
Vitalii B. Mokin, Mykola G. Pradivliannyi

Machine Learning,
Intelligent Data Analysis and

Artificial Intelligence of Things

1

Ministry of Education and Science of Ukraine
Vinnytsia National Technical University

Vitalii B. Mokin, Mykola G. Pradivliannyi

MACHINE LEARNING, INTELLIGENT DATA ANALYSIS
AND ARTIFICIAL INTELLIGENCE OF THINGS

Electronic textbook

Vinnytsia
VNTU
2024

UDC [004.65-047.44+004.8/.9](075.8)
M78

Recommended for publication by the Academic Council of Vinnytsia
National Technical University of the Ministry of Education and Science of
Ukraine (protocol # 11 from 27.06.2024).

Reviewers:
O. V. Bisikalo, Doctor of Technical Sciences, Professor
R. N. Kvyetny, Doctor of technical sciences, Professor
V. V. Lytvyn, Doctor of technical sciences, Professor

The textbook contains theoretical information about the main concepts, meth-
ods, and tools of Data Science, Machine Learning, Artificial Intelligence, and Intel-
ligent Data Analysis, the Artificial Intelligence of Things, as well as practical rec-
ommendations for the application of modern technologies in solving numerous ap-
plied tasks and problems of system analysis. A list of test questions for checking
acquired theoretical knowledge and practical skills is provided.

The textbook for foreign students who study the specialties 124 "System
Analysis" and 126 "Information Systems and Technologies" of the II and III levels
when learning the following subjects: "Internet of things and intelligent data analy-
sis", "Information technologies of monitoring and analysis of the state of complex
systems", "Information technologies of monitoring and data analysis", "Infor-
mation intelligent technologies", "System analysis", "Smart Technologies" as well
as for students undergoing the industrial and pre-diploma practice, and for the ped-
agogical practice of graduate students. It can also be useful for students of other ar-
eas: management, finance, construction, cyber security, bio-, electrical and me-
chanical engineering, agriculture, biology, medicine, education, etc. The textbook
provides many examples of tasks in these areas.

UDC [004.65-047.44+004.8/.9](075.8)

 VNTU, 2024

Mokin, V. B.
Machine Learning, Intelligent Data Analysis and Artificial

Intelligence of Things : electronic textbook [Electronic resource] /
V. B. Mokin, M. G. Pradivliannyi – Vinnytsia : VNTU, 2024. –
(PDF, 230 p.)

M78

3

CONTENTS

INTRODUCTION ... 6
1 GENERAL ASPECTS OF SETTING AND SOLVING TASKS
IN DATA SCIENCE AND INTELLIGENT DATA ANALYSIS 10

1.1. Basic concepts of data science, machine learning, artificial
intelligence, and intelligent data analysis ... 10

1.2 Setting the task of data analysis. Search for information on it.
Building a dataset, its division into training, validation, and test datasets 14

1.3 Definition of the target feature, types of tasks and metrics of machine
learning. Clarifying the statement of the tasks ... 18

1.4 Generalized algorithms for solving machine learning and IDA
problems and IT infrastructure for their implementation 21

1.5 Examples of setting tasks of intelligent data analysis in applied areas 23
1.5.1. Cyber Security and Encryption ... 23
1.5.2. Electronics and Telecommunications ... 266
1.5.3. Automation and Robotics, UAV, Transport, Mechanical

Engineering .. 28
1.5.4. Architecture and the Building Construction 33
1.5.5. Electrical Engineering ... 35
1.5.6. Bioengineering, Medicine ... 38
1.5.7. Management, Economy, Finance .. 41
1.5.8. Agricultural Engineering, Environment, Biology 46
1.5.9. Education and Social spheres .. 48

Practical exercises ... 51
Possible topics of practical tasks ... 54
Test questions .. 56

2 DATA PREPROCESSING AND EXPLORATORY DATA ANALYSIS 57
2.1 Data cleaning and preprocessing ... 57
2.2 Clustering and data dimensionality reduction ... 58
2.3 Exploratory data analysis .. 64
Practical exercises ... 68
Possible topics of practical tasks ... 69
Test questions .. 70

3 FEATURE ENGINEERING .. 71
3.1 Main tasks and stages of feature engineering ... 71
3.2 Standardization and normalization of features .. 73
3.3 Construction of feature importance diagrams and automation of

feature selection based on Sklearn, SHAP, LIME libraries.
Interpretability of models ... 75

Possible topics of practical tasks ... 77
Test questions .. 78

4

4 TRAINING AND TUNING OF MACHINE LEARNING MODELS............ 80
4.1 Types of machine learning models and their advantages 80
4.2 Training of machine learning models and their regularization 81
4.3 Tuning of models' hyperparameters and controlling their training's

effectiveness ... 83
4.4 Linear Regression, Ridge and Lasso models. Logistic Regression 91

4.4.1 Linear Regression, Ridge and Lasso models 91
4.4.2 Logistic Regression .. 93

4.5 SGD, SVM, k-NN, GP, NB models .. 95
4.5.1 Stochastic Gradient Descent .. 95
4.5.2 Support Vector Machine .. 96
4.5.3 K-nearest neighbor method .. 98
4.5.4 Forecasting methods based on the Gaussian process 100
4.5.5 Naive Bayes model .. 101

4.6 Decision Trees. Comparative analysis of models on an example 1033
4.6.1 Decision Trees .. 1033
4.6.2 Comparative analysis of models on an example 106

4.7 Randomized ensembles of trees: Random Forest and others.................. 107
4.8 Boosting models .. 108
4.9 Ensembles of models. Comparative analysis of model ensembles on

an example .. 112
4.10 Neural Network (NN) training and analyzing its accuracy. Deep

Learning (DL) Concepts ... 116
Practical exercises ... 124
Possible topics for practical and laboratory tasks ... 127
Test questions .. 128

5 INTELLIGENT DATA ANALYSIS ... 130
5.1 Intelligent Analysis of Images and Videos ... 130

5.1.1 Basic concepts, colors encoding, basic types, tensors 131
5.1.2 Typical tasks ... 132
5.1.3 Image preprocessing. OpenCVlibrary .. 133
5.1.4 Convolutional Neural Networks (CNN): principles of work and

typical architecture ... 134
5.1.5 Modern architectures of neural networks... 138
5.1.6 Auto encoders in unsupervised tasks ... 139
5.1.7 Videos analysis and recognition. YOLO. .. 140
5.1.8 Image generation and detection: GAN, VAE, Stable Diffusion 142

5.2 Intelligent Analysis of Text: Natural Language Processing and
Generating .. 145
5.2.1 NLP: basic concepts, types of problems, data collection and

preprocessing .. 145
5.2.2 Linguistic models and classification of natural language text 147

5.2.2.1 Bag of Words. ... 147
5.2.2.2 TF-IDF. ... 148

5

5.2.2.3 GloVe. Embeddings. ... 148
5.2.2.4 Word2Vec. .. 150
5.2.2.5 Transformer ... 151
5.2.2.6 BERT. .. 152
5.2.2.7 Hugging Face (HF). .. 154
5.2.2.8 FE in NLP tasks. ... 155

5.3 Large Language Models (LLM) and Chatbots 156
5.4 Intelligent Analysis and Forecasting of Time Series 160

5.4.1 Basic concepts and types of problems ... 160
5.4.2 EDA and FE for time series. .. 161
5.4.3 Construction of time series models: ARIMA, Prophet 167

Practical exercises ... 169
Possible topics for practical and laboratory tasks ... 174
Test questions .. 175

6 INTERNET OF THINGS ... 177
6.1 Basic concepts and concepts of the Internet of Things. Overview of

LPWAN IoT technologies .. 177
6.1.1 Basic concepts and concepts of the Internet of Things 177
6.1.2 LPWAN IoT technologies: LoRaWAN, Sigfox, NB-IoT 179

6.2 Architecture of IoT systems. Types of its typical components.
Optimization of the architecture of IoT systems 181
6.2.1 Architecture of IoT systems. Types of its typical components........ 181
6.2.2 Choosing an IoT platform for data collection, storage and

analysis ... 182
6.2.3 Optimization of the architecture of IoT systems.............................. 183
6.2.4 The example of creating an IoT system ... 186

6.3 Artificial Intelligence of Things (AIoT) ... 188
Possible topics for practical and laboratory tasks ... 192
Test questions .. 194

REFERENCES .. 196
APPENDIX A PYTHON BASICS: SYNTAX, DATA TYPES, BASIC
COMMANDS AND BASIC LIBRARIES ... 204
APPENDIX B BUILDING YOUR OWN DATASET IN THE KAGGLE
ENVIRONMENT .. 209
APPENDIX C EXAMPLES OF SETTING PROBLEMS FROM
MACHINE LEARNING AND INTELLIGENT DATA ANALYSIS 211
APPENDIX D IT INFRASTRUCTURE OF MACHINE LEARNING
AND INTELLIGENT DATA ANALYSIS .. 212
APPENDIX E LIBRARIES AND METHODS FOR AUTOMATIC EDA:
PANDASPROFILING, AUTOVIZ, SWEETVIZ .. 217
APPENDIX F LIBRARIES SHAP, LIME FOR THE MODEL
INTERPRETATION ... 220
APPENDIX G NEURAL NETWORK ARCHITECTURES 227

6

INTRODUCTION

Machine learning of models and intelligent data analysis with the use of
these models are becoming more and more relevant and widespread. Areas
based on the use of large language models and services such as ChatGPT from
OpenAI are developing especially rapidly. However, the effectiveness of solving
a problem depends on its correct formulation, chosen information technologies
and model architecture, methods of data analysis and visualization as well as
prediction results using these models. ChatGPT and its analogs solve many
problems, but not all of them – you still need a data scientist who will correctly
set the problem, formulate a request, and verify the answer (ChatGPT often
"hallucinates", i.e. synthesizes a random, and not a correct answer), will use it to
solve the problem. Solving problems became much easier, processes became
more intelligent and not routine. This textbook is intended to provide a
comprehensive introduction to the above issues presenting suggestions,
recommendations and peculiarities useful for the application of the latest
technologies in system analysis.

The purpose of this textbook is to acquaint undergraduates and graduate
students with the basic knowledge and skills in Machine Learning, Intelligent
Data Analysis, the Internet of Things, and the Artificial Intelligence of Things
necessary for solving real problems of varying complexity, as well as to help
find the optimal choice of information technologies and services for automating
this process.

The material of the textbook can also be useful for students of the second
higher education in systems analysis, information systems and technologies, and
students of other specialties who do not have enough basic knowledge and skills
in this field. The textbook will also be interesting and useful for students who
study the specialties 124 "System Analysis" and 126 "Information Systems and
Technologies" of the II and III levels when learning the following subjects:
"Internet of things and intelligent data analysis", "Information technologies of
monitoring and analysis of the state of complex systems", "Information
technologies of monitoring and data analysis", "Information intelligent
technologies", "System analysis", "Smart Technologies" as well as for students
undergoing the industrial and pre-diploma practice, the pedagogical practice for
graduate students. It can also be useful for students of other areas: management,
finance, construction, cyber security, bio-, electrical and mechanical
engineering, agriculture, biology, medicine, education, etc. The textbook
provides many examples of tasks in these areas.

The textbook contains the following chapters:
1. General Aspects of Setting and Solving Tasks in Data Science and

Intelligent Data Analysis.
2. Data Preprocessing and Exploratory Data Analysis.
3. Feature Engineering.

7

4. Training and Tuning of Machine Learning Models.
5. Intelligent Data Analysis.
6. Internet of Things.
Machine learning models, the training of which is described in chapters 1-

4, are not an “end in themselves”. As a rule, they are built to solve applied prob-
lems using intelligent data analysis technologies that is using special technolo-
gies that take into account the specifics of data, and using pre-trained machine
learning models. Therefore, although the material presented in chapters 1-4 al-
lows you to solve problems of arbitrary complexity, it is more effective to use
them together with the material of chapters 5, 6: images and videos (section 5.1),
natural language texts (sections 5.2, 5.3), time series (section 5.4), IoT systems
(Chapter 6). All programs in this tutorial are in Python. Appendix A lists the
basic Python commands, data types, and basic Python libraries that you should
know as a minimum to be able to read later chapters. There are practical exer-
cises and examples of their solutions at the end of chapters 1, 2, 4, and 5. There
are generalized topics given as possible topics for practical and laboratory tasks
in the all chapters 1-6.

