability in V2X
ith dependent states: it is graphically represented on Fig. 2. The fol-

lowing sets describe the model.1 The set of all users is P =
𝐴𝑙 𝑖𝑐 𝑒, 𝐵 𝑜𝑏,…}. For each user, there exists a set of hidden states for
heir vehicle, e.g., for Alice there is X𝐴 =

{

𝑥𝐴1 , 𝑥𝐴2 ,… , 𝑥𝐴𝑘 ,… , 𝑥𝐴𝜇
}

and

or Bob there is X𝐵 =
{

𝑥𝐵1 , 𝑥𝐵2 ,… , 𝑥𝐵𝑗 ,… , 𝑥𝐵𝜔
}

. Each state, for example,

1 To ease the reading, Table 1 contains our main notations.
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𝑥𝐴1 can be a vector including specific position, velocity, acceleration
nd other characteristics applicable to Alice’s vehicle at certain time.
hroughout the paper we assume that X𝐴∩X𝐵 is in general non-empty.

The system of |P| users is characterized by hidden and observable
joint states. Transition happens between hidden states 𝐗𝑖 and 𝐗𝑖+1

hen time step 𝑖 proceeds to 𝑖 + 1, where joint state 𝐗𝑖 =
(

𝑋𝐴
𝑖 , 𝑋𝐵

𝑖
)

is
he composition (concatenation) of variables 𝑋𝐴

𝑖 ∈ X𝐴 and 𝑋𝐵
𝑖 ∈ X𝐵 .

As such, ∀𝑘, 𝑗(𝑥𝐴𝑘 , 𝑥𝐵𝑗 ) ∈ X(𝐴,𝐵), where |X(𝐴,𝐵)
| = |X𝐴

| × |X𝐵
| (for

simplicity of representation we further assume |P| = 2, |X𝐴
| = 𝜇 = 2,

|X𝐵
| = 𝜔 = 2).
Possible transitions from 𝐗𝑖 to 𝐗𝑖+1 are denoted using indices 1–16

see Fig. 2): these transitions are governed by corresponding proba-
bilities. For example, the transition from 𝐗𝑖 =

(

𝑋𝐴
𝑖 = 𝑥𝐴1 , 𝑋𝐵

𝑖 = 𝑥𝐵1
)

to
𝐗𝑖+1 =

(

𝑋𝐴
𝑖+1 = 𝑥𝐴2 , 𝑋𝐵

𝑖+1 = 𝑥𝐵2
)

is denoted by index 4. The probability
of such a transition is Pr (𝑋𝐴

𝑖+1 = 𝑥𝐴2 , 𝑋𝐵
𝑖+1 = 𝑥𝐵2 ∣ 𝑋𝐴

𝑖 = 𝑥𝐴1 , 𝑋𝐵
𝑖 = 𝑥𝐵1 ). In

practice, these probabilities can be obtained based on the well-studied
physical models for vehicles [26].

For each 𝐗𝑖 of the hidden joint states there are |P|! possible per-
mutations for its concatenated components originating from the users.
These permutations are the major cause of uncertainty when an adver-
sary attempts to label combined CAMs of Alice and Bob. In practice, this
is caused by the unpredictable arrangement of CAMs within each scan
(or session) 𝑖. Hence, a permutation should be selected by randomly
following one of the possible transitions. For example, while the system
is in a joint state

(

𝑋𝐴
𝑖 = 𝑥𝐴1 , 𝑋𝐵

𝑖 = 𝑥𝐵1
)

permutation
(

𝑥𝐴1 , 𝑥𝐵1
)

(rose col-
ored node) should be considered if transition with index 17 takes place,
and

(

𝑥𝐵1 , 𝑥𝐴1
)

(blue colored node) should be considered if transition 18
happens (see Fig. 2). We will use notations 𝐗𝑖, and 𝐗𝑖, for rose and
lue nodes, respectively, where 𝐗𝑖, ∈ X, 𝐗𝑖, ∈ X, and X = X(𝐴,𝐵),
 = X(𝐵 ,𝐴). Further in the text, we will refer to the states represented

by the colored nodes as ‘labelled states’. For the sake of simplicity and
ithout loss of generality, for all realizations of hidden states 𝐗𝑖, we

consider Pr
(

𝐗𝑖,|𝐗𝑖
)

= 𝜑 ≤ 0.5, and Pr
(

𝐗𝑖,|𝐗𝑖
)

= 1 − 𝜑.
To denote the totality of hidden permuted joint states we use set

X{,} = X ∪ X, where |X| ≤ |X{,}| ≤ 2|X|. For every 𝐗𝑖,
nd 𝐗𝑖, there are transitions to observable joint states 𝐘𝑖 ∈ Y, Y =

{

𝑦̂1, 𝑦̌1), (𝑦̌1, 𝑦̂1),… , (𝑦̂𝑞 , 𝑦̌𝑞), (𝑦̌𝑞 , 𝑦̂𝑞),… , (𝑦̂𝜉 , 𝑦̌𝜉 ), (𝑦̌𝜉 , 𝑦̂𝜉 )
}

. Some of these
transitions to observable states are denoted with indices 21–28 on Fig. 2.
Until proven otherwise, the cardinality of Y is considered independent
on |X{,}|.

Measuring uncertainty about label 𝓁 ∈ L, L = {,}, is of our main
interest: this is done based on observable states.

5. Model properties

We follow Definition 2 to formally express unlinkability using con-
ditional entropy 𝐻

(

𝓁1,𝓁2,… |𝐘1,𝐘2,…
)

for the sequence of labels
𝓁1,𝓁2,… ,𝓁𝑁−1, given that an adversary observes 𝐘1,𝐘2,… ,𝐘𝑁−1 [10].
In addition, we demonstrate how certain assumptions can simplify our
reasoning and improve confidence for privacy assurance in C-ITS.

5.1. General expression for unlinkability

For the described HMM, probability of any hidden state at any
time step can be specified using multivariate discrete distribution 𝝆 ∶
X(𝐴,𝐵) × {0, 1,… , 𝑁 − 1} → [0, 1]𝑁

|

|

|

X(𝐴,𝐵)|
|

|. We will further use 𝜌𝑖 slices of
𝝆 such that 𝝆 =

⋃𝑁−1
𝑖=0 𝜌𝑖, where each slice represents a distribution

over hidden states at time step 𝑖. Slice 𝜌0 defines distribution over
the hidden states before the start of the system. Because HMM has
been previously defined (see Fig. 2) using transitional probabilities that
remain unchanged for all time steps, each slice can be fully determined
in a conditioned sequential manner: 𝜌𝑖+1|𝜌𝑖 means that 𝜌𝑖+1 is trivially
derived if 𝜌𝑖 is given.

Since an adversary observes 𝐘1,𝐘2,… ,𝐘𝑁−1 and knows 𝝆 anal-
ysis of 𝐻

(

𝓁1,𝓁2,… ∣ 𝐘1,𝐘2,… ,𝝆
)

is central to our reasoning about

unlinkability. We state the following.

6 
Lemma 1. Unlinkability in V2X system (as per Fig. 2) is expressed as (for
details see Appendix A):
𝐻
(

𝓁1,𝓁2,… |𝐘1,𝐘2,… ,𝝆
)

=
𝑁−2
∑

𝑖=0
𝐻
(

𝓁𝑖+1|𝐘𝑖+1, {𝜌𝑖+1|𝜌𝑖}
)

.
(1)

5.2. Worst-case unlinkability

We aim to obtain a computationally feasible estimation of un-
linkability. Direct utilization of the results of Lemma 1 presupposes
computing {𝜌𝑖+1|𝜌𝑖} which has several disadvantages: (a) transition
probabilities for hidden states need to be specified (which usually
requires studying physical models of movement for the users); (b) total
omputational complexity for defining distributions over the hidden
tates is therefore 𝑂(𝑁 𝜇2𝜔2). To avoid these complications, we develop
ur unlinkability assurance based on a rational lower bound r for

𝐻
(

𝓁1,𝓁2,… |𝐘1,𝐘2,… ,𝝆
)

. The concept of the rational lower bound is
explained through the following assumptions [27].

Assumption 1 (Worst-case Unlinkability). Requires that an adversary
knows sets for the hidden, labeled and observable states. He knows all
the transitions and the order mixing probability 𝜑. For each observable
tate at time step 𝑖 he then defines the worst possible hidden state(s)

which does not contradict his knowledge.

We nevertheless stress that despite Assumption 1 might be viewed as
excessive, the adversary does not know the labeled state 𝓁𝑖 (and cannot
orce its selection) at time step 𝑖.

Assumption 2 (Rational Lower Bound r). Requires that users are
ational and maximize worst-case unlinkability: observable states are
btained through rational obfuscation of the worst labeled states con-
idered by the adversary.

There are several aspects affecting the task of calculating such r :
1) probabilities for transitions between hidden states (e.g., the prob-
bilities defining 𝝆); (2) probabilities for transitions from the hidden
tates to the labeled states (e.g., 𝜑, 1 − 𝜑), and from the labeled states
o the observable states. Further, we consider a situation where the
orst case 𝝆 (minimizing entropy) is defined for (1) while the most
ptimal probabilities (maximizing entropy) are then specified for (2)
nder constraint 𝐷̃ on the total distortion over 𝑁 − 1 steps.

We use the results of Lemma 1 to require the following:

r = min
𝝆

[

𝐻
(

𝓁1,𝓁2,… |𝐘1,𝐘2,… ,𝝆
)

]

=

𝑁−2
∑

𝑖=0
min

{𝜌𝑖+1|𝜌𝑖}

[

𝐻
(

𝓁𝑖+1|𝐘𝑖+1, {𝜌𝑖+1|𝜌𝑖}
)

]

.
(2)

To obfuscate hidden states in the way maximizing r we need to
etermine properties of

𝜌min,𝑖+1 = ar g min
{𝜌𝑖+1|𝜌𝑖}

[

𝐻
(

𝓁𝑖+1|𝐘𝑖+1, {𝜌𝑖+1|𝜌𝑖}
)

]

. (3)

Probabilities Pr
(

𝓁𝑖+1 = ,𝐘𝑖+1|{𝜌𝑖+1|𝜌𝑖}
)

,
Pr

(

𝓁𝑖+1 = ,𝐘𝑖+1|{𝜌𝑖+1|𝜌𝑖}
)

will be used in our further derivations.
To simplify notations we will use Pr

(

𝓁𝑖+1 = ,𝐘𝑖+1
)

, Pr
(

𝓁𝑖+1 =
,𝐘𝑖+1

)

, respectively. The probabilities are defined as:

Pr
(

𝓁𝑖+1 = ,𝐘𝑖+1
)

=
∑

𝐗𝑖+1,∈X

Pr
(

𝐘𝑖+1 ∣ 𝐗𝑖+1,
)

Pr
(

𝐗𝑖+1,
)

=

∑

Pr
(

𝐘𝑖+1 ∣ 𝐗𝑖+1,
)

𝜑Pr
(

𝐗𝑖+1
)

,

(4)
𝐗𝑖+1,∈X
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Pr
(

𝓁𝑖+1 = ,𝐘𝑖+1
)

=
∑

𝑖+1,∈X

Pr
(

𝐘𝑖+1 ∣ 𝐗𝑖+1,
)

Pr
(

𝐗𝑖+1,
)

=

∑

𝑖+1,∈X

Pr
(

𝐘𝑖+1 ∣ 𝐗𝑖+1,
)

(1 − 𝜑)Pr
(

𝐗𝑖+1
)

.

(5)

We then point out that

Pr
(

𝓁𝑖+1 =  ∣ 𝐘𝑖+1
)

=
Pr

(

𝓁𝑖+1 = ,𝐘𝑖+1
)

Pr
(

𝐘𝑖+1
) , (6)

Pr
(

𝓁𝑖+1 =  ∣ 𝐘𝑖+1
)

=
Pr

(

𝓁𝑖+1 = ,𝐘𝑖+1
)

Pr
(

𝐘𝑖+1
) , (7)

where

Pr
(

𝐘𝑖+1
)

= Pr (𝓁𝑖+1 = ,𝐘𝑖+1
)

+ Pr (𝓁𝑖+1 = ,𝐘𝑖+1
)

. (8)

The following result establishes an important property of 𝜌min,𝑖+1.

Lemma 2. For all 𝑖 ∈ [1, 𝑁− 1] distribution 𝜌min,𝑖 is degenerate (for details
see Appendix A).

Based on the result of Lemma 2, for every 𝐘𝑖 there is one and only
one worst-case hidden state 𝐗̃𝑖 (because Pr

(

𝐗̃𝑖 ∣ 𝜌min,𝑖
)

= 1). It implies
he following:

Corollary 1. Design of HMM where for every state (realization) in Y there
s one and only one transition from X(𝐴,𝐵) explicitly satisfies Assumption 1.

Therefore, we will further adhere to such design principle and use
̃
𝑖 to denote hidden states. Next, we will elaborate on: (a) what is

the optimal number of different observable states 𝐘𝑖 for every 𝐗̃𝑖?
b) how should we define optimal observable states? (c) what are the
robabilities of transition (from the labeled states to the observable
tates)?

5.3. Requirements for the observable states

Here we provide our analysis from the standpoints of the system that
obfuscates hidden states (e.g., the system produces observable states)
on behalf of Alice and Bob, and hence 𝐗̃𝑖 is assumed to be known.

he possibilities of transitions 𝐗̃𝑖, → 𝐘𝑖 and 𝐗̃𝑖, → 𝐘𝑖 imply that
 non-zero distortion E

[

𝐷𝑖
]

takes place:

E
[

𝐷𝑖
]

=
∑

𝐲(𝑖)𝑗 ∈Y(𝑖)

𝐷𝑖,𝑗Pr
(

𝐘𝑖 = 𝐲(𝑖)𝑗 ∣ 𝐗̃𝑖

)

, (9)

where
𝐷𝑖,𝑗 = Pr

(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

𝑑
(

𝐗̃𝑖,, 𝐲
(𝑖)
𝑗

)

+

Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

𝑑
(

𝐗̃𝑖,, 𝐲
(𝑖)
𝑗

)

.
(10)

Here Y(𝑖) is the set of all observable states to which transitions exist
rom the realizations of 𝐗̃𝑖, and 𝐗̃𝑖, at time step 𝑖; 𝐲(𝑖)𝑗 is an element
n Y(𝑖); 𝑑 (⋅, ⋅) is some distortion measure (e.g., SE).

The optimization effort is two-fold: (i) how shall we obtain ob-
servable states Y(𝑖) in a way that r,𝑖 is maximized under constraint
𝐷̃𝑖 ≥ E

[

𝐷𝑖
]

? (ii) how shall we define 𝐷̃𝑖 for every time step 𝑖 such that
r is maximized and the total distortion constraint 𝐷̃ ≥

∑

𝑖 E
[

𝐷𝑖
]

is
satisfied? We start with answering question (i), which will assist us in
answering question (ii).

For the obfuscation, we utilize the following principles: every
lement 𝐲(𝑖)𝑗 in Y(𝑖) can be fully specified by the realizations of
̃
𝑖,, 𝐗̃𝑖,, and parameter 𝜆𝑗 . Probabilities Pr

(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

, Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

then affect r,𝑖,𝑗 . All these parameters affect 𝐷𝑖,𝑗 .
he diagram explaining relations between all the mentioned parame-
ers is provided on Fig. 3. In this example, labeled states are 𝐗̃𝑖, =
𝑥𝐴, 𝑥𝐵), 𝐗̃ =

(

𝑥𝐵 , 𝑥𝐴); set Y(𝑖) contains only two elements 𝐲(𝑖) =
𝑖, 1 t

7 
Fig. 3. Scheme for the obfuscation principle.

(

𝑦̂(𝑖), 𝑦̌(𝑖)) and 𝐲(𝑖)2 =
(

𝑦̌(𝑖), 𝑦̂(𝑖)). For example, to specify 𝐲(𝑖)1 we only need
𝜆1 in addition to the labeled states (𝛥 is the distance between them). To
obtain 𝐲(𝑖)2 we should apply a similar procedure where 𝜆2 is known (in
our particular example 𝜆2 = 1 − 𝜆1). Probability Pr

(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)1
)

is denoted as 𝑝1: its value affects adversarial uncertainty r,𝑖,𝑗 as well
as the distortion 𝐷𝑖,𝑗 .

To maximize r,𝑖 under 𝐷̃𝑖 ≥ E
[

𝐷𝑖
]

we consider realizations of 𝐘𝑖
and optimal adjustment of 𝜆: such adjustment then allows us to increase
𝑝1 and 1 − 𝑝2.

We note that 𝐘𝑖 shall belong to a line segment (in a multidimen-
ional space) connecting 𝐗̃𝑖, and 𝐗̃𝑖,. This property is trivial (goes
ithout proof) and can be best understood if triangle ▵ 𝐗̃𝑖,𝐘𝑖𝐗̃𝑖, is

considered. As a result:

∀𝐘𝑖

(

𝐘𝑖 ∈ Y(𝑖) ⟹
(

∃𝜆 ∈ [0, 1]) ∧ (

𝐘𝑖 = ⃖⃖⃖⃖⃖⃖⃖⃗𝐗̃𝑖, + 𝜆⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐗̃𝑖,𝐗̃𝑖,
)

)

. (11)

We then establish the following:

Lemma 3. To minimize 𝐷𝑖,𝑗 it is required that 𝜆𝑗 = 1 − Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

(for details see Appendix A).

Corollary 2. Minimal distortion is 𝐷𝑖,𝑗 = 𝛥2
𝑖 𝑝𝑗 (1 − 𝑝𝑗 ) ≤ 𝛥2𝑖

4 , where
𝑝𝑗 = Pr

(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

, 𝛥2
𝑖 = 𝑑

(

𝐗̃𝑖,, 𝐗̃𝑖,
)

.

Corollary 3. For every time step 𝑖, the highest lower bound (maxmin
entropy) is (for details see Appendix A):
r,𝑖 = −𝜈𝑖 log2 𝜈𝑖 − (1 − 𝜈𝑖) log2 (1 − 𝜈𝑖) , (12)

where 𝜈𝑖 = min

{

𝜑,
𝛥𝑖−

√

𝛥2𝑖 −4E[𝐷𝑖]
2𝛥𝑖

}

.