Appendices B-G provide auxiliary resources for all chapters 1-6: Appen-
dix B for building your dataset in the Kaggle environment, Appendix C – exam-
ples of setting problems from Machine Learning and Intelligent Data Analysis,
Appendix D – lists of IT infrastructure, Appendix E presents libraries and meth-
ods for automatic Exploratory Data Analysis: Pandas_profiling, AutoViz,
SweetViz with many examples, Appendix F highlights libraries SHAP, LIME
for the model interpretation with many examples, Appendix – with Neural Net-
work architectures.

When presenting the material, it will be taken into account that it is now
easy to find the content and parameters of any command, operator, function, or
library in ChatGPT, therefore such material will be presented minimally – in-
stead, at the end of each chapter, infographics with the names of such commands
or libraries which should be mastered independently will be provided. Each
chapter will provide reviews of examples for solving real problems, taking into
account the authors' many years of experience, and problems of a training nature
from the Kaggle, platform of data scientists, which as of May 2024 already con-
tains more than 21 million accounts, 60 million notebooks and 5 million datasets
from data scientists around the world (see Kaggle metadata).

In addition, there will be links to ready-made Python programming code
with an illustration of the material presented on the example of solving such real
or training tasks. Each chapter will end with a list of test questions.

The authors of the textbook have extensive experience in solving real
problems in the fields of medicine and biology, ecology and meteorology,
economics and trade, electronics and the Internet of Things, energy and
electromechanics, agriculture, management, finance, construction, cyber
security, bioengineering, education, transport and control of drones, recognition
of data from remote sensing of the Earth, including aerial photography, etc.

https://www.kaggle.com/
https://www.kaggle.com/datasets/kaggle/meta-kaggle

8

using artificial intelligence technologies, machine learning, and intelligent data
analysis technologies.

In addition to real tasks, the authors have significant achievements in the
ratings of the Kaggle platform. Professor Vitalii Mokin has the title of Kaggle
Notebooks Grandmaster (the first in Ukraine to receive this title, at that time
there were only about 60 of them in the world), and he reached the 10th place in
the Kaggle world rating for notebook development! His profile has more than
850 Python notebooks, incl. about 200 public ones and these are the ones that
were used as examples in this textbook.

The main text was written by Professor Vitalii B. Mokin, but Mykola G.
Pradivliannyi did a creative translation of most of the material into English and
selected examples for various tasks, as well as summarized material from vari-
ous web resources. Approximately 80% of the material – Vitalii B. Mokin, 20%
– Mykola G. Pradivliannyi.

Author's Kaggle Notebooks are dedicated to solving all the types of prob-
lems discussed in this textbook. Many drawings and explanations were taken
from them. Readers can copy them and adapt them to their tasks using this text-
book. For many of these notebooks, there are also Ukrainian-language lectures
by Vitalii B. Mokin on his YouTube channel "AI-ML-DS Training course on
Python".

The team of authors would like to thank such data scientists for their use-
ful advice and comments, which allowed to significantly improve the level of
the material of the textbook:

- Doctor of Technical Sciences, Professor of the Department of System
Analysis and Information Technologies (SAIT) of VNTU, Prof. Oleksandr
Mokin for valuable advice on various aspects;

- David Groozman for his advice on topics of Data Science, Artificial in-
telligence and Data Engineering;

- Boris Sorochkin for his advice on development methods, programming,
and systems analysis;

- Mykhailo Dratovanyi for his help in designing the textbook [1], the ma-
terial from which was used as the basis for this textbook;

- Dmytro Shmundiak for exceptional quality consultations when writing
the material on the analysis of anomalies in time series in chapter 5;

- Kaggle Grandmaster Yaroslav Isaienkov for sharing valuable experience
and expertise when writing the material on the GANs in chapter 5;

- Kaggle Grandmaster Leonid Kulyk for sharing valuable experience and
expertise when writing the material on the Diffusion Models in chapter 5;

- Volodymyr Kopniak for help in writing the material on the analysis of
time series and the text on the heteroscedasticity of series in chapter 5;

- PhD Arsen Losenko for his materials on forecasting time series using
Prophet (Facebook Prophet) in chapter 5;

- Kostiantyn Bondalietov for his advice in web scrapping and NLP re-
search in chapter 5;

9

- Borys Varer and Serhii Levitskiy for their advice on chat-bots and LLM
models in chapter 5;

- Dmytro Honcharenko for the assistance in writing Chapter 6 on the In-
ternet of Things and in developing practical tasks for it.

This is the first edition of the textbook. Please feel free to send comments,
remarks, and recommendations for its improvement. The e-mail of the Depart-
ment of SAIT of VNTU sait@vntu.edu.ua.

mailto:sait@vntu.edu.ua

10

1 GENERAL ASPECTS OF SETTING AND SOLVING TASKS IN
DATA SCIENCE AND INTELLIGENT DATA ANALYSIS

1.1. Basic concepts of data science, machine learning, artificial

intelligence, and intelligent data analysis

In all spheres of our life it is necessary to be able to process information
optimally and correctly: collect it, analyze it, forecast it, use it to make informed
decisions, etc. The entire complex of approaches, techniques, methods and tools
for solving the above problems is called "Data Science". The main components
of DS are the following [1]:

- Data engineering, which includes methods and means of data collection
and management, their preliminary analysis and processing for use in machine
learning tasks;

- Machine learning – a complex of techniques, methods and technologies
for solving applied problems, which is preceded by "training" models on com-
puters (machines) on certain data;

- Artificial intelligence (or artificial intelligence technologies) is a set of
techniques, methods and machine learning technologies that simulate various
aspects of human cognition, such as learning, problem solving, reasoning, per-
ception and decision-making;

- «Intelligent Data Analysis» – solving applied problems of analyzing var-
ious data using a set of techniques, methods and intelligent technologies.

Let's define what intelligent models are. There are many definitions. We
suggest the following: an intelligent model is an information model built for the
efficient solution of the analytical problem, capable of learning from experience
and generalizing knowledge to process new data and scenarios. This definition
reflects the main difference of this kind of models – they allow to predict data,
events, generate new knowledge and information with high accuracy. If an in-
formation system or technology makes a simple comparison of the input data
with a database of samples (fingerprints, DNA, faces, cadastral information,
etc.), then it is not intelligent, but if it can predict how a specific face will
change in 10 years or how it looked 10 years earlier, then this is already an evi-
dence of its intellectuality within this definition.

However, it is worth noting the following important features [1]:
1. Machine learning (ML) focuses primarily on training machine models

with information from datasets, while data engineering (DE) focuses on creating
and managing these datasets. That is why they are called so. But some publish-
ers and employers often include ML in DE or DE in ML when posting data en-
gineer or ML developer jobs.

2. Intelligent data analysis (IDA), as a rule, consists in the use of special-
ly developed information technologies and pre-trained intelligent models for
solving applied analytical problems. Although, some authors often consider

11

ML/AI as one of the initial stages of IDA or IDA as one of the final stages of
ML or AI.

This textbook suggests the following way of structuring these terms, con-
cepts, methods and technologies (Fig. 1.1) [1]:

1. Collection and processing of data is carried out, including big data
(Big Data), from IoT or information systems and the formation of datasets for
data analysis – data engineering (DE), which can be considered as a section of
data science (DS) or as an independent section.

2. Based on the results of DE, Exploratory Data Analysis (EDA) is car-
ried out, which involves the applied application of certain sections of mathemat-
ics, including statistics, to data. This analysis may also involve trial building of
models to analyze certain patterns in the features. Moreover, such models can
also be multilayers neural networks (DL).

3. Based on the results of EDA, machine learning (ML) models, deep
learning (DL) and artificial intelligence (AI) models are carried out.

4. Pretrained ML/DL/AI models are used for intelligent data analysis
(numbers, text, images, video, speech, sounds) (IDA) aimed at solving various
applied analytical problems.

Figure 1.1 – Basic concepts and their combination in the field of

ML/DL/AI/DE/DS/IDA

They are all united by data science (DS), including DE, although they all

share some aspects of the software-hardware plan that DS does not, so they only
overlap.

DS is a more general concept than mathematics, including statistics, and
DE, EDA, IDA, and therefore it covers them completely.

Application software and integrated development environments are used
to automate all these operations – IDE.

12

This structure corresponds to the division of tasks within the IT compa-
nies into data engineers and data scientists. In turn, data scientists either create
new ML/DL/AI models, or, more often, use ready-made models, but develop
technologies for their application to solve new problems. The most valuable
nowadays is the ability to use IDA itself, but this is impossible qualitatively
without understanding the fundamentals of ML/DL/AI model building, so it is
important to master all these aspects of DS.

Regarding Data Science, a slightly different scheme is common in the lit-
erature. With some of our improvements and a combination with Internet of
Things (IoT) and IDA, the corresponding scheme is shown in Fig. 1.2.

Figure 1.2 – Basic concepts and their combination in the field of Data Science,

IoT and IDA

Fig. 1.2 shows that informatics (IT and Computer Sciences) in combina-
tion with knowledge and data about the subject area (which is commonly called
as "Domain Knowledge & Data") and knowledge and data about performance
indicators, user or customer requirements, business-strategies and limitations,
etc. (Business Knowledge & Data) form "IoT Software Development". And the
combination of mathematics, including statistics, and cybernetics, including the-
ory of control and optimization of systems, with this knowledge and data it is
traditional research in the field of mathematical simulation, prediction and opti-
mization of processes and systems. The combination of IT, including infor-
mation and information-measurement systems, as well as computer sciences,
with a mathematical apparatus, made it possible to create machine learning and
artificial intelligence (ML & AI). And at the junction of all of them, there were
formed:

13

- Data Science (DS) as a theoretical complex;
- Intelligent Data Analysis (IDA) as an applied application of DS for vari-

ous tasks and tasks;
- Internet of Things with Artificial Intelligence (AI&IoT = AIoT) as a full-

cycle intelligent information system: observation, storage, processing, intelligent
analysis and decision support (Industry 4.0).

It is important to realize that in applied terms, data science, machine
learning, artificial intelligence, and intelligent technologies are, first of all, in-
formation technologies that process information from input to output according
to certain algorithms aimed at increasing the amount of information I, primarily
– for the better systematization and formalization, detection and prediction of
new knowledge and regularities. These algorithms, depending on the uncertainty
of the input data, the structure of the models or the branching and multivariation
of the algorithm, have different complexity. Therefore, for a better understand-
ing of the material, the manual will use the appropriate infographics, which will
demonstrate how each block of information technologies can be located in such
a coordinate system S(I) (Fig. 1.3).

Figure 1.3 – Infographics for visualization of information technologies for the
transformation of input data into output, depending on the complexity S of the

algorithm and the amount of information they add

If there are many blocks on the diagram, then for a better understanding of
their sequence along the abscissa axis, the projection of these blocks onto it can
be added in the form of green vertical lines from the center of the blocks to this
axis.

Each section will present examples of setting and solving both real prob-
lems and training problems in the Kaggle platform from the relevant topic. The
textbook is focused on the use of the Python programming language (see Ap-
pendix A with some infographics and links to documentation and problem sets,

14

which will allow you to speed up its learning, if you already have knowledge of
at least some other programming language and the basics of algorithmization).

1.2 Setting the task of data analysis. Search for information on it.

Building a dataset, its division into training, validation, and test datasets

The vast majority of data analysis problems fall into 2 classes [1]:
1. Tasks of exploratory data analysis, where the data itself is enough to

analyze patterns, dependencies, primary statistical analysis, etc. without using
complex models.

2. Data analysis and prediction tasks that require the use of complex
models to make high-precision predictions, after which either the analysis of the
predictions made is carried out, or the model itself is analyzed, whose good pre-
dictive function has proven its adequacy.

The tasks of the second class, in turn, are divided into problems that can
be effectively solved using pre-trained models, and problems that require the
construction of a new model.

This textbook is dedicated to the most complex case, when it is necessary
to carry out both exploratory data analysis and intelligent data analysis, for
which it is still necessary to build models based on datasets that have yet to be
created from data that has yet to be found.