There are several important takeaways from the proof of Corollary 3.
First, for every hidden state 𝐗̃𝑖 there are two observable states that are
obtained according to Eq. (11) where 𝜆(𝑖)1 = 1 − 𝜈𝑖 is used to define
ealization 𝐲(𝑖)1 , and 𝜆(𝑖)2 = 1 − 𝜆(𝑖)1 is used for 𝐲(𝑖)2 . Second, maximum

allowed distortion should be used at time step 𝑖 meaning that E
[

𝐷𝑖
]

=
𝐷̃𝑖. Third, probabilities for transitions from labeled states to observable
states are
Pr

(

𝐘𝑖 = 𝐲(𝑖)1 ∣ 𝓁𝑖 = 
)

= 𝜈𝑖
𝜑

𝜑+𝜈𝑖−1
2𝜈𝑖−1

;

Pr
(

𝐘𝑖 = 𝐲(𝑖)2 ∣ 𝓁𝑖 = 
)

= 1 − Pr
(

𝐘𝑖 = 𝐲(𝑖)1 ∣ 𝓁𝑖 = 
)

;

Pr
(

𝐘𝑖 = 𝐲(𝑖)1 ∣ 𝓁𝑖 = 
)

= 1−𝜈𝑖
1−𝜑

𝜑+𝜈𝑖−1
2𝜈𝑖−1

;

Pr
(

𝐘𝑖 = 𝐲(𝑖)2 ∣ 𝓁𝑖 = 
)

= 1 − Pr
(

𝐘𝑖 = 𝐲(𝑖)1 ∣ 𝓁𝑖 = 
)

.

(13)

5.4. Optimal obfuscation for 𝑁 − 1 time steps

For every time step 𝑖 we now define 𝐷̃𝑖 such that r =
∑

𝑖 r,𝑖
s maximized under the total distortion constraint 𝐷̃ ≥

∑

𝑖 𝐷̃𝑖. For
his reason, we obtain optimal observable states and corresponding
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transition probabilities (from the labeled states) for all the time steps.
From the proof of Corollary 3 we use that 𝜕

𝜕𝐷̃𝑖
r,𝑖 ≥ 0 and 𝜕2

𝜕𝐷̃2
𝑖
r,𝑖 ≤ 0.

To maximize r we therefore require
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀𝑖 𝜕
𝜕𝐷̃𝑖

r,𝑖 =
1

𝛥2𝑖
√

1−𝜅𝑖
log

(

1+
√

1−𝜅𝑖
1−

√

1−𝜅𝑖

)

= 𝐶 ;

𝐷̃ =
𝑁−1
∑

𝑖=1
𝐷̃𝑖 =

1
4

𝑁−1
∑

𝑖=1
𝜅𝑖𝛥

2
𝑖 ,

(14)

where 𝐶 is some constant, 𝜅𝑖 =
4𝐷̃𝑖
𝛥2𝑖

. We then solve the system Eq. (14)
for all 𝜅𝑖, 𝑖 ∈ [1, 𝑁 − 1], and according to Corollary 3 obtain 𝜈𝑖 =
min

{

𝜑, 0.5 −√

0.25 − 0.25𝜅𝑖
}

.

6. Obfuscation algorithm

In this section, we design an obfuscation algorithm (see algorithm
1) using our earlier findings. The algorithm is practical and can be
implemented in real settings: its complexity (excluding the complexity
of solve procedure) is only 𝑂(𝑁). For input, the algorithm accepts
arrays (of size 𝑁) 𝐗𝐴, 𝐗𝐵 , users’ IDs (𝑖𝑑𝐴, 𝑖𝑑𝐵 are for Alice and Bob, re-
spectively), and scalars 𝑛, 𝐷̃, 𝜑. Elements of the arrays are scalar/vector
instances for 𝑋𝐴

𝑖 and 𝑋𝐵
𝑖 representing geo-positions of the users at time

step 𝑖. In practice, these arrays may contain extrapolations based on
historical data and repetitive patterns. For example, Alice and Bob may
commute to work using the same routes and roughly at the same time
every day. Procedure solve provides a solution to Eq. (14): array 𝜿
contains elements 𝜅𝑖 needed to define instances for obfuscated state 𝐘𝑖.
The algorithm also calculates the unlinkability criterion (entropy) r,𝑖.

Algorithm 1: Obfuscation algorithm
input : 𝐗𝐴, 𝐗𝐵 , 𝑖𝑑𝐴, 𝑖𝑑𝐵 , 𝑛, 𝐷̃, 𝜑 ;
output: 𝐘, r ;

begin
r ← 0, 𝐘 ← ∅, 𝜅𝜅𝜅 ← 𝚜𝚘𝚕𝚟𝚎

(

𝐷̃ ,𝐗𝐴,𝐗𝐵) ;
for 𝑖 ← 1 to 𝑁 − 1 do

𝜈𝑖 ← min
{

𝜑, 0.5 −√

0.25 − 0.25𝜅𝑖
}

,
𝛼 ← (𝜑 + 𝜈𝑖 − 1)∕(2𝜈𝑖 − 1),
r,𝑖 ← −𝜈𝑖 log(𝜈𝑖) − (1 − 𝜈𝑖) log(1 − 𝜈𝑖), r ← r +r,𝑖,
𝑃1, ← 𝛼(1 − 𝜈𝑖)∕𝜑, 𝑃1, ← 𝛼 𝜈𝑖∕(1 − 𝜑),
𝑠𝑒𝑒𝑑𝐴 ← 𝚞𝚗𝚒𝚁𝚊𝚗𝚍𝐴

(

[0, 2𝑛 − 1]),
𝑠𝑒𝑒𝑑𝐵 ← 𝚞𝚗𝚒𝚁𝚊𝚗𝚍𝐵

(

[0, 2𝑛 − 1]),
𝑠𝑒𝑒𝑑 ← 𝚔𝚎𝚢𝚂𝚑𝚊𝚛𝚒𝚗𝚐(𝑠𝑒𝑒𝑑𝐴, 𝑠𝑒𝑒𝑑𝐵), 𝑟1 ← 𝚑𝚊𝚜𝚑𝑛(𝑠𝑒𝑒𝑑),
𝑟2 ← 𝚑𝚊𝚜𝚑𝑛(𝚌𝚘𝚗𝚌𝚊𝚝(𝑖𝑑𝐴, 𝑖𝑑𝐵 , 𝑠𝑒𝑒𝑑)),
𝛬 ← 0.5 + (0.5 − 𝜈𝑖) 𝚜𝚒𝚐𝚗±

(

𝑃1, − 𝑟2
2𝑛−1

)

,
𝛬 ← 0.5 + (0.5 − 𝜈𝑖) 𝚜𝚒𝚐𝚗±

(

𝑃1, − 𝑟2
2𝑛−1

)

;
if 𝑟1 ≤ 𝚛𝚘𝚞𝚗𝚍(𝜑 ⋅ (2𝑛 − 1)) then
𝑦̂(𝑖) ← 𝑋𝐴

𝑖 +𝛬
(

𝑋𝐵
𝑖 −𝑋𝐴

𝑖
)

, 𝑦̌(𝑖) ← 𝑋𝐵
𝑖 +𝛬

(

𝑋𝐴
𝑖 −𝑋𝐵

𝑖
)

,
𝐘𝑖 ← 𝚌𝚘𝚗𝚌𝚊𝚝(𝑦̂(𝑖), 𝑦̌(𝑖));
else 𝑦̂(𝑖) ← 𝑋𝐴

𝑖 + 𝛬
(

𝑋𝐵
𝑖 −𝑋𝐴

𝑖
)

,
𝑦̌(𝑖) ← 𝑋𝐵

𝑖 + 𝛬
(

𝑋𝐴
𝑖 −𝑋𝐵

𝑖
)

, 𝐘𝑖 ← 𝚌𝚘𝚗𝚌𝚊𝚝(𝑦̌(𝑖), 𝑦̂(𝑖));
𝚜𝚎𝚗𝚍_𝚁𝚂𝚄

(

𝐘𝑖
)

, 𝐘 ← 𝚌𝚘𝚗𝚌𝚊𝚝(𝐘,𝐘𝑖) ;

Obfuscation requires a joint effort from Alice and Bob: correctness
of this joint effort can be questioned by each of the participants.
Specifically, a consensus must be reached by Alice and Bob about
random numbers 𝑟1 and 𝑟2 without revealing their values to a third-
party (e.g., adversary Eve). For this, we first derive the common 𝑠𝑒𝑒𝑑
based on the procedure keySharing: the inputs are random seeds
𝑠𝑒𝑒𝑑𝐴 and 𝑠𝑒𝑒𝑑𝐵 generated by Alice and Bob, respectively. Next, the
random number derivation is based on the keyless hash function hash
(with the output of size 𝑛) along with the concatenation procedure
concat. Below we describe some of the procedures and functions used
in the algorithm:
8 
Fig. 4. Mixtures 𝜙𝐘𝑖
resulting from addition of bi-variate independent noise to 𝐗𝑖,

and 𝐗𝑖,: (a) Gaussian noise, 𝜎 = 2.5; (b) Laplacian noise, 𝑏 = 2.5. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

• uniRand – generates uniformly distributed random numbers.
For example, true random generators or cryptographically secure
random numbers generating algorithms such as Fortuna can be
used [28,29].

• keySharing – securely shares secret 𝑠𝑒𝑒𝑑 between Alice and
Bob. It may implement a key agreement protocol such as Elliptic
Curve Cryptography Cofactor Diffie–Hellman or another secure
protocol [30].

• hash – unidirectionally maps its input (e.g., 𝑠𝑒𝑒𝑑) into {0, 1}𝑛
space. We suggest to use thoroughly researched hashing algo-
rithms such as SHA-3 [31] to implement hash.

• concat – links inputs together into a single output data set: this
is a basic programming operation performing mapping {0, 1}𝑛 ×
{0, 1}𝑚 → {0, 1}𝑛+𝑚.

• send_RSU – encapsulates data obfuscated at time step 𝑖 in
accordance with CAM format [22], and sends it to the nearest
Roadside Unit (RSU).

The output of the algorithm is, therefore, an array 𝐘 containing all
the obfuscated records and the indicator of the total unlinkability in
the system over 𝑁 − 1 steps, r . However, some steps in algorithm 1
require further explanation. For example, the authenticity of the claims
of an entity with identity 𝑖𝑑𝐴 (e.g., Alice) about the value 𝑠𝑒𝑒𝑑𝐴 needs
to be assured. Similarly, the claim’s authenticity about 𝑠𝑒𝑒𝑑𝐵 from 𝑖𝑑𝐵
must also be provided. To satisfy these essential preconditions for the
secure execution of algorithm 1, we develop a protocol for mutual
authentication.

7. Experimental evaluation

The experiment aims to evaluate the proposed joint obfuscation’s
efficiency and compare it with other commonly used obfuscation tech-
niques. The latter benchmarking techniques include bi-variate Gaussian
and Laplacian noise models popular, for example, in the domain of
Differential Privacy (DP) [14,15]. The evaluation is structured as fol-
lows. First, for original 𝐗𝑖, and 𝐗𝑖, representing hidden states on
Fig. 2, we synthesize random noisy (obfuscated) samples 𝐘𝑖 repre-
senting observable states. Second, for the generated 𝐘𝑖, we compare
uncertainties of inference about the hidden state’s label (which is either
 or ), and the distortion, 𝐷𝑖, caused by the obfuscation. Third,
we define distribution of 𝐘𝑖 on the line segment 𝐗𝑖,𝐗𝑖,: this allows
to increase uncertainty of inference 𝐻

(

𝓁𝑖|𝐘𝑖
)

and reduce 𝐷𝑖. Finally,
we compare these obfuscation results with the results of the joint
obfuscation method proposed by us.

To simulate hidden states, we append numerical components – real-
izations for 𝑋𝐴

𝑖 and 𝑋𝐵
𝑖 – of Alice and Bob together: the appending order

specifies whether the resulting tuple is 𝐗𝑖, or 𝐗𝑖,. The realizations
above might be vectors (e.g., 3 dimensions specifying the vehicle’s po-
sition and 3 dimensions specifying its velocity). However, for simplicity
and without loss of generality we assume that realizations are scalars.
As an example, the hidden state of Alice at step 𝑖 is characterized by
value 2, the hidden state of Bob at step 𝑖 is characterized by value 6: we
obtain 𝐗𝑖, = (2, 6) and 𝐗𝑖, = (6, 2). Marginal probabilities of having
either 𝐗 or 𝐗 are equal, 𝜑 = 0.5.
𝑖, 𝑖,



Y. Zolotavkin et al. Computer Networks 257 (2025) 110972 
Fig. 5. For every 𝐲(𝑖) on the plane, distortion is 𝐷𝑖
(

𝐲(𝑖)
)

= 𝑑
(

𝐲(𝑖) ,𝐗𝑖,
)

Pr
(

𝓁𝑖 = |𝐲(𝑖)
)

+
𝑑
(

𝐲(𝑖) ,𝐗𝑖,
)

Pr
(

𝓁𝑖 = |𝐲(𝑖)
)

: (a) Gaussian noise, 𝜎 = 2.5; (b) Laplacian noise, 𝑏 = 2.5. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6. Entropy of inference, 𝐻
(

𝓁𝑖|𝐘𝑖 = 𝐲(𝑖)
)

, for different realizations of 𝐘𝑖: (a)
Gaussian noise, 𝜎 = 2.5, 𝐻(𝓁𝑖|𝐘𝑖) ≈ 0.6; (b) Laplacian noise, 𝑏 = 2.5, 𝐻(𝓁𝑖|𝐘𝑖) ≈ 0.6.

7.1. Bi-variate noise models

To obtain bi-variate noise models, we extend univariate Gaussian
and Laplacian with (0, 𝜎) and (0, 𝑏), respectively, for both components
in 2D space independently and in a way that variances along each di-
rection are equal [15,16]. Expected distortions for the obtained in such
way bi-variate Gaussian and Laplacian (non-isotropic) are E

[

𝐷{ }
𝑖

]

=
2𝜎2 and E

[

𝐷{}
𝑖

]

= 2𝑏2, respectively.
By adding noise to 𝐗𝑖, and 𝐗𝑖,, we obtain juxtapositions of red

and blue observable (obfuscated) samples, respectively (see Fig. 4).
This produces a mixture which density, 𝜙𝐘𝑖

, is depicted with a color
map2: the probability Pr (𝐘𝑖) of obtaining particular observable state is
determined by that density.

For the random outcome 𝐘𝑖, an adversary attempts to infer3 the
label (e.g., color  or ) of the original 𝐗𝑖. An efficient obfuscation
technique should maximize such an inference’s uncertainty (e.g., en-
tropy) while keeping distortion below the constraint. Color maps in
Fig. 5 depict distortions caused by the noise-adding obfuscation: every
realization 𝐲(𝑖) of 𝐘𝑖 on 2D plane is either the result of distorting
𝐗𝑖, by the amount 𝑑

(

𝐲(𝑖),𝐗𝑖,
)

, or the result of distorting 𝐗𝑖, by
𝑑
(

𝐲(𝑖),𝐗𝑖,
)

, where 𝑑(⋅, ⋅) is the squared 𝑙2-norm. Density 𝜙𝐘𝑖
affects

the total distortion of the obfuscation scheme. For example, if we
take expectations over the corresponding mixtures in Fig. 4, we obtain
distortion values 7.94 and 8.21 for Gaussian and Laplacian models,
respectively.4

For every realization 𝐲(𝑖), uncertainty of inference is due to proba-
bility Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)) that 𝐲(𝑖) originates from 𝐗𝑖,, and probability
Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)) that 𝐲(𝑖) originates from 𝐗𝑖,. Corresponding entropy
maps are depicted in Fig. 6. As can be seen, entropy is the highest in the
middle part of the heat map. However, mixture 𝜙𝐘𝑖

influences entropic

2 For Gaussian, 𝜙𝐘𝑖
= 𝜑

(

𝐗𝑖,,Σ
)

+ (1 − 𝜑)
(

𝐗𝑖,,Σ
)

. For Laplacian,
𝜙𝐘𝑖

= 𝜑
(

𝐗𝑖,,Σ
)

+ (1 − 𝜑)
(

𝐗𝑖,,Σ
)

.
3 Adversary tries to match a pair of components (observable states) at once:

this is a joint inference.
4 Only area visible in Figs. 4 and 5 is considered for such calculation.
9 
Fig. 7. Modified Lagrangian,  ∗(𝐲(𝑖) , 𝜁), 𝜁 = 0.05: (a) Gaussian noise, 𝜎 = 2.5; (b)
Laplacian noise, 𝑏 = 2.5.

Fig. 8. Modified Lagrangian,  ∗(𝐲(𝑖) , 𝜁), 𝜁 = 0.1: (a) Gaussian noise, 𝜎 = 2.5; (b)
Laplacian noise, 𝑏 = 2.5.

Fig. 9. Modified Lagrangian,  ∗(𝐲(𝑖) , 𝜁), 𝜁 = 0.15: (a) Gaussian noise, 𝜎 = 2.5; (b)
Laplacian noise, 𝑏 = 2.5.

expectation (e.g., conditional entropy): the effect of larger 𝐻
(

𝓁𝑖|𝐘𝑖 =
𝐲(𝑖)

)

values can be reduced. For example, if we take expectations over
the corresponding mixtures in Fig. 4, we obtain 𝐻(𝓁𝑖|𝐘𝑖) values 0.597
and 0.599 for Gaussian and Laplacian models, respectively.

The following rationale will help us improve 2D Gaussian and
Laplacian models and compare them with our obfuscation method.
Improvements in obfuscation efficiency can be due to: (a)modifications
(e.g., optimizations) of mixture 𝜙𝐘𝑖

that keep Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)) and
Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)) unchanged; (b) modifications of Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖))
and Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)) that keep 𝜙𝐘𝑖

unchanged; and (c) modifications
of all the mentioned aspects. Intuitively, options (a) and (b) are sub-
optimal, however, (a) has illustrative potential to explain why and how
independent bi-variate Gaussian and Laplacian models can be improved
to better serve the needs of joint obfuscation.