For the first class, the task is, as a rule, a requirement to carry out an intel-
ligence analysis of data to detect the presence and identification of patterns, in-
cluding statistical; detection of wrong, anomalous and problematic data; detec-
tion of connections between data, their grouping and clustering; visualization of
the obtained conclusions in an easy-to-understand form. There may be broader
task statements.

Most tasks of the second class are optimization tasks. It is worth distin-
guishing between the tasks of machine learning of intelligent models and tasks
of IAD. Even if it is not explicitly formulated, optimization can be carried out in
functions of libraries that are used to improve the accuracy of model training.

Classical optimization tasks in systems theory are usually formulated as
follows: for given input data, control variables, under the influence of controlled
and uncontrolled disturbances, ensure the optimum of the optimization criterion
under certain restrictions.

In machine learning tasks, as a rule, the input data and the so-called "tar-
get" are distinguished. There can be many targets, or all data can be a target in
turn. Often, all this data is located in one table. The optimization criterion is a
numerical indicator (metric or error). There may be no restrictions. Basically,
their role is to limit the use of only values from the dataset and prohibit the use
of others. But there may also be certain physical restrictions, for example, the
prohibition of fractional values (in the case of using regression models to predict
or forecast the number of objects, all values should be rounded to a whole and
only then determine the metric – see the example of determining the number of

15

survivors on the "Titanic" in a notebook) or the number of patients with corona-
virus cannot be negative, etc.

So, the classic task of machine learning of an intelligent model is usually
formulated as follows: for a given dataset (data tables, text files, audio, video
files or images), build and train an intelligent model that will provide the opti-
mum (maximum or minimum) of the given metric (criteria) for a given target
feature(s). Additional restrictions may be applied, but are not required.

The tasks of intelligent analysis can be the optimization of the use of vari-
ous models, methods and technologies to identify complex relationships and
regularities in various datasets, including those with numerical, textual, graph-
ical static and/or dynamic information, with the aim of forming predictions or
obtaining insights for effective decision-making and problem solving in various
fields. There may be other (more general or more narrow) statements of IDA
tasks.

There is no single algorithm for setting and solving all such tasks, alt-
hough below in this section there is a generalized algorithm and recommenda-
tions for the most complex options for setting the problem, but unfortunately, it
do not cover all possible options.

Algorithms may differ in the stage at which task solving begins. Competi-
tions and training examples already have datasets and task statements that need
to be solved. In real problems [1]:

Option 1. The data set may be a known one. This may be, for example,
data from medical tests and only the desire to improve the treatment efficiency
or evaluate the spread of the disease in the country more accurately. But it still
remains unknown how to do it and what indicators to use. That means that the
exact formulations of the tasks need to be done independently.

Option 2. The task statement may be known. For example, this may be to
increase the accuracy of the daily forecast of the officially published number of
coronavirus patients in the country, but what factors to take into account remains
unknown, i.e. the dataset still needs to be created, and after creating, in is neces-
sary to clarify the task statement, since not all data usually can be found, accord-
ing to the requirements.

Option 2 occurs more often and is the most generalized, and option 1 is its
simplified case. Therefore, we will pay more attention to option 2.

Ready-made datasets can be searched on web platforms (GitHub, Kaggle,
Hugging Face, etc., where there are hundreds of thousands of them and they are
publicly available). If you could not find the required dataset, or if it is found,
but it does not look the way you want, you should create your own dataset. It of-
ten makes sense to create your own dataset, even when there are different exist-
ing datasets, but you still need to apply many pre-processing operations to them
each time. Then you apply them, select everything you need, save it once in its
optimal form, and then only use it in the future.

When collecting data, it is very important to consider those features that im-
pact or potentially affect the target feature and ignore those that definitely do

16

not. For example, there is a web page with the so-called "False Correlations".
These are regularities between which there is no physical or semantic connec-
tion, but statistical analysis shows that the correlation is present (Fig. 1.4).

Figure 1.4 – 0.79 Correlation of Non-Commercial Space Launches and Sociolo-

gy PhDs defended on «False Correlations»

Appendix B provides an algorithm and recommendations for building

your own dataset in the Kaggle environment. Also, you can create datasets as
files on your local computer (for use in Python programs on the same computer),
on GitHub, on your Google Drive, in the Amazon S3 service, etc.

An important aspect in machine learning tasks is the formation of training,
validation and test datasets. Models are trained on the training dataset. It is also
called "training". Optimal model is chosen on the validation dataset. And the
testing one is been used to apply only the optimal model.

In real tasks, all data are usually divided into training and validation or in-
to training and testing, but the testing acts as the validation one. Usually, the
training dataset contains from 70% to 90% of the total data, and the validation
dataset from 10% to 30%. The most popular options are: 75/25% or 80/20%.
The 90/10% option is used if the total amount of data is too small and the model
cannot learn using 70-85%, and the option with 70/30% (or even 60/40%) when
the data is very uniform and the model gives a super high accuracy of 100%
matches, even using 70/30%.

Usually, the validation data are selected from the general randomly, but
for time series, when it is necessary to predict the future, then the last values of
the series are validating, so that the optimal model most accurately reproduces
the data located in time immediately before the test ones.

For classic machine learning tasks, cross-validation is usually used, when
only the percentage of data that should be selected for training and validation,
and the number of cross-validations (abbreviated as "cv") and other parameters
(percentage of overlap, etc.) are set (Fig. 1.5).

https://www.tylervigen.com/spurious-correlations

17

Figure 1.5 – Cross-validation of training and validation data with cv = 5,

without data overlap (from GitHub)

That is, all data is divided into blocks, which one by one become a valida-

tion dataset, and the rest are training data. If data overlap is specified, then each
value can be multiple times in the validation dataset. In some cases this method
allows to significantly increase the accuracy of the model.

It is also important that the validation and test data have the same ranges
of feature values as in the training data, otherwise the model may be underfitted.
For example, if the training dataset contains only used cars with a value of
$10,000 to $20,000, and the validation and test dataset contains $300,000 or
more up to 2 million dollars, then such a model is unlikely to be effective. For
this, it is important to analyze and compare the distribution laws of these da-
tasets, which will be discussed in more detail in the next Сhap. 2.

- A dataset, as a separate set of files on a disk or in a cloud environment, is
not always necessary if the data can be obtained through an Application Pro-
gram Interface (API) or simply from web resources. To do this, it is enough to
make a request in the program, download the data and start processing. For ex-
ample, you can:

- download a web page, extract the text from it and analyze it (this will be
discussed in Сhap. 5);

- download the cryptocurrency rate via API from the cryptocurrency ex-
change (this will be discussed in Сhap. 5);

- in Kaggle, you can use another notebook as a dataset in your notebook
(Python program) and tighten its results directly, without the separate saving to
the cloud as a dataset.

However, using a dataset is more convenient, because you can store in
one place different versions of the data, general, training, validation and test

18

parts of the dataset, versions in different languages and with different coding,
their description, comments on them, programs for their processing, etc.

1.3 Definition of the target feature, types of tasks and metrics of

machine learning. Clarifying the statement of the tasks

After the dataset is formed, it is necessary to clarify the formulation of the
task or tasks that can be solved on its basis.

To clarify the statement of the tasks, it is important that the customer (he
can be the researcher himself) first describe the tasks, as he sees it, in 3-5 sen-
tences, add a dataset or datasets with data, briefly describe the desired expected
results. With this in mind, one should clearly define the type of feature or fea-
tures to be targeted, select a metric or metrics that can be used for that type, and
determine if and which constraints there are. Therefore, you should get answers
to the following questions [1]:

1. What is a target feature and what type is it?
Incorrect understanding of what a target is or a misunderstanding of its

type or nature leads to the impossibility of correctly and qualitatively solution of
the task. This question, in turn, is divided into a number of sub-questions.

1.1. What are the permissible values of the target characteristic?
It is necessary to find or obtain examples of the values of the target char-

acteristic, to analyze its dimensions, ideally to find out the full set of possible
values (if there are few of them) or – theoretically achievable statistical indica-
tors (minimum, maximum, average value, etc.), if there may be many values .

1.2. Is the target feature the only one, can it be reduced to one, or is it a
task with many target features?

The most common and simple option is the option with one target feature
or when the task can be reduced to a number of separate tasks, where each time
there will be a different single target feature and each such task must be solved
separately. A more difficult option are tasks where several interrelated target
features must be determined at once and cannot be divided into separate ones –
for such tasks, special models should be used, for example, neural networks with
many outputs.

2. Is the task a classification or regression?
Classification tasks are machine learning tasks, where a limited number of

classes are predicted, each of which has a sufficient amount of data to study the
patterns of their formation. Accordingly, regressive tasks are tasks where values
of the target feature are predicted, for studying the regularities of each range of
data, there may not be enough input data, and then they are simply predicted by
the model, i.e. the identified dependencies are spread ("regressed") to other val-
ues. Note, that regression models should not be confused with regression tasks –
this is a different classification! For example, a logistic regression model is often
used to solve classification tasks.

19

In practice, tasks where the target feature is a fractional number are im-
mediately classified as regression tasks, and tasks where it is an integer and this
number is 2-20 or less are classification tasks. In other options, a more thorough
study is required. Tasks with 100 classes and a billion data can be considered as
a classification problem, and if there are only 200 pieces of data, then it is better
to solve it as a regression tasks, otherwise the model will not learn enough.

Tasks with the so-called "binary target" are most effectively solved, that
is, when the target attribute takes only 2 values (0 or 1, True or False, sick or
healthy, whether a passenger on the Titanic survived or died, etc.). A classic ex-
ample is forecasting not the values themselves, (for example, sales volumes, cur-
rency exchange rates, weather parameters, etc.), but whether there will be an in-
crease in the next step (value 1) or not (0)?

The importance of classifying the problem by the target feature will be-
come clear in chapter 4, where it is noted that most names of machine learning
models consist of two parts, the first of which is the actual name of the model,
and the second is the type of problem ("Classifier" or "Regressor") , for exam-
ple: RandomForestClassifier and RandomForestRegressor.

3. This is the task of analysis, prediction or forecasting?
There are tasks where you just need to analyze the available data and the

result is various valuable conclusions and recommendations. And there are tasks
where it is necessary to predict the results. However, there are tasks where no
prediction is carried out, but only analysis, so it makes sense to separate the
"analysis" task type as a separate one.

In general, forecasting tasks are a subspecies of predicting tasks, but in
forecasting problems it is important to consider time dependence and use special
time series models. Prediction tasks are more common, but in them, on the con-
trary, the feature of each moment of time, if it is present, must be removed, oth-
erwise the model, as they say, will be retrained or "overfitted". It will diligently
predict facts that occurred strictly at those points in time that were in the training
dataset.

It will not generalize and analyze the nature of the phenomenon itself and
will not be able to correctly work with test data at previously unobserved mo-
ments of time. For example, we accidentally receive a photo and have to deter-
mine whether it is a cat or a dog – this is a prediction task and it should not take
into account the time of receiving the photo. And if we forecast the exchange
rate on the market, the environmental quality indicator, the number of cars at the
traffic light, the amount of electricity produced by the solar panel with minute
averaging, the expected harvest in the field, etc., then this is a forecasting task
and time must be taken into account. Time series analysis and forecasting will
be discussed in more detail in subsection 5.4, and other materials will focus
mainly on predicting problems.

4. In the development of the previous question: what is the type of data
formalization and what is the type of the given problem? The algorithm for solv-

20

ing the given tasks will depend significantly on the answers to these questions,
that is, the choice among the following options:

- data tables that are not sequences of data over time (not time series), and
classic classification or regression problems of multivariate prediction, when
one or more target features (columns of the table) should be determined for cer-
tain input features – the universal models of this type are more detailed in Chap-
ter 4;

- image or video: tasks of analysis, recognition and/or generation of imag-
es – tasks in which it is necessary to determine to which class the given images
(or video as a sequence of images) belong, or to find specific objects or to ana-
lyze them according to other criteria – this is detailed in chapter 5;

- text: tasks of analysis, processing and/or generation of natural language
text – tasks in which natural language text should be analyzed, classified or oth-
erwise processed – this is explained in more detail in chapter 5;

- time series of data: tasks (as a rule, regression) in which a given target
characteristic should be predicted as a result of a change in another or many oth-
ers, or the same one, but – at earlier moments in time – this is explained in chap-
ter 5.