We demonstrate that the optimal mixture for Gaussian and Lapla-
cian should be defined on a line segment connecting 𝐗𝑖, and 𝐗𝑖,.
Due to the constrained entropy maximization, we use the Lagrangian
function for our demonstration. We change the canonical expression

(

𝐲(𝑖), 𝜁) = 𝐻
(

𝓁𝑖|𝐘𝑖 = 𝐲(𝑖)
)

− 𝜁
(

𝐷𝑖
(

𝐲(𝑖)
)

− 𝐷̃𝑖

)

into  ∗(𝐲(𝑖), 𝜁) =
𝐻
(

𝓁𝑖|𝐘𝑖 = 𝐲(𝑖)
)

− 𝜁 𝐷𝑖
(

𝐲(𝑖)
)

. Such  ∗ is suitable for a visual inspection
allowing to spot maxima: it can be shown that if optimal 𝜁̇ is known,
the remaining optimization of 𝐲̇(𝑖) is indifferent to the value of term
𝜁̇ 𝐷̃𝑖 which is omitted in  ∗. As the first step of optimization, it can be
shown that a domain smaller than the entire 2D plane contains samples
𝐲̇(𝑖) that maximize  ∗ under any 𝜁 .
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Fig. 10. Distortion and entropy plots for Gaussian, Laplacian, and the proposed
bfuscation models defined for the line segment 𝐗𝑖,𝐗𝑖,.

We observe Figs. 7–9 to visually confirm a simple property that the
line segment between 𝐗𝑖, and 𝐗𝑖, contains 𝐲̇(𝑖) maximizing  ∗. This
property holds irrespective of 𝜁 while the exact position of optimal 𝐲̇(𝑖)
on the line still depends on 𝜁 . For example, for small 𝜁 (e.g., see Fig. 7)
ntropic expression dominates in  ∗ while the distortion component is

suppressed. As a result, 𝐲̇(𝑖) is close to the middle of the line segment.
In contrast, for larger 𝜁 , optimal 𝐲̇(𝑖) moves closer to the endpoints of
the segment: assuring small distortions becomes more important than
tracking for the highest entropy. The  ∗-based demonstrations confirm
that further improvement of independent bi-variate Gauss/Laplace ob-
fuscation is possible. Next, we will investigate whether redefining these
obfuscation techniques for a line segment allows them to outperform
our proposed method.

7.2. Adding noise on the line

We replace the 2D independent noise models used earlier with a
andom linear model for 𝐘𝑖 using 𝜆 ∈ [0, 1]: any point 𝐘𝑖 on the
ine segment can be expressed as 𝐘𝑖 = 𝜆𝐗𝑖, + (1 − 𝜆)𝐗𝑖,. We then
ubstitute these redefined samples 𝐘𝑖 into the Gaussian and Laplacian
odels to calculate the probabilities of inference Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)),

Pr (𝓁𝑖 = |𝐘𝑖 = 𝐲(𝑖)), and the resulting normalized density of the mixture
𝑙
𝐘𝑖

(specific for the line segment).
For ratio 𝜆 of the line segment, we plot (see Fig. 10) distortions

(left ordinate) and entropy of inference (right ordinate). Both distortion
and entropy depend on the probability Pr (𝓁𝑖|𝐘𝑖) of inference. For the
proposed obfuscation method, this probability is obtained based on
Lemma 3. As can be seen from Fig. 10, all the distortion and entropy
plots are symmetric about 𝜆 = 0.5 where they all peak. For all 𝜆
values, the distortion and entropy of Laplacian are below the distortion
and entropy of Gaussian, respectively. However, distortion and entropy
plots for the proposed method cross corresponding plots for Gaussian
and Laplacian models.

To better demonstrate the advantages of the proposed obfuscation
methodology, we plot the performance gap (left ordinate) between
our method and each of the Gaussian and Laplacian line models,
respectively. From Fig. 11, it can be seen that our method outperforms
he models above: under the same distortion, entropy gaps are non-
egative for our method. The gap plots approach zero on Fig. 11 at the

points where the distortion plot (for our method) crosses corresponding
Gaussian and Laplacian plots on Fig. 10. We also establish that Gaussian
and Laplacian line mixtures 𝜙𝑙

𝐘𝑖
can be further optimized: the resulting

mixtures are unique and discrete. To show this, we build the following
plots for the right ordinate on Fig. 11. The plots are residuals between
entropy plots and their special linear models (baselines) defined using
 I

10 
Fig. 11. Residual performance plots for Gaussian, Laplacian, and the proposed obfus-
cation models defined for the line segment 𝐗𝑖,𝐗𝑖,.

the first and the last points of the corresponding distortion-entropy
lots (not shown here). Residual values on the plots are non-negative,
mplying that the dependences between distortions and entropies are
oncave for all three methods. The latter observation – combined with
he fact that entropy grows monotonically with distortions – allows us
o conclude that the entropic maximum is unique (one and only) for
ny given distortion constraint. In addition to reconfirming Corollary 3,

such a demonstration is also beneficial for Gaussian and Laplacian
models.

Mixtures for the random line-based obfuscation models are pre-
ented in Fig. 12. The left ordinate is used for the normalized contin-

uous densities, 𝜙𝑙
𝐘𝑖

, defined for the Gaussian mixtures and Laplacian
mixtures on the line segment. Expected distortions for these mixtures
are E

[

𝐷{ }
𝑖

]

= 5.326 and E
[

𝐷{}
𝑖

]

= 3.992, respectively. The values
f expected conditional entropy are 𝐻(𝓁𝑖|𝐘𝑖) = 0.728 and 𝐻(𝓁𝑖|𝐘𝑖) =
.568 for Gaussian and Laplacian, respectively. Comparing these in-
icators with the indicators for 2D independent noise models (see
ection 7.1) already reveals the superiority of the line-based models

for joint obfuscation.
The right ordinate in Fig. 12 is used to define discrete distributions

maximizing entropy under the constraint on distortions. As an example,
we plot optimal discrete mixtures for Gaussian and Laplacian under
the constraints of 5.326 and 3.992, respectively. For the proposed
method, we use the Gaussian constraint, 5.326. All three distributions
are discrete but symmetric (the latter is due to unimodal and symmetric
dependence between 𝜆 and entropy). All the three discrete distributions
are ‘close’ to each other: roughly speaking, there are only two optimal
realizations 𝐲(𝑖)1 ≈ 0.78𝐗𝑖, + 0.22𝐗𝑖, = (2.88, 5.12), 𝐲(𝑖)2 ≈ 0.22𝐗𝑖, +
0.78𝐗𝑖, = (5.12, 2.88), and Pr

(

𝐘𝑖 = 𝐲(𝑖)1
)

= Pr(𝐘𝑖 = 𝐲(𝑖)2
)

= 0.5.
We compare our joint obfuscation method with the Gaussian and

Laplacian obfuscation for a larger range of 𝜎 and 𝑏 values, respectively:
we gradually increase both parameters from 1 to 10 (see Fig. 13). As a
result, we plot conditional entropy 𝐻(𝓁𝑖|𝐘𝑖) versus expected distortion
E[𝐷𝑖]. Mixture densities for 𝐘𝑖 (e.g., 𝜙𝐘𝑖

or 𝜙𝑙
𝐘𝑖

) strongly affect the re-
sulting efficiency of obfuscation. For instance, we contrast obfuscations
using traditional independent noise models producing 2D mixtures, and
the noise along the line segment 𝐗𝑖, and 𝐗𝑖,. Calculations of entropy
and distortion were only performed for the point in the area visible on
Fig. 4. The latter implies that distortions caused by 2D noise models are
nderrepresented (e.g., less than actual) on the plot, while distortions
f the points on the line segment are fully accounted.

As can be seen from Fig. 13, adding noise on the line provides a
ignificant advantage over 2D noise models. Our joint obfuscation is
he first approach exploiting this idea, and due to its optimal design, it

outperforms Gaussian and Laplacian noise models defined for the line.
t must be noted that the gain of our method over the Gaussian and
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Fig. 12. Continuous and discrete densities, 𝜙𝑙
𝐘𝑖

, for mixtures produced by obfuscation
methods on 𝐗𝑖,𝐗𝑖,.

Fig. 13. Plots for obfuscation efficiency.

Laplacian noise on the line is not as vivid as the advantage over the
2D independent noise models on the plane [14,16]. For instance, the
entropic gain for our method compared to the latter is up to 103%.

8. User authentication protocol

In this section, we define the requirements for authentication, tech-
nical means available in C-ITS, and propose our design of the authenti-
cation protocol (for analysis using BAN logic [32,33], see Appendix B).
This protocol should be executed prior to the execution of algorithm 1.

For every user involved in the scheme, authentication must demon-
strate exclusive control over a unique authenticator (e.g., based on an
identifier). In addition, to protect from the replay attack, the authenti-
cation must be fresh and invoked at time step 𝑖 of the current joint ob-
fuscation session between Alice and Bob. To satisfy these requirements,
we rely on the technical means that already exist in C-ITS.