Of course, this classification does not cover all the variety of data and
problem statements. There is also speech as sound signals; sounds that are not
speech signals; game algorithms (chess, checkers, Go, etc.) and others. But for
these other types of tasks, a significant amount of special knowledge in the sub-
ject area, in the field of data engineering, programming, signal theory, etc., is
necessary, this should be the material of a separate textbook for each of them.
More briefly, this question sounds like this: tables, images, videos, text, time se-
ries or other?

Now we will consider the types of metrics for checking the optimality of
the target feature.

A metric in machine learning is an optimization criterion that should be
given an optimal value at various stages of data processing (clustering, building
models, data classification, etc.).

For prediction tasks, the following are the most popular (for more details
and formulas, see subsection 1.5):

- for classification tasks: "accuracy_score", ROC-AUC, if the dataset is
unbalanced, i.e. some class significantly prevails, then – "F1_score" or
"F2_score";

- for regression problems: «r2_score», «MAE», «MAPE», «SMAPE»;
- for clustering problems: «siluette_score» and other.
There are many others in the sklearn library – see in the documentation

and in its description «User Guide».
 In the following sections, other metrics will be mentioned in the context

of the tasks that will be described there.
After determining the target characteristic, the type of task (data type) and

the metric, it is necessary to clarify the statement of the task. Appendix B pro-

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/model_evaluation.html

21

vides examples of such problem statements, both real and from Kaggle prize
competition.

Fig. 1.6 presents an infographic of the algorithm for setting the tasks in
the S(I) coordinate system.

Figure 1.6 – Infographics of the algorithm for setting the tasks machine learning

1.4 Generalized algorithms for solving machine learning and IDA
tasks and IT infrastructure for their implementation

To solve the tasks of machine learning of an intelligent model, in general,
the following algorithm is used [1]:

1. Collect data. Build a dataset.
2. Perform data preprocessing and cleaning.
3. Carry out an intelligence analysis of the data and determine which

models should be built next. If the result is satisfactory and it is clear which
models should be built, then proceed to point 5, otherwise, to point 4. If item 4
fails to improve the data, then go to item 1 and find additional data.

4. Carry out a feature engineering. After that, repeat point 3, if the new
features contain raw data, then go to point 2.

5. Choose the architecture of promising models. Carry out their tuning on
the training dataset.

6. Carry out model diagnostics on the validation dataset and analyze outli-
ers (anomalies). If, according to the results of diagnostics, it turned out that all
models were over- or undertraining, then repeat point 5 with other tuning pa-
rameters. If it did not help after N attempts, then go to point 4, and build differ-
ent diagrams of the features importance according to the constructed models and
analyze these features. If one or more models meet the metric requirements, then
go to point 7.

22

7. Choose an optimal model (perhaps an ensemble of models) that satis-
fies the requirements of the problem in terms of metrics and constraints.

8. Apply the optimal model and make predictions (forecasting), analyze
emissions and detected regularities, ensure visualization and reproducibility of
the obtained results.

Fig. 1.7 shows the infographics of this algorithm in the S(I) coordinate
system.

Figure 1.7 – Infographics of the generalized algorithm for solving the tasks

of machine learning of an intelligent model

The following sections will be devoted to the stages of this algorithm.
As it was mentioned above, pre-trained machine learning models are used

at the stage of intelligent data analysis (IDA). In addition, as a rule, the input is
not raw data, but ready-made datasets to which IDA should be applied. In most
cases, it makes sense to perform data preprocessing and cleaning, since models,
as a rule, work with numerical data, and in IDA data can be images, videos, text,
etc. The new stages are the transformation of the input data into a format ac-
ceptable to the optimal pretrained models and the post-processing of the results
to obtain a higher quality analysis. Fig. 1.8 presents an infographics of the gen-
eralized algorithm for solving the IDA problems.

In general, it is rarely sufficient to use only pretrained models for high-
quality IDA. More often, they are used only at certain stages, and then new ma-
chine learning models are built to generalize the results of their application.
Therefore, to solve a real task, you should combine the algorithms of Fig. 1.7
and 1.8.

23

Figure 1.8 – Infographics of the generalized algorithm for solving the problem

of intelligent analysis using pretrained machine learning models
(intelligent models)

1.5 Examples of setting tasks of intelligent data analysis in applied
areas

1.5.1. Cyber Security and Encryption
1. IEEE-CIS Fraud Detection. Can you detect fraud from customer trans-

actions? (2019).
The IEEE-CIS Fraud Detection competition is devoted to developing ma-

chine learning models that can accurately detect fraudulent customer transac-
tions. Using Vesta's real-world e-commerce dataset, which includes a variety of
features from device type to product characteristics, create and benchmark mod-
els to enhance the accuracy of fraud detection. Your goal is to improve the sys-
tem's efficacy, reducing false positives and fraud losses for businesses while en-
hancing the customer experience. Submissions will be evaluated based on the
area under the ROC curve (AUC-ROC).

Data size: 6,4 Gb.
2. ALASKA2 Image Steganalysis. Detect secret data hidden within digi-

tal images (2020).
An efficient and reliable statistical method must be developed to detect

secret data hidden in digital images (Fig. 1.9).

https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/alaska2-image-steganalysis
https://www.kaggle.com/competitions/alaska2-image-steganalysis

24

Figure 1.9 – The Kaggle competition “ALASKA2 Image Steganalysis. Detect

secret data hidden within digital images”

These images, captured with up to 50 different cameras and processed in

various ways, aim to reflect real-world conditions. Successful methods will use
robust detection algorithms with minimal false positives, and submissions will
be evaluated based on the weighted AUC to emphasize reliable detection with a
low false alarm rate.

Data size: 32 Gb.
3. The Learning Agency Lab - PII Data Detection. Develop automated

techniques to detect and remove PII from educational data (2024).
The Learning Agency Lab is hosting a competition to develop automated

techniques for detecting and removing personally identifiable information (PII)
from educational data. The goal is to create a model that can accurately identify
PII in student writing, which will reduce the cost and increase the scalability of
releasing educational datasets for research and tool development. Current meth-
ods, such as manual review and Named Entity Recognition (NER), are either too
costly or insufficiently accurate. Submissions will be evaluated based on a clas-
sification metric that prioritizes recall over precision to ensure comprehensive
PII detection.

Data size: 110 Mb.
4. TalkingData AdTracking Fraud Detection Challenge. Can you detect

fraudulent click traffic for mobile app ads? (2018).
This contest aims to detect fraudulent click traffic for mobile app ads.

Companies face significant volumes of fraudulent traffic, leading to misleading

https://www.kaggle.com/competitions/alaska2-image-steganalysis
https://www.kaggle.com/competitions/alaska2-image-steganalysis
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection
https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection

25

data and financial losses. Participants are tasked with developing an algorithm to
predict whether a user will download an app after clicking on a mobile ad, using
a dataset of approximately 200 million clicks over four days. Submissions are
evaluated based on the area under the ROC curve (AUC) between the predicted
probabilities and the actual outcomes.

Data size: 11.3 Gb.
5. Microsoft Malware Prediction. Can you predict if a machine will soon

be hit with malware? (2019).
The task involves predicting the probability of a Windows machine get-

ting infected by various families of malware based on its properties, using a da-
taset provided by Microsoft. This dataset includes telemetry data and infection
reports from Windows Defender. Each row represents a unique machine, with
the ground truth labeled as "HasDetections". The objective is to use the training
data to predict the "HasDetections" value for each machine in the test data.
Submissions will be evaluated based on the area under the ROC curve between
the predicted probabilities and the observed labels.

The training and test datasets of this contest contain more than 80 features
and 8-9 million rows each (Fig. 1.10).

Figure 1.10 – Statistics for feature "Platform" (platform name) in the training
dataset of the contest “Microsoft Malware Prediction” (from the notebook)

One of the authors of this manual (Prof. Vitalii Mokin) received a bronze
medal for participating in this competition.

Data size: 8.5 Gb.

https://www.kaggle.com/competitions/microsoft-malware-prediction
https://www.kaggle.com/competitions/microsoft-malware-prediction
https://www.kaggle.com/code/youhanlee/my-eda-i-want-to-see-all
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/vbmokin/competitions

26

1.5.2. Electronics and Telecommunications
1. Google Smartphone Decimeter Challenge 2022. Improve high preci-

sion GNSS positioning and navigation accuracy on smartphones
(2022).

The goal of this competition is to compute smartphones location down to
the decimeter or even centimeter resolution. It is necessary to develop a model
based on raw location measurements from Android smartphones collected in
open sky and light urban roads using datasets collected by the host. It helps pro-
duce more accurate positions, bridging the connection between the geospatial
information of finer human behavior and mobile internet with improved granu-
larity (Fig. 1.11).

Figure 1.11 – Smartphone 2022: A look at the maps (from the notebook)

Data size: 22.9 Gb.

2. SETI Breakthrough Listen - E.T. Signal Search. Find extraterrestrial

signals in data from deep space (2021).
Anomalous signals must be found in scans of Breakthrough Listen targets.

Since there are no confirmed alien signals for training, simulated signals ("nee-
dles") are included in the data (Fig. 1.12).

https://www.kaggle.com/competitions/smartphone-decimeter-2022
https://www.kaggle.com/competitions/smartphone-decimeter-2022
https://www.kaggle.com/code/carlmcbrideellis/smartphone-2022-a-look-at-the-ground-truth-maps
https://www.kaggle.com/competitions/seti-breakthrough-listen
https://www.kaggle.com/competitions/seti-breakthrough-listen

27

Figure 1.12 – The simulated signals ("needles") are included in the data from the

Green Bank Telescope (from the notebook)

The data consist of two-dimensional arrays, and submissions are evaluat-
ed based on the area under the ROC curve between predicted probability and
observed target.

Data size: 156 Gb.

3. Indoor Location & Navigation. Identify the position of a smartphone in

a shopping mall (2021).
The task is to predict the indoor position of smartphones using real-time

sensor data provided by XYZ10 and Microsoft Research. There is the dataset of
nearly 30,000 traces from over 200 buildings to improve the accuracy of indoor
positioning solutions, which is crucial for enhancing location-based apps and
services (Fig. 1.13).

https://www.kaggle.com/code/reighns/eda-seti
https://www.kaggle.com/competitions/indoor-location-navigation
https://www.kaggle.com/competitions/indoor-location-navigation

28

Figure 1.13 – Indoor Location & Navigation: identification the position of a

smartphone in a shopping mall (the illustration from the notebook)

Submissions will be evaluated based on the mean position error.
Data size: 60 Gb.

1.5.3. Automation and Robotics, UAV, Transport, Mechanical

Engineering
1. CVPR 2018 WAD Video Segmentation Challenge. Can you segment

each objects within image frames captured by vehicles? (2018).
The task is devoted to image segmentation of movable objects, such as

cars and pedestrians, at the instance level within image frames captured by vehi-
cles (Fig. 1.14).

Using a unique dataset provided by Baidu Inc., participants will help im-
prove computer vision algorithms for environmental perception in autonomous
driving, with evaluation based on mean average precision (mAP) across various
IoU thresholds. The challenge includes annotations for seven object types: car,
motorcycle, bicycle, pedestrian, truck, bus, and tricycle.

Data size: 102.6 Gb.

https://www.kaggle.com/code/ravishah1/understanding-the-indoor-loc-github-data-eda
https://www.kaggle.com/competitions/cvpr-2018-autonomous-driving
https://www.kaggle.com/competitions/cvpr-2018-autonomous-driving

29

Figure 1.14 – The segmentation of movable objects within image frames cap-

tured by vehicles (from the contest)

2. ECML/PKDD 15: Taxi Trip Time Prediction (II). Predict the total
travel time of taxi trips based on their initial partial trajectories (2015).

The task involves predicting the total travel time of taxi trips in Porto,
Portugal, using initial partial trajectories. This prediction aims to enhance the
efficiency of electronic taxi dispatching systems by helping dispatchers assign
drivers to pick up requests more effectively. Submissions will be evaluated
based on the Root Mean Squared Logarithmic Error (RMSLE), emphasizing ac-
curate estimation of trip durations using trajectory data.