Public Key Infrastructure (PKI) is essential for creating and man-
ging digital certificates in transport systems: it supports public-key
ncryption and authentication. PKI is a part of the C-ITS ecosystem [2,

3,34], including trustworthy V2X communication, since it provides an
mmutable record of all publicly accessible authenticators for which

corresponding credentials are securely controlled by the legitimate
ntities registered with the PKI authority. Reliability and security of
he PKI are central for the proper functioning of V2X and C-ITS in

general: in our paper, we do not question these properties and assume
that PKI functions correctly, and Alice and Bob are legitimate owners
f the corresponding PKI credentials and use them securely.
 t

11 
Fig. 14. Protocol for mutual authentication of Alice and Bob.

Cooperative Awareness Basic Service relies on numerous technical
means, including individual On-board Units (OBU) installed in every
ehicle [35,36]. Among other components, OBU includes a Hardware

Security Module (HSM) implementing Elliptic Curves Digital Signature
Algorithm (ECDSA) [37,38]. In the proposed authentication protocol,
we assume that ECDSA is used for signing.

For our protocol (see Fig. 14), we make an assumption that Alice is
incentivized to demand freshness from the authenticator used by Bob:
a unique part of that authenticator, 𝑟𝐴, is randomly generated by Alice
at time 𝑡 and first submitted (with 𝑖𝑑𝐴 of Alice) to Bob for signing.
With a similar incentive, Bob generates unique random 𝑟𝐵 at time 𝑡+𝛥
(we assume 𝛥 → 0) and sends it with his 𝑖𝑑𝐵 to Alice. A public key
𝐾𝐵 corresponding to 𝑖𝑑𝐵 can be retrieved from the PKI by Alice. As
such, at time 𝑡 + 2𝛥, Alice expects Bob to send signed {𝑟𝐴, 𝑟𝐵}𝐾−1

𝐵
: this

assertion from Bob now contains sufficient evidence about freshness
and authenticity which can be verified by Alice. Finally, a public key
𝐾𝐴 corresponding to 𝑖𝑑𝐴 can be retrieved from the PKI by Bob. He then
eceives {𝑟𝐴, 𝑟𝐵}𝐾−1

𝐴
from Alice at time 𝑡+ 3𝛥 and verifies freshness and

authenticity of such an assertion.
By setting 𝑠𝑒𝑒𝑑𝐴 ← 𝑟𝐴, 𝑠𝑒𝑒𝑑𝐵 ← 𝑟𝐵 in the obfuscation algorithm

1, we achieve an authenticated key exchange (sharing). To protect
onfidentiality of 𝑠𝑒𝑒𝑑𝐴, 𝑠𝑒𝑒𝑑𝐵 (from Eve), 𝑟𝐴 and 𝑟𝐵 can be initially

encrypted with the public keys of Bob and Alice, respectively. For the
nalysis of the proposed protocol using BAN logic, see Appendix B.

9. Discussion

In this paper, we combine: (i) a classical definition of unlinka-
bility and strong GPA assumption to (ii) measure and improve pri-
vacy in C-ITS by developing a new optimal joint obfuscation tech-
nique implemented by (iii) an algorithm and supported by a two-party
authentication protocol.

First, we use a classical definition of unlinkability, which is dictated
y the standards governing the domain of C-ITS applications [1,19].

Based on the definition of unlinkability in Definition 2, we aim at
creating uncertainty for the adversary: this uncertainty is expressed
sing Shannon entropy. We assume a strong GPA who knows the
ctual locations of Alice and Bob at every moment 𝑖. He also knows
he probabilistic obfuscation and order-mixing algorithms used by the
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users. The only aspects he does not know are the outputs of these
probabilistic algorithms. His goal is then to infer the origin of the
obfuscated messages. As a result of applying Assumption 1, the adver-
sarial inference is very much simplified compared to the weak GPA
situations [5]: information about HMM’s hidden states (e.g., actual
ocations, velocities, etc.) and transition probabilities are not required
or such reasoning. The latter detail is beneficial for privacy assurance
ince establishing probabilities for transitions in HMM is a laborious
rocedure whose outcome is often imprecise [26,39].

Second, the assumption about strong GPA helps us to specify the
lower bound of messages’ unlinkability in C-ITS. For every time step

unlinkability is defined through entropy r,𝑖: this lower bound of
nlinkability corresponds to the worst-case adversarial inference (see

Assumption 1). Components r,𝑖 are then summed over 𝑁 − 1 steps
o obtain r (see Lemma 1). Such summation is a simple and intuitive
tep. It is, nevertheless, justified because for any 𝑖 ∈ {1, 2,… , 𝑁− 1}, in-

ference about the source (origin) of arrived CAM is independent of such
inference at 𝑖− 1. There is a similarity between entropy (unlinkability)
values r,𝑖 and r , and the concepts of microscopic and macroscopic
privacy, respectively [40]. Better protection of macroscopic privacy
e.g., trajectories) requires higher uncertainty about labels 𝓁𝑖 for the
ocations reported on the microscopic level. Higher uncertainty about
abels of the users, 𝓁𝑖, can only be achieved at the cost of higher

expected distortion E[𝐷𝑖] of their CAMs. To maximize uncertainty
bout labels, r,𝑖, under the constraint on distortions, E[𝐷𝑖], we pro-

pose a new methodology. It allows defining a joint distribution for
the obfuscation producing modified CAMs: the obfuscation must be
conducted cooperatively by Alice and Bob. Optimality of (multivariate)
noise parameters under distortion constraints has been researched by
many authors in the past [14,16,17]. Our approach, however, differs: to
mprove microscopic privacy at 𝑖 we apply data-dependent joint proba-
ilistic obfuscation of the actual CAM-data from different users (see proof
f Corollary 3). The superiority of our method over random Gaussian

and Laplacian obfuscation models is also confirmed experimentally: the
corresponding entropic gain reaches up to 103% (see Section 7). In
addition, for the case when the corresponding total distortion cap is
specified for the whole duration of observing Alice and Bob in C-ITS,
we optimally allocate distortions over 𝑁 − 1 time steps (see Eq. (14)).

Third, all the findings of this paper are compactly represented in
algorithm 1. Procedure solve is one of the major factors increasing
he algorithm’s time complexity. This, nevertheless, can be addressed
f the obfuscation optimality is slightly sacrificed. For example, solve

can be pre-computed for several cases only: each case would produce a
distinct kind of distribution for a random variable 𝛥2𝑖

𝐷̃ . Then, the actual
nput data should be approximated by the best-matching distribution,

and the corresponding pre-computed outputs of solve should be used
or the obfuscation. Such a workaround can also turn our algorithm into
 ‘real-time algorithm’: if Alice and Bob believe that their future data

will align well with one of the pre-computed distributions (e.g., because
f habitual daily commutes) they can obfuscate it ‘on-the-fly’. Hence,
he pre-computed cases for solve can be treated as profiles that pairs
f users agree to use.

Among other properties, integrity and confidentiality of the al-
gorithm’s operations are paramount for privacy assurance attainable
through obfuscation. Upon the algorithm invocation, Alice and Bob
should be mutually authenticated: this assures the parties can be trusted
to process privacy-sensitive data jointly. For instance, peers may be
selected based on their reputation derived from previous events (such
a reputation-based approach is a promising direction for further re-
search). In Section 8, we provide the protocol for user authentication
and a semi-formal analysis of its correctness (including authenticity
and freshness of assertions) using BAN logic. Procedure keySharing
allows Alice and Bob to securely share a seed used to produce a pair of
pseudo-random numbers {𝑟1, 𝑟2}, which they mutually agree on. This
random pair is then used to simulate the outcomes of the probabilistic
obfuscation producing 𝐘 .
𝑖

12 
Finally, we plan to address some of this paper’s limitations in
ur further studies. For example, only a strong GPA is considered
n our paper to produce an assurance about minimally achievable
nlinkability (e.g., rational lower bound, see Assumptions 1 and 2).
owever, in some situations, the assumption about a weaker GPA may
e closer to the reality: in the future, we will use techniques from
he domain of Multiple-Target Tracking to address this issue [26].

Only two users are considered for the obfuscation model proposed
n Section 4. This is because constrained optimization tasks for cases
nvolving more participants are nontrivial and may become compu-
ationally challenging. In the future, we plan to address this using
ethodologies (including heuristics) commonly applied to the opti-
ization problem of maximum entropy [41,42]. Only limited in scope

security assurance is conducted for the mutual authentication protocol
in Section 8. In the future, we plan to extend this activity through a
more detailed protocol analysis and formal analysis of the procedures
in the obfuscation algorithm [43].
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Appendix A. Proofs

Lemma 1. Unlinkability in V2X system (as per Fig. 2) is expressed as
(for details see Appendix A):

𝐻
(

𝓁1,𝓁2, ...|𝐘1,𝐘2, ..., 𝜌𝜌𝜌
)

=
𝑁−2
∑

𝑖=0
𝐻
(

𝓁𝑖+1|𝐘𝑖+1, {𝜌𝑖+1|𝜌𝑖}
)

.
(1)

Proof. For simplicity, we consider 𝑁 = 3 only. First, it should be noted
that

𝐻
(

𝓁1,𝓁2|𝐘1,𝐘2,𝝆
)

=

𝐻
(

𝓁1,𝓁2,𝐘1,𝐘2|𝝆
)

−𝐻
(

𝐘1,𝐘2|𝝆
)

.
(15)

We then ponder at the right-hand side of Eq. (15). Each of these terms
can be expressed as:

𝐻
(

𝓁1,𝓁2,𝐘1,𝐘2|𝝆
)

=

𝐻
(

𝓁2,𝐘2|𝓁1,𝐘1,𝝆
)

+𝐻
(

𝓁1,𝐘1|𝝆
)

,
(16)

and

𝐻
(

𝐘1,𝐘2|𝝆
)

= 𝐻
(

𝐘2|𝐘1,𝝆
)

+𝐻
(

𝐘1|𝝆
)

, (17)

respectively. We point out that 𝐻
(

𝓁2,𝐘2|𝓁1,𝐘1,𝝆
)

= 𝐻
(

𝓁2,𝐘2|𝝆
)

and
𝐻
(

𝐘2|𝐘1,𝝆
)

= 𝐻
(

𝐘2|𝝆
)

in Eqs. (15) and (16), respectively. This
follows from the fact that realizations of 𝓁𝑖,𝐘𝑖 do not affect 𝓁𝑖+1,𝐘𝑖+1.
We finally stress that 𝝆 is redundant for determining 𝓁𝑖+1,𝐘𝑖+1 since
only 𝜌 |𝜌 has relevance: 𝐻

(

𝐘 |𝝆
)

= 𝐻
(

𝐘 |{𝜌 |𝜌 }
)

, 𝐻
(

𝓁 ,𝐘 |𝝆
)

=
𝑖+1 𝑖 1 1 1 0 1 1
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𝐻
(

𝓁1,𝐘1|{𝜌1|𝜌0}
)

, 𝐻
(

𝐘2|𝝆
)

= 𝐻
(

𝐘2|{𝜌2|𝜌1}
)

, 𝐻
(

𝓁2,𝐘2|𝝆
)

= 𝐻
(

𝓁2,
2|{𝜌2|𝜌1}

)

. Hence, Eq. (15) can be rewritten as

𝐻
(

𝓁1,𝓁2|𝐘1,𝐘2,𝝆
)

=
(

𝓁1,𝐘1|{𝜌1|𝜌0}
)

+𝐻
(

𝓁2,𝐘2|{𝜌2|𝜌1}
)

−

𝐻
(

𝐘1|{𝜌1|𝜌0}
)

+𝐻
(

𝐘2|{𝜌2|𝜌1}
)

)

.

(18)

The latter Eq. (18) can be regrouped
𝐻
(

𝓁1,𝓁2|𝐘1,𝐘2,𝝆
)

=

𝐻
(

𝓁1,𝐘1|{𝜌1|𝜌0}
)

−𝐻
(

𝐘1|{𝜌1|𝜌0}
)

)

+

𝐻
(

𝓁2,𝐘2|{𝜌2|𝜌1}
)

−𝐻
(

𝐘2|{𝜌2|𝜌1}
)

)

=
(

𝓁1|𝐘1, {𝜌1|𝜌0}
)

+𝐻
(

𝓁2|𝐘2, {𝜌2|𝜌1}
)

.

□ (19)

Lemma 2. For all 𝑖 ∈ [1, 𝑁 − 1] distribution 𝜌min,𝑖 is degenerate (for
details see Appendix A).

Proof. We presume that 𝜌min,𝑖 is non-degenerate. For simplicity and
ithout loss of generality we consider two-point distribution 𝜌∗min,𝑖 ∶

{𝐱1, 𝐱2} → [0, 1]2. For instance, realizations 𝐱1 = (𝑥𝐴1 , 𝑥𝐵1 ), 𝐱2 = (𝑥𝐴2 , 𝑥𝐵2 )
an be used. Here Pr

(

𝐗𝑖 = 𝐱1
)

= 𝜉, and Pr
(

𝐗𝑖 = 𝐱2
)

= 1 − 𝜉.
Minimization of conditional entropy in Eq. (3) is equivalent to the

minimization of 𝑝𝓁𝑖 ,min where

𝑝𝓁𝑖 ,min = min
{

Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖
)

,Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖
)

}

, (20)

and without loss of generality, we assume that 𝑝𝓁𝑖 ,min = Pr (𝓁𝑖 =  ∣ 𝐘𝑖
)

.
To express 𝑝𝓁𝑖 ,min we then use Eqs. (4)–(6) and (8) with the following
ubstitutions (simplifying expressions): 𝛼1 = 𝜑Pr

(

𝐘𝑖 ∣ 𝐗𝑖, = (𝑥𝐴1 , 𝑥𝐵1 )
)

,
1 = 𝜑Pr

(

𝐘𝑖 ∣ 𝐗𝑖, = (𝑥𝐴1 , 𝑥𝐵1 )
)

+ (1 − 𝜑)Pr
(

𝐘𝑖 ∣ 𝐗𝑖, = (𝑥𝐵1 , 𝑥𝐴1 )
)

, 𝛼2 =
𝜑Pr

(

𝐘𝑖 ∣ 𝐗𝑖, = (𝑥𝐴2 , 𝑥𝐵2 )
)

, 𝛽2 = 𝜑Pr
(

𝐘𝑖 ∣ 𝐗𝑖, = (𝑥𝐴2 , 𝑥𝐵2 )
)

+ (1 −𝜑)Pr
(

𝐘𝑖 ∣
𝐗𝑖, = (𝑥𝐵2 , 𝑥𝐴2 )

)

. The minimization task is then

min
𝜉

𝑝𝓁𝑖 ,min = min
𝜉

𝜉 𝛼1 + (1 − 𝜉)𝛼2
𝜉 𝛽1 + (1 − 𝜉)𝛽2

. (21)

By analyzing 𝜕
𝜕 𝜉 𝑝𝓁𝑖 ,min, we conclude that there are no local extrema

for 𝜉 ∈ (0, 1) and, hence, minimum is obtained in one of the end points,
.g., 𝜉 ∈ {0, 1}. □

Lemma 3. To minimize 𝐷𝑖,𝑗 it is required that 𝜆𝑗 = 1 − Pr
𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗

)

(for details see Appendix A).

Proof. From Eqs. (10) and (11) we derive that

𝐷𝑖,𝑗 = 𝑝𝑗𝛥
2
𝑖 𝜆

2
𝑗 + (1 − 𝑝𝑗 )𝛥2

𝑖 (1 − 𝜆𝑗 )2 ,

where 𝑝𝑗 = Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)𝑗
)

≤ 0.5, and 𝛥2
𝑖 = 𝑑

(

𝐗̃𝑖,, 𝐗̃𝑖,
)

=
‖

‖

‖

‖

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐗̃𝑖,𝐗̃𝑖,
‖

‖

‖

‖

2
. We next analyze 𝜕

𝜕 𝜆𝑗 𝐷𝑖,𝑗 and find that 𝜆𝑗 = 1 − 𝑝𝑗 is the
xtremum (minimum) of 𝐷𝑖,𝑗 . □

Corollary 3. For every time step 𝑖, the highest lower bound (maxmin
entropy) is (for details see Appendix A):

r,𝑖 = −𝜈𝑖 log2 𝜈𝑖 − (1 − 𝜈𝑖) log2 (1 − 𝜈𝑖) , (12)

where 𝜈𝑖 = min

{

𝜑,
𝛥𝑖−

√

𝛥2𝑖 −4E[𝐷𝑖]
2𝛥𝑖

}

.

Proof. It is required: (1) to determine Y(𝑖) and probability distribution
over it; (2) to determine Pr

(

𝓁𝑖 ∣ 𝐘𝑖
)

for every element in Y(𝑖). For this,
e demonstrate that maximum entropy under distortion constraint on
 e

13 
E
[

𝐷𝑖
]

is achieved for ||
|

Y(𝑖)|
|

|

≤ 2: we analyze the case for Y(𝑖) =
{

𝐲(𝑖)1 , 𝐲(𝑖)2
}

where

Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)1
)

= Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)2
)

. (22)

To prove the optimality of such settings, we consider several al-
ernative cases where E

[

𝐷𝑖
]

= 𝐷̃𝑖 is fixed. Let us first consider an
lternative case where |

|

|

Y(𝑖)|
|

|

= 2 but
Pr

(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)1
)

≠ Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)2
)

;

Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)1
)

≠ Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)2
)

.
(23)

For simplicity, we use the following notations: Pr
(

𝐘𝑖 = 𝐲(𝑖)1 ∣ 𝐗̃𝑖

)

=

𝛼, and Pr
(

𝐘𝑖 = 𝐲(𝑖)2 ∣ 𝐗̃𝑖

)

= 1 − 𝛼; Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)1
)

= 𝑝1 ≤ 0.5, and

Pr
(

𝓁𝑖 =  ∣ 𝐘𝑖 = 𝐲(𝑖)2
)

= 𝑝2 ≥ 0.5. Taking into account the expression
for conditional entropy, we then require:
{

max
[

r,𝑖
]

= max
[

𝛼 𝐻1 + (1 − 𝛼)𝐻2
]