Data size: 0.5 Gb.
3. New York City Taxi Fare Prediction. Can you predict a rider's taxi

fare? (2018).
Your goal is to predict the fare amount (including tolls) for a taxi ride in

New York City based on the given pickup and dropoff locations, pickup time,
and number of passengers. You need to build a model to minimize the RMSE in
fare prediction. This competition was the first where one of the authors (Vitalii
Mokin) participated in a Kaggle competition (Fig. 1.15).

Data size: 5.7 Gb.

https://www.kaggle.com/competitions/cvpr-2018-autonomous-driving/overview
https://www.kaggle.com/competitions/pkdd-15-taxi-trip-time-prediction-ii
https://www.kaggle.com/competitions/pkdd-15-taxi-trip-time-prediction-ii
https://www.kaggle.com/competitions/new-york-city-taxi-fare-prediction
https://www.kaggle.com/competitions/new-york-city-taxi-fare-prediction

30

Figure 1.15 – Feature engineering in the Kaggle competition

“New York City Taxi Fare Prediction” was performed
by the team “SAIT VNTU” of Prof. Vitalii Mokin (2019)

4. Logical Rhythm 2k22 Motorbike Cost. Help predict the price of the

motorcycles and be an awesome stuntman (2022).
Predict the price of motorcycles based on various features and become an

awesome stuntman in the process. Submissions will be evaluated using Root-
Mean-Squared-Log-Error (RMSLE). Use the provided dataset, which includes
columns like model_name, model_year, kms_driven, owner, location, mileage,
power, and price, to train your model and predict prices.

Data size: 720Kb.
5. Lyft Motion Prediction for Autonomous Vehicles. Build motion pre-

diction models for self-driving vehicles (2020).
In this task, you develop motion prediction models for self-driving vehi-

cles, aiming to predict the trajectories of surrounding traffic agents such as cars,
cyclists, and pedestrians (Fig 1.16).

https://www.kaggle.com/competitions/motorbike-cost
https://www.kaggle.com/competitions/motorbike-cost
https://www.kaggle.com/competitions/lyft-motion-prediction-autonomous-vehicles
https://www.kaggle.com/competitions/lyft-motion-prediction-autonomous-vehicles

31

Figure 1.16 – The Kaggle competition

“Lyft Motion Prediction for Autonomous Vehicles”

Utilizing the largest Prediction Dataset released, you will apply your data
science and machine learning skills to build and test your models. The goal is to
address the challenge of multi-modality and ambiguity in traffic scenes, using
either unimodal models for single predictions or multi-modal models for multi-
ple hypotheses. Your work will contribute to advancing autonomous vehicle
technology and making transportation safer and more accessible.

Data size: 23.7 Gb.
4. Peking University/Baidu - Autonomous Driving. Can you predict ve-

hicle angle in different settings? (2020).
Self-driving cars, despite significant advancements, still face challenges in

accurately perceiving objects in traffic, leading to consumer and legislative hesi-
tation. Your task is to develop an algorithm capable of estimating the absolute
pose (6 degrees of freedom) of vehicles from a single image in real-world traf-
fic. This will improve computer vision and aid in the broader adoption of auton-
omous vehicles, potentially reducing the environmental impact of our growing
societies. Submissions will be evaluated based on the mean average precision
between the predicted and actual vehicle pose.

Data size: 6.3 Gb.
5. Lyft 3D Object Detection for Autonomous Vehicles. Can you advance

the state of the art in 3D object detection? (2019).
This competition challenges participants to advance the state of the art in

3D object detection for autonomous vehicles. Leveraging a large-scale dataset
featuring raw sensor inputs from high-end autonomous vehicles, participants

https://www.kaggle.com/competitions/lyft-motion-prediction-autonomous-vehicles
https://www.kaggle.com/competitions/pku-autonomous-driving
https://www.kaggle.com/competitions/pku-autonomous-driving
https://www.kaggle.com/competitions/3d-object-detection-for-autonomous-vehicles
https://www.kaggle.com/competitions/3d-object-detection-for-autonomous-vehicles

32

will develop and optimize algorithms to improve perception, prediction, and
planning. The goal is to democratize access to high-quality data, fostering inno-
vation in higher-level autonomy functions and ultimately contributing to the de-
velopment of safer, more efficient self-driving technology. Success will be
measured based on mean average precision at various intersections over union
(IoU) thresholds.

Data size: 125.8 Gb.
6. Passenger Screening Algorithm Challenge. Improve the accuracy of

the Department of Homeland Security's threat recognition algorithms (2017).
This contest seeks to enhance the USA Department of Homeland Securi-

ty's threat recognition algorithms to reduce high false alarm rates that cause sig-
nificant delays at airport checkpoints. The challenge invites the data science
community to improve the accuracy of these algorithms using a dataset of imag-
es from the latest scanning equipment. Participants are tasked with predicting
the probability of threats in 17 body zones for each scan, aiming to improve pas-
senger experience and maintain security (Fig. 1.17).

Figure 1.17 – The passenger's body surface is shown in a 2-dimensional repre-
sentation using a cylindrical coordinate system for 7 body parts: 2 legs, 1 trunk,

2 biceps, and 2 forearms (from the notebook)

No one understands the need for both thorough security screenings and
short wait times more than the U.S. Transportation Security Administration
(TSA). They are responsible for all U.S. airport security, screening more than
two million passengers daily.

https://www.kaggle.com/competitions/passenger-screening-algorithm-challenge
https://www.kaggle.com/competitions/passenger-screening-algorithm-challenge
https://www.kaggle.com/code/nathanrm/full-solution-cylindrical-coordinate-method

33

This competition is one of the leaders among Kaggle competitions in
terms of the value of the prize fund: $1,500,000.

Data size: 134 Gb.
7. Mercedes-Benz Greener Manufacturing. Can you cut the time a Mer-

cedes-Benz spends on the test bench? (2017).
Daimler, one of the world's largest manufacturers of premium cars, is

challenging participants to optimize the testing time for Mercedes-Benz vehi-
cles. With a focus on maintaining safety and efficiency, the competition requires
developing powerful algorithmic solutions to predict the testing time for various
car feature combinations. The goal is to reduce the time vehicles spend on the
test bench, thereby lowering carbon dioxide emissions without compromising on
quality. Submissions will be evaluated based on the R2 score.

Data size: 0.35 Mb.
8. Porto Seguro’s Safe Driver Prediction. Predict if a driver will file an

insurance claim next year (2017).
In this task, you are challenged to develop a model that predicts the prob-

ability of a driver filing an auto insurance claim in the next year for Porto Se-
guro. This improved prediction will help tailor insurance pricing more accurate-
ly, making it fairer and more accessible for cautious drivers. Your model's per-
formance will be assessed using the Normalized Gini Coefficient.

Data size: 300.5 Mb.
9. Blue Book for Bulldozers. Predict the auction sale price for a piece of

heavy equipment to create a "blue book" for bulldozers (2013).
The task is to predict the auction sale price of heavy equipment, specifi-

cally bulldozers, based on usage, equipment type, and configuration. The goal is
to create a "blue book" for bulldozers, helping customers value their heavy
equipment fleets at auction. The data comes from auction results and includes
details on usage and configurations. The evaluation metric is the RMSLE (root
mean squared log error) between actual and predicted auction prices.

Data size: 213.8 Mb.

1.5.4. Architecture and the Building Construction
1. Google Landmark Recognition Challenge. Label famous (and not-so-

famous) landmarks in images (2018).
The Google Landmark Recognition Challenge invites participants to de-

velop models that accurately identify landmarks in images from a dataset lack-
ing large annotated resources. Unlike traditional image classification challenges,
this competition focuses on recognizing a wide array of landmarks, totaling
15,000 classes, with varying amounts of training data per class. Submissions are
evaluated using Global Average Precision (GAP), emphasizing precision across
diverse landmark categories (Fig. 1.18).

https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/bluebook-for-bulldozers
https://www.kaggle.com/competitions/bluebook-for-bulldozers
https://www.kaggle.com/competitions/landmark-recognition-challenge
https://www.kaggle.com/competitions/landmark-recognition-challenge

34

Figure 1.18 – Examples of landmark categories (from the notebook)

The data is no longer available – see them in the updated version below.
2. Google-Landmarks Dataset. Label famous (and not-so-famous) land-

marks in images (2022).
The Google-Landmarks Dataset aims to label famous and lesser-known

landmarks in images, assisting users in identifying and organizing their vacation
photos. It addresses the challenge of landmark recognition by predicting labels
directly from image pixels. This dataset, divided into training, test, and index
sets, supports two main computer vision tasks: landmark recognition, where
each test image is assigned a landmark label, and retrieval, where relevant index
images are identified for each test image to aid in further analysis and under-
standing of landmark features (Fig. 1.19).

Figure 1.19 – Examples of landmark features (from the notebook)

Data size: 1 Gb.
3. ASHRAE - Great Energy Predictor III. How much energy will a

building consume? (2019).
In the ASHRAE Great Energy Predictor III competition, participants are

tasked with developing accurate models to predict metered energy consumption
(chilled water, electric, hot water, and steam) for over 1,000 buildings across a
three-year period. The goal is to improve current fragmented estimation methods
and support pay-for-performance financing, where payments are based on the
difference between actual and predicted energy use. The data includes building
metadata, weather information, and energy consumption measurements, with
evaluation based on Root Mean Squared Logarithmic Error. Accurate models
will encourage investments in building efficiency improvements.

Data size: 2.6 Gb.

https://www.kaggle.com/code/abhishektyagi001/landmark-recognition-challenge
https://www.kaggle.com/datasets/google/google-landmarks-dataset
https://www.kaggle.com/datasets/google/google-landmarks-dataset
https://www.kaggle.com/code/ekta97/google-landmark-identification-eda
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/competitions/ashrae-energy-prediction

35

1.5.5. Electrical Engineering
1. Global Energy Forecasting Competition 2012 - Wind Forecasting. A

wind power forecasting problem: predicting hourly power generation up to 48
hours ahead at 7 wind farms (2012).

The Global Energy Forecasting Competition 2012 focuses on developing
models to predict hourly wind power generation up to 48 hours ahead at seven
wind farms using historical data and wind forecasts (Fig. 1.20).

Figure 1.20 – Wind power time series (from the notebook)

The accuracy of these models is evaluated based on RMSE. The data is

available for periods ranging from the 1st hour of 2009/7/1 to the 12th hour of
2012/6/28.

Data size: 27 Mb.
2. Global Energy Forecasting Competition 2012 - Load Forecasting. A

hierarchical load forecasting problem: backcasting and forecasting hourly loads
(in kW) for a US utility with 20 zones (2012).

Develop models to backcast and forecast hourly electricity loads (in kW)
for a US utility. The participants are required to backcast and forecast at both the
zonal level (20 series) and system (sum of the 20 zonal level series) level, a total

https://www.kaggle.com/competitions/GEF2012-wind-forecasting
https://www.kaggle.com/competitions/GEF2012-wind-forecasting
https://www.kaggle.com/competitions/GEF2012-wind-forecasting
https://www.kaggle.com/code/sebastianjcastro/forecasting-multiple-time-series
https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting
https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting
https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting

36

of 21 series. Data (loads of 20 zones and temperature of 11 stations) history
ranges from 2004/1/1 to 2008/6/30. Given the actual temperature history, the 8
weeks are set to be missing and are required to be backcasted.

Data size: 9 Mb.
3. AMS 2013-2014 Solar Energy Prediction Contest. Forecast daily solar

energy with an ensemble of weather models (2013).
The contest challenges participants to forecast daily solar energy produc-

tion at 98 Oklahoma Mesonet sites using ensemble weather models. With re-
newable energy sources like solar fluctuating based on weather conditions, accu-
rate forecasts are crucial for balancing energy resources and minimizing costs.
Contestants utilize numerical weather predictions from the GEFS. The competi-
tion evaluates predictions against Mean Absolute Error (MAE), aiming to identi-
fy models that best predict short-term solar energy production.

Data size: 3 Gb.
4. ASHRAE - Great Energy Predictor III. How much energy will a

building consume? (2019).
In the ASHRAE Great Energy Predictor III competition, participants are

tasked with developing accurate models to predict metered energy consumption
(chilled water, electric, hot water, and steam) for over 1,000 buildings across a
three-year period. The goal is to improve current fragmented estimation methods
and support pay-for-performance financing, where payments are based on the
difference between actual and predicted energy use (Fig. 1.21).

Figure 1.21 – How much energy will a building consume? (From the notebook)

The data includes building metadata, weather information, and energy

consumption measurements, with evaluation based on Root Mean Squared Log-
arithmic Error. Accurate models will encourage investments in building effi-
ciency improvements.

Data size: 2.6 Gb.

https://www.kaggle.com/competitions/ams-2014-solar-energy-prediction-contest
https://www.kaggle.com/competitions/ams-2014-solar-energy-prediction-contest
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/code/hmendonca/starter-eda-and-feature-selection-ashrae3

37

5. Enefit - Predict Energy Behavior of Prosumers. Predict Prosumer En-
ergy Patterns and Minimize Imbalance Costs (2024).

The competition is devoted to addressing the issue of energy imbalance
caused by prosumers, who both consume and generate energy. The goal is to
develop a predictive model that accurately forecasts prosumer energy patterns to
minimize imbalance costs, which pose logistical and financial challenges to en-
ergy companies. Effective solutions will reduce operational costs, improve grid
reliability, and promote efficient integration of prosumers into the energy sys-
tem. Submissions will be evaluated based on the Mean Absolute Error (MAE)
between predicted and actual energy use.

Data size: 1.1 Gb.
6. VSB Power Line Fault Detection. Can you detect faults in above-

ground electrical lines? (2019).
Your task is to detect partial discharge patterns in signals from medium

voltage overhead power lines, using data acquired with a new meter designed at
the ENET Centre at VŠB. Effective classifiers developed from this data will en-
able continuous monitoring of power lines for faults, reducing maintenance
costs and preventing power outages. Submissions will be evaluated based on the
Matthews correlation coefficient (MCC) between the predicted and observed re-
sponses.

Data size: 12.6 Gb.
7. Belkin Energy Disaggregation Competition. Disaggregate household

energy consumption into individual appliances (2013).
The task involves disaggregating household energy consumption into in-

dividual appliances. Participants are to develop a system that not only displays
total power consumption but also breaks it down by appliance in real time,
providing personalized energy-saving recommendations. The challenge is to ac-
curately sense and identify the energy usage of various appliances using ma-
chine learning, specifically by examining Electromagnetic Interference (EMI)
signatures (Fig 1.22).

There are a few lab-quality videos that may help you grasp the big picture:
the video of the signal and the video of the technology applied to energy moni-
toring.

Submissions will be evaluated based on their accuracy in a multi-label
classification task, measured by the mean Hamming Loss.

Data size: 21.5 Gb.

https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers
https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers
https://www.kaggle.com/competitions/vsb-power-line-fault-detection
https://www.kaggle.com/competitions/vsb-power-line-fault-detection
http://cenet.vsb.cz/en/
https://www.vsb.cz/en
https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
http://youtu.be/o-SqO8y8XUA
http://www.youtube.com/watch?v=dcPI1Cp0VZI
http://www.youtube.com/watch?v=dcPI1Cp0VZI

38

Figure 1.22 – The example of EMI captured from a home: signatures of various
appliances in the frequency domain (Kaggle competition “Belkin Energy Dis-

aggregation Competition”)

1.5.6. Bioengineering, Medicine
1. Mayo Clinic - STRIP AI. Image Classification of Stroke Blood Clot

Origin (2022).
The goal of this competition is to classify the blood clot origins in ischem-

ic stroke. Using whole slide digital pathology images, it is necessary to build a
model that differentiates between the two major acute ischemic stroke (AIS) eti-
ology subtypes: cardiac and large artery atherosclerosis (Fig. 1.23).

Figure 1.23 – Data of the Kaggle Competition “Mayo Clinic - STRIP AI”

(from the notebook)

Data size: 395.36 Gb.
2. UW-Madison GI Tract Image Segmentation. Track healthy organs in

medical scans to improve cancer treatment (2022).
Develop a deep learning method to automate the segmentation of the

stomach and intestines in daily MRI (Magnetic Resonance Imaging) scans to

https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
https://www.kaggle.com/competitions/mayo-clinic-strip-ai
https://www.kaggle.com/competitions/mayo-clinic-strip-ai
https://www.kaggle.com/code/datark1/eda-images-processing-and-exploration
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation

39

expedite radiation therapy for gastrointestinal cancer patients, enhancing treat-
ment precision and reducing patient discomfort (Fig. 1.24).

Figure 1.24 – Kaggle competition “UW-Madison GI Tract Image Segmenta-

tion”: segment the stomach and intestines on MRI scans

In these scans, radiation oncologists must manually outline the position of
the stomach and intestines to adjust the direction of the X-ray beams to increase
the dose delivery to the tumor and avoid the stomach and intestines. This is a
time-consuming and labor-intensive process that can prolong treatments from 15
minutes a day to an hour a day. The contest helps automate this process.

Data size: 2.47 Gb.
3. Google Brain - Ventilator Pressure Prediction. Simulate a ventilator

connected to a sedated patient's lung (2021).
The task involves simulating a ventilator connected to a sedated patient's

lung, with the best submissions considering lung attributes like compliance and
resistance. The goal is to develop algorithms that can generalize across different
lung characteristics, ultimately reducing the cost and clinician burden associated
with mechanical ventilation. The competition is judged based on the mean abso-
lute error between predicted and actual pressures during the inspiratory phase.

Data size: 0.7 Gb.
4. Grasp-and-Lift EEG Detection. Identify hand motions from EEG re-

cordings (2015).
The task is to develop a model that accurately identifies specific hand mo-

tions (grasping, lifting, replacing objects) from electroencephalography (EEG)
recordings. This is crucial for advancing brain-computer interface (BCI) pros-
thetic devices, aiming to restore independence to patients with neurological dis-

https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/competitions/ventilator-pressure-prediction
https://www.kaggle.com/competitions/ventilator-pressure-prediction
https://www.kaggle.com/competitions/grasp-and-lift-eeg-detection
https://www.kaggle.com/competitions/grasp-and-lift-eeg-detection

40

abilities who have lost hand function. The competition evaluates submissions
based on the mean column-wise Area Under the Curve (AUC) of ROC curves,
requiring calibrated probabilities across multiple subjects and series to ensure
consistent scaling of predictions.

Data size: 1.1 Gb.
5. Stanford Ribonanza RNA Folding. Create a model that predicts the

structures of any RNA molecule (2023).
The competition challenges participants to develop a model that accurate-

ly predicts the structures of RNA molecules based on experimental chemical re-
activity data (Fig. 1.25).

Figure 1.25 – Predicted structure of RNA molecules (from the notebook)

This predictive model is crucial for advancing medical research by ena-

bling the discovery of RNA-based therapies and addressing antibiotic resistance,

https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding
https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding
https://www.kaggle.com/code/jocelyndumlao/rna-structure-prediction-performance-analysis

41

while also offering insights into fundamental biological processes and potential
applications in biotechnology and climate change mitigation. Submissions are
evaluated based on their Mean Absolute Error (MAE) in predicting chemical re-
activity profiles across RNA molecules.

Data size: 130.4 Gb.
6. Mechanisms of Action (MoA) Prediction. Can you improve the algo-

rithm that classifies drugs based on their biological activity? (2020).
Your objective is to enhance an algorithm that classifies drugs based on

their biological activity, specifically their Mechanism of Action (MoA). This in-
volves developing a multi-label classification model using a unique dataset
combining gene expression and cell viability data across 100 different cell types.
You will train your model on a provided training dataset to predict MoA labels
for a test set. The performance of your algorithm will be evaluated using the av-
erage logarithmic loss function on the drug-MoA annotation pairs. Successful
development of this algorithm will aid in advancing the drug discovery process
by accurately predicting compounds' MoAs based on their cellular signatures.

One of the authors of this manual (Prof. Vitalii Mokin) received a bronze
medal for participating in this competition.

Data size: 216 Mb.

1.5.7. Management, Economy, Finance
1. Loan Default Prediction - Imperial College London. Constructing an

optimal portfolio of loans (2014).
The task involves predicting loan defaults and estimating the associated

losses, aiming to go beyond binary classification by predicting both default like-
lihood and loss severity. This approach bridges traditional banking's focus on
economic capital reduction with asset management's risk optimization for finan-
cial investors. Evaluation in this competition is based on mean absolute error
(MAE), emphasizing accurate prediction of loss amounts incurred from loan de-
faults.

Data size: 0.6 Gb.
2. RecSys2013: Yelp Business Rating Prediction. RecSys Challenge

2013: Yelp business rating prediction (2013).
The contest focuses on predicting Yelp business ratings based on a de-

tailed dataset from Phoenix, AZ, including over 10,000 businesses, 8,000 check-
in sites, 40,000 users, and 200,000 reviews. Participants are tasked with creating
a model to predict future user ratings of businesses which is evaluated using the
root mean squared error (RMSE) metric to measure accuracy.

Data size: 0.18 Gb.
3. CPROD1: Consumer PRODucts contest #1. Identify product mentions

within a largely user-generated web-based corpus and disambiguate the men-
tions against a large product catalog (2012).

The CPROD1 contest focuses on identifying and disambiguating consum-
er product mentions within user-generated web content against a large product

https://www.kaggle.com/competitions/lish-moa
https://www.kaggle.com/competitions/lish-moa
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/competitions/loan-default-prediction
https://www.kaggle.com/competitions/loan-default-prediction
https://www.kaggle.com/c/yelp-recsys-2013
https://www.kaggle.com/c/yelp-recsys-2013
https://www.kaggle.com/c/cprod1
https://www.kaggle.com/c/cprod1
https://www.kaggle.com/c/cprod1

42

catalog. Participants must develop state-of-the-art methods to automatically rec-
ognize product mentions in a diverse collection of web content and accurately
match them to specific products in a catalog of over fifteen million items.

Data size: 1.6 Gb.
4. Indoor Location & Navigation. Identify the position of a smartphone

in a shopping mall (2021).
The task is to predict the indoor position of smartphones using real-time

sensor data provided by XYZ10 and Microsoft Research. There is the dataset of
nearly 30,000 traces from over 200 buildings to improve the accuracy of indoor
positioning solutions, which is crucial for enhancing location-based apps and
services. Submissions will be evaluated based on the mean position error.

Data size: 60 Gb.
5. Optiver - Trading at the Close. Predict US stocks closing movements

(2024).
In this competition, you are tasked with developing a model to predict the

closing price movements for hundreds of Nasdaq-listed stocks. Using data from
the order book and the closing auction, your model will assess supply and de-
mand dynamics, adjust prices, and identify trading opportunities, especially dur-
ing the critical final ten minutes of trading. This project provides an opportunity
to handle real-world data science problems, similar to those faced by profession-
als at Optiver, and aims to improve market efficiency and accessibility. Submis-
sions will be evaluated based on the Mean Absolute Error (MAE) between the
predicted return and the observed target.

Data size: 0.65 Gb.
6. GoDaddy - Microbusiness Density Forecasting. Forecast Next

Month’s Microbusiness Density (2023).
The goal of the GoDaddy Microbusiness Density Forecasting competition

is to predict the monthly density of microbusinesses in specific areas using U.S.
county-level data. Participants will develop models to provide accurate fore-
casts, which will aid policymakers in understanding and supporting microbusi-
nesses. The competition aims at utilizing advanced data science techniques to
improve current econometric models and better inform policy decisions. Sub-
missions will be evaluated based on the Symmetric Mean Absolute Percentage
Error (SMAPE) between the predicted and actual values.

Data size: 11.4Mb.
7. OTTO – Multi-Objective Recommender System. Build a recommend-

er system based on real-world e-commerce sessions (2022).
The task of this competition is to build a “Multi-Objective Recommender

System” to predict e-commerce clicks, cart additions, and orders based on real-
world user session data. The goal is to improve the shopping experience by
providing tailored recommendations, thereby increasing customer satisfaction
and retailer sales (Fig. 1.26).

https://www.kaggle.com/competitions/indoor-location-navigation
https://www.kaggle.com/competitions/indoor-location-navigation
https://www.kaggle.com/competitions/optiver-trading-at-the-close
https://www.kaggle.com/competitions/godaddy-microbusiness-density-forecasting
https://www.kaggle.com/competitions/godaddy-microbusiness-density-forecasting
https://www.kaggle.com/competitions/otto-recommender-system
https://www.kaggle.com/competitions/otto-recommender-system

43

Figure 1.26 – E-commerce clicks, cart additions, and orders based on real-world

user sessions data (from the notebook)

This involves creating a single model to optimize multiple objectives sim-

ultaneously and will be evaluated based on Recall@20 for each action type, with
weighted averages for the three recall values.