;
𝐷̃𝑖 = 𝛼 𝐷𝑖,1+ (1 − 𝛼)𝐷𝑖,2 ,

(24)

where 𝐻1 = 𝐻
(

𝓁𝑖 ∣ 𝐘𝑖 = 𝐲(𝑖)1
)

, 𝐻2 = 𝐻
(

𝓁𝑖 ∣ 𝐘𝑖 = 𝐲(𝑖)2
)

. Based on
Eq. (23) 𝐷𝑖,1 ≠ 𝐷𝑖,2. We now show that 𝐻1 and 𝐻2 are functions of
𝐷𝑖,1 and 𝐷𝑖,2, respectively. For this, we only point out that 𝑝1 (similar
results can be obtained for 𝑝2) is a monotonically increasing function of

𝐷𝑖,1: it follows from Corollary 2 that 𝑝1 =
𝛥𝑖−

√

𝛥2𝑖 −4𝐷𝑖,1
2𝛥𝑖

. To demonstrate
the fallacy of attaining both Eqs. (23) and (24) it is sufficient to show
the following (concavity):

𝛼 𝐹 (𝑥) + (1 − 𝛼)𝐹
(

𝐷̃𝑖 − 𝛼 𝑥
1 − 𝛼

)

≤ 𝐹 (𝐷̃𝑖) , (25)

where 𝑥 = 𝐷𝑖,1, and 𝐹 (𝑥) = −𝑝1(𝑥) log
(

𝑝1(𝑥)
)

−
(

1 − 𝑝1(𝑥)
)

log
(

1 − 𝑝1(𝑥)
)

.
he validity of Eq. (25) follows from
𝜕
𝜕 𝑥𝐹 (𝑥) = 1

𝛥𝑖𝜃
log

(

𝛥𝑖+𝜃
𝛥𝑖−𝜃

)

≥ 0 ;
𝜕2

𝜕 𝑥2 𝐹 (𝑥) = − 2
𝛥𝑖𝜃2

(

1
𝛥𝑖+𝜃

+ 1
𝛥𝑖−𝜃

− 1
𝜃 log

(

𝛥𝑖+𝜃
𝛥𝑖−𝜃

)

)

≤ 0 ,

where 𝜃 =
√

𝛥2
𝑖 − 4𝑥, and 𝑥 ∈

[

0,
𝛥2𝑖
4

]

.

Next, we point out a different case where |

|

|

Y(𝑖)|
|

|

> 2 and demonstrate
that it is non-optimal. For this we consider |

|

|

Y(𝑖)|
|

|

= 3 while the
onclusions for |

|

|

Y(𝑖)|
|

|

> 3 can be derived inductively then. Similarly
to Eq. (24) we demand

⎧

⎪

⎨

⎪

⎩

max
[

r,𝑖
]

= max
[

𝛼 𝐻1+ 𝛽 𝐻2 + (1 − 𝛼 − 𝛽)𝐻3
]

;

𝐷̃𝑖 = 𝛼 𝐷𝑖,1 + 𝛽 𝐷𝑖,2+ (1 − 𝛼 − 𝛽)𝐷𝑖,3 .

The task is then to show that there is 𝐲(𝑖)4 for which 𝐷𝑖,4 =
𝛼 𝐷𝑖,1+𝛽 𝐷𝑖,2

𝛼+𝛽 ,

nd max𝐻4 ≥ max
[

𝛼
𝛼+𝛽𝐻1 +

𝛽
𝛼+𝛽𝐻2

]

. We henceforth maintain that
Y(𝑖)|

|

|

≤ 2 represents optimal settings.
To obtain max

[

𝛼 𝐻1 + (1 − 𝛼)𝐻2
]

in Eq. (24) it is sufficient that
1 = 𝐻2 and 𝐷𝑖,1 = 𝐷𝑖,2 = 𝐷̃𝑖. The latter requires that either 𝜆1 = 𝜆2

r 𝜆1 = (1 − 𝜆2): the first condition implies 𝑝1 = 𝑝2 = 0.5 and leads
o a trivial situation where 𝐲(𝑖)1 = 𝐲(𝑖)2 = 0.5 (𝐗̃𝑖, + 𝐗̃𝑖,

)

meaning that
Y(𝑖)|

|

|

= 1. The second condition implies 𝑝1 = 1 −𝑝2 and leads to 𝐲(𝑖)1 ≠ 𝐲(𝑖)2
f 𝐷̃𝑖 < 0.25𝛥2

𝑖 .
Requirement 𝛼 ∈ [0, 1] must be consistent with the order mixing

probability 𝜑:

𝛼 𝑝1 + (1 − 𝛼)𝑝2 = 𝜑 , (26)

from which we derive 𝛼 = 𝜑+𝑝1−1
2𝑝1−1

demanding 𝜑 ≥ 𝑝1. Alternatively,
this demand can be understood based on the fact 𝐻

(

𝓁𝑖
)

≥ 𝐻
(

𝓁𝑖 ∣ 𝐘𝑖
)

:
etting 𝑝1 > 𝜑 results in a greater distortion, but this does not increase
ntropy. □
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Appendix B. Protocol analysis

BAN logic is a convenient tool for developing a medium level assur-
ance for authentication protocols [33]. For the analysis, we represent
the protocol in the idealized form. Based on the previous sub-section,
we use the following premises:

• Alice (A for short) and Bob (B for short) possess corresponding
public and private keys. As such, in terms of BAN logic we have:

(i)
𝐾𝐴
←←←←←←←←←←←←←→ 𝐴 , (ii) 𝐴 ⇒ 𝐾𝐴

−1 , (iii) 𝐾𝐵
←←←←←←←←←←←←←←→ 𝐵 , (iv) 𝐵 ⇒ 𝐾𝐵

−1 ;

• PKI functions properly and propagates information about creden-

tials, meaning that: (v)
𝐾𝐵
←←←←←←←←←←←←←←→ 𝐴 , (vi) 𝐴 ∣≡

(

𝐵 ⇒ 𝐾𝐵
−1) , (vii)

𝐾𝐴
←←←←←←←←←←←←←→ 𝐵 , (viii) 𝐵 ∣≡

(

𝐴 ⇒ 𝐾𝐴
−1) ;

• Alice and Bob generate random numbers 𝑟𝐴 and 𝑟𝐵 , respectively.
Therefore, they have confidence that the numbers are fresh: (ix)
𝐴 ∣≡

(

#(𝑟𝐴)
)

, (x) 𝐵 ∣≡
(

#(𝑟𝐵)
)

;

• Alice and Bob send to each other the generated random numbers,
and we have: (xi) 𝐴 ⊲ 𝑟𝐵 , (xii) 𝐵 ⊲ 𝑟𝐴 ;

• Alice and Bob privately compose tuples (𝑟𝐴, 𝑟𝐵) (we ignore 𝑖𝑑𝐴 and
𝑖𝑑𝐵 for simplicity), sign them, and send these signed tuples to each
other: (xiii) 𝐴 ⊲ {𝑟𝐴, 𝑟𝐵}𝐾𝐵

−1 , (xiv) 𝐵 ⊲ {𝑟𝐴, 𝑟𝐵}𝐾𝐴
−1 .

According to BAN logic, we now demonstrate that the assertion sent
o Alice by Bob in (xiii) is sufficient to believe that Bob said (𝑟𝐴, 𝑟𝐵),

and this statement is fresh. First, we use (v) and (xiii) to infer that
private key of Bob, 𝐾𝐵

−1, was used on (𝑟𝐴, 𝑟𝐵):
𝐴 ⊲ {𝑟𝐴, 𝑟𝐵}𝐾𝐵

−1 ,
𝐾𝐵
←←←←←←←←←←←←←←→ 𝐴

𝐴 ∣≡ ⟨𝑟𝐴, 𝑟𝐵⟩𝐾𝐵
−1

. (27)

Second, we use (vi) and the result of Eq. (27) to infer that Bob said
𝑟𝐴, 𝑟𝐵):
𝐴 ∣≡ ⟨𝑟𝐴, 𝑟𝐵⟩𝐾𝐵

−1 , 𝐴 ∣≡
(

𝐵 ⇒ 𝐾𝐵
−1)

𝐴 ∣≡
(

𝐵 ∣∼ (𝑟𝐴, 𝑟𝐵)
) . (28)

Third, we use (ix) and the result of Eq. (28) to demonstrate freshness
of the Bob’s assertion:
𝐴 ∣≡

(

𝐵 ∣∼ (𝑟𝐴, 𝑟𝐵)
)

, 𝐴 ∣≡
(

#(𝑟𝐴)
)

𝐴 ∣≡
(

𝐵 ∣∼
(

#(𝑟𝐴, 𝑟𝐵)
)

) . (29)

Based on the above inference, Alice develops an assurance that as-
ertion {𝑟𝐴, 𝑟𝐵}𝐾𝐵

−1 is authentic (received from Bob) and supports fresh
laim (𝑟𝐴, 𝑟𝐵). Similar results can be demonstrated for the assertion
𝑟𝐴, 𝑟𝐵}𝐾𝐴

−1 received by Bob. Hence, at the end of the protocol on
Fig. 14, Alice and Bob are authenticated to each other.
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