Data size: 11.9 Gb.
8. American Express - Default Prediction. Predict if a customer will de-

fault in the future (2022).
In this competition, participants are tasked with developing a machine

learning model to predict customer credit defaults. By leveraging industrial-
scale datasets that include time-series behavioral data and anonymized customer
profiles, the goal is to create a model that surpasses the current production mod-
el used by American Express. The evaluation metric for the competition is the
mean of the Normalized Gini Coefficient and the default rate captured at 4%.
Successful models could improve customer experiences and optimize lending
decisions.

Data size: 50.3 Gb.
9. JPX Tokyo Stock Exchange Prediction. Explore the Tokyo market

with your data science skills (2022).
The task involves predicting future returns for stocks on the Tokyo Stock

Exchange. Participants build models to rank approximately 2,000 stocks from
highest to lowest expected returns and be evaluated on the Sharpe Ratio of their
daily spread returns. The competition provides historical and real-time financial
data, and the goal is to identify undervalued stocks to buy and overvalued stocks
to sell. Successful models foster learning and potentially increase retail investor
interest in quantitative trading.

Data size: 1.33 Gb.
10. Ubiquant Market Prediction. Make predictions against future market

data (2022).
In the Ubiquant Market Prediction competition, your task is to develop a

model that accurately forecasts the return rates of investments. You will train
and test your algorithm using historical price data, aiming for high precision in

https://www.kaggle.com/code/hlgdatascience/visualizing-session-data-in-a-timeline
https://www.kaggle.com/competitions/amex-default-prediction
https://www.kaggle.com/competitions/amex-default-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction

44

your predictions. Successful models will enhance the capability of quantitative
researchers to predict returns, aiding investors in making informed decisions.
Submissions will be evaluated based on the mean Pearson correlation coefficient
for each time ID.

This dataset is no longer available for download but there are many public
notebooks with solutions worth exploring.

11. G-Research Crypto Forecasting. Use your ML expertise to predict re-
al crypto market data (2022).

Participants in this competition are tasked with using machine learning to
predict short-term returns for 14 popular cryptocurrencies. The competition pro-
vides a dataset of high-frequency market data, including various price and trad-
ing metrics, dating back to 2018. Participants must build models that forecast
returns, with submissions evaluated based on a weighted version of the Pearson
correlation coefficient. The challenge involves handling volatile and non-
stationary data while avoiding overtraining to achieve persistent predictive accu-
racy.

Data size: 3.12 Gb.
See the article by Prof. Vitalii Mokin with co-authors “Information Tech-

nology for the Cryptocurrency Rate Forecasting on the Basics of Complex Fea-
ture Engineering” about this contest and other decisions regarding cryptocurren-
cies (Ukrainian language).

12. M5 Forecasting - Uncertainty. Estimate the uncertainty distribution of
Walmart unit sales (2020).

This competition challenges participants to estimate the uncertainty distri-
bution of Walmart's unit sales for various products sold across the USA. Using
hierarchical sales data from Walmart, including item-level details, department
categories, and store information from three states, competitors must forecast
daily sales for the next 28 days and quantify the uncertainty of these forecasts.
The robust dataset also includes explanatory variables like price, promotions,
and special events. Participants are encouraged to use both traditional forecast-
ing methods and machine learning to enhance forecast accuracy, with the goal of
advancing forecasting theory and practice.

Data size: 0.5 Gb.
One of the authors of this manual (Prof. Vitalii Mokin) received a bronze

medal for participating in this competition.
13. Recruit Restaurant Visitor Forecasting. Predict how many future visi-

tors a restaurant will receive (2018).
The objective of this competition is to develop a predictive model to esti-

mate the number of visitors a restaurant will receive on future dates, using reser-
vation and visitation data. This task is crucial for helping restaurants optimize
their ingredient purchases and staffing schedules, mitigating the challenges
posed by unpredictable factors like weather and local competition. Recruit Hold-
ings provides access to valuable datasets to support the development of accurate

https://www.kaggle.com/competitions/g-research-crypto-forecasting
https://www.kaggle.com/competitions/g-research-crypto-forecasting
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757/2576
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757/2576
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757/2576
https://www.kaggle.com/competitions/m5-forecasting-uncertainty
https://www.kaggle.com/competitions/m5-forecasting-uncertainty
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting
https://www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting

45

forecasts. Submissions will be assessed based on the root mean squared loga-
rithmic error (RMSLE).

Data size: 27.3 Mb.
14. Porto Seguro’s Safe Driver Prediction. Predict if a driver will file an

insurance claim next year (2017).
In this task, you are challenged to develop a model that predicts the prob-

ability of a driver filing an auto insurance claim in the next year for Porto Se-
guro. This improved prediction will help tailor insurance pricing more accurate-
ly, making it fairer and more accessible for cautious drivers. Your model's per-
formance will be assessed using the Normalized Gini Coefficient.

Data size: 300.5Mb
15. Instacart Market Basket Analysis. Which products will an Instacart

consumer purchase again? (2017).
In this competition, participants are tasked with predicting which previ-

ously purchased products will be included in a user's next order using anony-
mized customer order data. The dataset includes over 3 million grocery orders
from more than 200,000 users, detailing the sequence of products, order times,
and intervals between orders. Competitors will be evaluated based on their pre-
dictions' mean F1 score. This analysis helps Instacart enhance its recommenda-
tion systems and improve user experience.

Data size: 205.8 Mb.
16. House Prices - Advanced Regression Techniques. Predict sales prices

and practice feature engineering, RFs, and gradient boosting (this competition
runs indefinitely with a rolling leaderboard).

Figure 1.27 – The Histogram, the Probability Plot and the Box Plot for the fea-

ture 'SalePrice' in the training dataset of this contest (from the notebook)

https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/instacart-market-basket-analysis
https://www.kaggle.com/competitions/instacart-market-basket-analysis
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/code/fightingmuscle/eda-more-technical

46

In this competition, your task is to predict the final sales price of homes in
Ames, Iowa, using a dataset with 79 explanatory variables that describe various
aspects of residential properties (Fig. 1.27).

You need to create a model that can accurately estimate the sales price for
each house, given its unique features. Submissions will be evaluated based on
the Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted
prices and the logarithm of the actual sales prices, ensuring that errors in predict-
ing both expensive and inexpensive homes are treated equally.

This is the competition from the "Getting Started competitions" which
Kaggle data scientists created for people who have little to no machine learning
background. They are a great place to begin if you are new to data science or
just finished a MOOC and want to get involved in Kaggle.

Data size: 1 Mb.
17. Store Sales - Time Series Forecasting. Use machine learning to pre-

dict grocery sales (this competition runs indefinitely with a rolling leaderboard).
Your task is to build a machine learning model to predict grocery sales for

thousands of items sold at different Favorita stores. You'll work with a dataset
containing dates, store and item information, promotions, and unit sales to im-
prove the accuracy of sales forecasts. The goal is to reduce overstocking and
stock outs, thereby minimizing food waste and improving customer satisfaction.
The competition uses Root Mean Squared Logarithmic Error as the evaluation
metric.

This is the competition from the "Getting Started competitions" too.
Data size: 125 Mb.

1.5.8. Agricultural Engineering, Environment, Biology
1. Beyond Visible Spectrum: AI for Agriculture 2023. Boosting auto-

matic crop type classification using Sentinel satellite data and self-supervised
learning (2023).

In the contest challenge, participants are tasked with developing self-
supervised learning (SSL) models for automatic crop type classification using a
massive remote sensing dataset, including multispectral and SAR data (Fig.
1.28).

https://www.kaggle.com/competitions/store-sales-time-series-forecasting
https://www.kaggle.com/competitions/store-sales-time-series-forecasting
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2

47

Figure 1.28 – Beyond Visible Spectrum: Boosting automatic crop type classifi-

cation using Sentinel satellite data and self-supervised learning

The goal is to improve crop classification accuracy without relying on la-
beled training data, addressing the challenge of time-consuming ground-truth
sample collection.

Data size: 2.34 Gb.
2. Beyond Visible Spectrum: AI for Agriculture 2023. Automated Crop

Disease Diagnosis from Hyperspectral Imagery 2nd (2023).
In the contest challenge, participants are tasked with developing models

for the accurate diagnosis of yellow rust disease in crops using hyperspectral
imagery. The goal is to enhance precision management by leveraging detailed
spectral-spatial information for better diagnostic accuracy, with the performance
of models evaluated based on categorization accuracy.

Data size: 0.9 Gb.
3. Wids datathon (Optimizing Agricultural Production). Develop a mod-

el to identify the most profitable crop to grow in a Specific agricultural region
(2023).

Develop a machine learning model to identify the most suitable crop to
grow in a specific agricultural region using data on weather, soil conditions, and
crop growth. Utilize datasets containing information on rainfall, climate, and
fertilizer data to optimize agricultural production by leveraging the precision ag-
riculture approach, which includes the use of GPS, drones, and sensors for data
collection. The goal is to enhance efficiency, reduce costs, and improve crop
yields by analyzing factors such as soil nitrogen, phosphorus, potassium content,
temperature, humidity, soil pH, and rainfall.

Data size: 150 Kb.

https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-P1
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-P1
https://www.kaggle.com/competitions/wids-datathon-optimizing-agricultural-production
https://www.kaggle.com/competitions/wids-datathon-optimizing-agricultural-production

48

4. ML Olympiad – AgriSol. Use TensorFlow to build an image classifi-
cation model to predict crop diseases (2022).

Data: 116933 files, size 1.8 Gb. Test contains 33 test images for later for
prediction purpose.

5. BirdCLEF 2024. Bird species identification from audio, focused on
under-studied species in the Western Ghats, a major biodiversity hotspot in India
(2024).

The task is to apply machine-learning techniques to identify under-studied
bird species in the Western Ghats of India using audio data. Participants will de-
velop computational solutions to recognize bird species by their calls, focusing
on endemic and endangered species, as well as nocturnal species. This aims to
leverage passive acoustic monitoring and machine learning for more efficient
and effective avian biodiversity assessment, supporting conservation efforts in
this biodiverse region (Fig 1.29).

Figure 1.29 – Geographical Distribution of Bird Species (from the notebook)

The competition evaluates solutions using a macro-averaged ROC-AUC

metric adapted to skip classes with no true positive labels, facilitating accurate
population trend assessments and adaptive conservation strategies.

Data size: 23.4 Gb.

1.5.9. Education and Social spheres
1. Visualize the State of Public Education in Colorado. Using 3 years of

school grading data supplied by the Colorado Department of Education and R-
Squared Research, visually uncover trends in the Colorado public school system
(2013).

Visualize the State of Public Education in Colorado by analyzing and pre-
senting trends from three years of school grading data (2013) provided by the

https://www.kaggle.com/competitions/ml-olympiad-agrisol
https://www.kaggle.com/competitions/ml-olympiad-agrisol
https://www.kaggle.com/competitions/birdclef-2024
https://www.kaggle.com/competitions/birdclef-2024
https://www.kaggle.com/code/jefersonpazze/eda-baseline-birdclef-2024
https://www.kaggle.com/competitions/visualize-the-state-of-education-in-colorado
https://www.kaggle.com/competitions/visualize-the-state-of-education-in-colorado
https://www.kaggle.com/competitions/visualize-the-state-of-education-in-colorado

49

Colorado Department of Education and R-Squared Research. Use the Colorado
School Grades platform to create accessible and easy-to-understand visualiza-
tions that help community members, parents, students, and educators make in-
formed decisions and engage in local school improvement efforts.

Data size: 7 Mb.
2. The Learning Agency Lab - PII Data Detection. Develop automated

techniques to detect and remove PII from educational data (2024).
The Learning Agency Lab is hosting a competition to develop automated

techniques for detecting and removing personally identifiable information (PII)
from educational data. The goal is to create a model that can accurately identify
PII in student writing, which will reduce the cost and increase the scalability of
releasing educational datasets for research and tool development (Fig. 1.30).

Figure 1.30 – Visualization of an example of hiding personal information in

found patterns in the text (from the notebook)

Current methods, such as manual review and named entity recognition

(NER), are either too costly or insufficiently accurate. Submissions will be eval-
uated based on a classification metric that prioritizes recall over precision to en-
sure comprehensive PII detection.

Data size: 110 Mb.

https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/code/dschettler8845/tlal-pii-data-detection-eda-learn-with-me

50

3. CommonLit - Evaluate Student Summaries. Automatically assess
summaries written by students in grades 3-12 (2023).

The task is to develop a model that automatically evaluates the quality of
summaries written by students in grades 3-12. This model should assess how
well a student captures the main ideas and details of a source text, as well as the
clarity, precision, and fluency of the summary. Using a collection of real student
summaries, the goal is to assist teachers in evaluating student work efficiently
and help learning platforms provide immediate feedback. Submissions are
scored using the Mean Columnwise Root Mean Squared Error (MCRMSE) met-
ric.

Data size: 3.45 Mb.
4. Learning Equality - Curriculum Recommendations. Enhance learning

by matching K-12 content to target topics (2023).
The goal of this competition is to streamline the process of matching K-12

educational content to specific curriculum topics using an accurate and efficient
model. Participants will develop models trained on a diverse library of educa-
tional materials organized by topic taxonomies, especially in STEM subjects.
The challenge lies in aligning these materials to various national curricula, a
process currently done manually and requiring significant resources. Submis-
sions will be evaluated based on their mean F2 score, calculated for each pre-
dicted row and then averaged.

Data size: 0.9 Gb.
5. Feedback Prize - English Language Learning. Evaluating language

knowledge of ELL students from grades 8-12 (2022).
The Feedback Prize – English Language Learning competition aims to

evaluate the language proficiency of 8th-12th grade English Language Learners
(ELLs). Participants will use a dataset of essays written by ELLs to develop pro-
ficiency models that provide accurate feedback on language development, expe-
diting the grading cycle for teachers (Fig. 1.31).

https://www.kaggle.com/competitions/commonlit-evaluate-student-summaries
https://www.kaggle.com/competitions/commonlit-evaluate-student-summaries
https://www.kaggle.com/competitions/learning-equality-curriculum-recommendations
https://www.kaggle.com/competitions/learning-equality-curriculum-recommendations
https://www.kaggle.com/competitions/feedback-prize-english-language-learning
https://www.kaggle.com/competitions/feedback-prize-english-language-learning

51

Figure 1.31 – WordCloud "Vocabulary from Reviews" for this contest

(from the notebook)

This initiative addresses the lack of tailored feedback in existing automat-

ed tools, which often fail to meet the unique needs of ELL students. The goal is
to enable ELLs to receive more appropriate learning tasks, ultimately enhancing
their English language proficiency. Submissions are scored using the MCRMSE.

Data size: 9.3 Mb.

Practical exercises
1) Calculate the result of the “print (True and not False or False)” op-

eration on Python. Experiment with other options for using parentheses and op-
erations “not”, “and”, “or”. Remember that the expressions in parentheses are
processed first, then “not”, then equivalent in status “and” and “or”.

https://www.kaggle.com/code/mohamedbakrey/eda-and-predict-the-score-by-using-pytorch

52

2) Practice applying operations sorted, min, max, len to lists of numbers
(Fig. 1.32 and see Appendix A).

Figure 1.32 – Common operations

3) Practice correctly applying operations lst[3:7], lst[-4:-1], lst[3:], lst[:-

4] and other for text, for example lst = “learning” (Fig. 1.33 and see Appendix
A).

Figure 1.33 – Indexing of a list

4) Practice correctly writing and applying user’s function ("def...return"),

condition ("if else"), loop ("for...in..."), understand the options for using
"range" in the loop "for...in…" (for examples: range(5), range(1,5),
range(2,12,3), etc.) (Fig. 1.34 and see Appendix A).

53

a)

b)

c)

d)

Figure 1.34 – Basic structures of the Python code and its elements: a) user’s

function, b) conditions, c) loop “for”; d) range for loop “for”

 Note that in Python, it is very popular to write a condition in this concise
form:

 x = 0 if a > 0 else 1

instead of:

if a > 0:
 x = 0
else:
 x=1

54

Possible topics of practical tasks
Topic No. 1. Formulation of the machine learning task using the ex-

ample of real tasks and tasks of competitions of Artificial Intelligence
Kaggle platform

The purpose of the lesson is to get acquainted with the formulation of
tasks and selection of information technologies that were used for solving the
tasks of the competitions of the international platform of artificial intelligence
Kaggle or real tasks using the example of one of the Kaggle datasets.

Lesson plan:
1. Select a competition or Kaggle dataset that has at least one notebook,

the author of which is an expert, master, or grandmaster of Kaggle. Provide the
title (the main one and additional), web link, an author or organization that owns
the Kaggle dataset or data of the Kaggle contest.

2. Describe the composition of the data tables (or one main table) of the
dataset (column names, for which years). It is worth providing graph(s) from
notebooks that illustrate exactly what data is in the dataset. If the data is geo-
graphically referenced, provide a map that illustrates this information.

3. Characterize the tasks that can be solved on the basis of this dataset (or
from the competition task, from the "Task" section of the dataset, or come up
with it yourself).

4. Indicate and characterize which Python libraries and/or information
technologies were used in the notebooks of the competition or Kaggle dataset
with the best rating (either with the highest places in the competition or with the
most votes for the notebook). For example, Plotly library for building interactive
graphs, Xgboost library for model building, Folium library for building interac-
tive map, IT analysis of image recognition based on PyTorch, etc.

Examples of datasets:
- notebook with links and description of datasets of Prof. Mokin V.B. at

Kaggle in the field of water quality monitoring;
- other public datasets of Prof. Mokin V.B. in Kaggle:
- a popular contest «Titanic - Machine Learning from Disaster» for new-

comers to Kaggle (it is important to note that the notebooks of Kaggle competi-
tions cannot be used in labs № 2-8, because the rules of the competition prohibit
sharing them with the teacher – they can be used only if the authors make public
notebooks immediately, that is, available to everyone Internet users).

Topic No. 2. Generalized formulation of the problem and construc-

tion or selection of a dataset for it.
The purpose of the lesson is to acquire the knowledge and skills to create

your own dataset and read it using a Python program.
Lesson plan:
1. Clarify the formulation of the problem in order to understand the most

necessary data for its solution.
2. Analyze available public datasets in Kaggle, GitHub.

https://www.kaggle.com/c/titanic

55

3. Study the data source (title, author, content, size of data and their de-
scription). Find examples or understand in the documentation or description how
to import data in Python.

4. Explore the possibilities and master the basic skills of working with a
given IDE (PyCharm, VSCode or Spyder in Anaconda) or a "Jupyter Notebook"
(JNB) type shell (SageMaker of Amazon, Google Colab, Kaggle notebook edi-
tor or in Jupyter Notebook or JupiterLab in Anaconda) to create Python pro-
grams.

5. Create a Python program in IDE/JNB from point 3 to download data
from point 1 using techniques from point 2.

- Examples of JNB notebooks with techniques for uploading data in vari-
ous ways to Kaggle, including via API:

- 50 Tips: Data Science (tabular data) for beginner
- 50 Advanced Tips: Data Science for tabular data

Topic No. 3.
Formation of an integrated dataset for analyzing system state data

from various sources (API, CSV files, etc.) in Python in IDE or Jupyter
Notebook.

The purpose of the lesson is to study data storage systems and learn the
skills to read data from these systems using a Python program.

Lesson plan:
1. Study the data source (title, author, content, amount of data and their

description).
2. Study examples of how to import data into Python from the following

sources:
- information system or IoT system;
- Kaggle dataset (CSV, JSON, etc. formats);
- GitHub dataset;
- web system with API.
3. Explore the possibilities and master the basic skills of working with a

given IDE (PyCharm, VSCode or Spyder in Anaconda) or a "Jupyter Notebook"
(NB) type shell (SageMaker of Amazon, Google Colab, Kaggle notebook editor
or in Jupyter Notebook or JupiterLab in Anaconda) to create Python programs.

4. Create a Python program in IDE/JNB from point 3 to download data
from point 1 using techniques from point 2. Combine all data into one or more
dataframes.

Examples of JNB notebooks with techniques for uploading data in various
ways to Kaggle, including via API:

- 50 Tips: Data Science (tabular data) for beginner
- 50 Advanced Tips: Data Science for tabular data

https://www.kaggle.com/vbmokin/50-tips-data-science-tabular-data-for-beginner
https://www.kaggle.com/vbmokin/50-advanced-tips-data-science-for-tabular-data
https://www.kaggle.com/vbmokin/50-tips-data-science-tabular-data-for-beginner
https://www.kaggle.com/vbmokin/50-advanced-tips-data-science-for-tabular-data

56

Test questions
1) What does the concept of data science include? Give a short definition.
2) What stages does the process of collecting information and building a

dataset for analysis include?
3) What target features can be used in machine learning tasks? Give ex-

amples.
4) What are the main types of machine learning problems? Give a brief

description of each species.
5) What metrics are used to evaluate the quality of machine learning mod-

els? Give examples of metrics.
6) What does the generalized algorithm for solving the machine learning

problem contain? List the basic steps.
7) What stages does the generalized algorithm contain for solving the

problem of intelligent data analysis? Describe each stage.
8) What infrastructure is used to solve machine learning and data analysis

problems? Give examples of infrastructure.
9) What are examples of setting tasks for machine learning and intelligent

data analysis?

57

2 DATA PREPROCESSING AND EXPLORATORY DATA ANALYSIS

2.1 Data cleaning and preprocessing

Most data sets require cleaning before use [1]:
- Replacing the marks "missing", "-", "same", ">0.2", "<10" with a num-

ber or with the value "np.nan" («Not a Number»);
- Replacing words from a textual description with values from a fixed set

(for example, with possible words of medical diagnosis);
- Removal or replacement of html tags, special character codes, web ad-

dresses, emoticons, etc., although emoticons should be replaced with text in sen-
timent analysis tasks (see examples in functions «remove_emoji», «re-
move_punctuations», «convert_abbrev_in_text» in the notebook);

- in the case of receiving data from a pdf file, the text from the footers
(page numbers, etc.) can get there, which needs to be deleted.

The input data is often called "Raw Data". And after cleaning: «Cleaned
Data».

More complex are preprocessing operations (see many preprocessing op-
erations in author's articles [2, 3]):

1. Transformation of formats (replacement of "float64" by "int8", "str" by
"bool", etc.) to optimize memory for data storage. By default, datasets are read
by the read_csv command with float64 and object data types. Therefore, they
must be converted into the most economical formats. This can be done in two
ways:

- immediately when reading, specify the required data types – see «Tip
2.4» from [4]);

- if the data formats are not known in advance, then you can first read the
data, then change the logical types to "bool", and for numerical data, use «Tip
5.1» from [5].

A special function can be used to transform text into numerical data
sklearn.preprocessing.LabelEncoder (see «Tip 5.3» from [4]).

Date is often read as "str" or "object". But it is better to save it in datetime
format. The most common variant is "2023-10-30", which is coded in Python as
«%Y-%m-%d» – see «Tip 5.6» from [4]).

2. Elimination of duplicates. The presence of complete duplicate rows of
the table distorts the statistics, so they must be identified and removed (see.
«Tips 5.5» from [4]).

3. Cleaning text data. For simple cases, the re library is used, and for more
complex ones, the powerful NLTK library, described in more detail in [6]).

4. Replace very small or very large values np.inf and negative (-np.inf)
values with np.nan, since it is better to work with only one kind of problematic
values (see «Tip 4.5» from [4]).

5. Imputation of missing numerical data. Most machine learning models
(except for Prophet and some others) require the absence of missing (np.nan)

https://www.kaggle.com/code/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert

58

value of data. For this, they use "imputing": "SimpleImputer", "KNNImputer"
and "IterativeImputer" of the Sklearn library.

6. Formation of a new class from textual missing values. For missing text
values, the value is replaced by some number that is definitely not in the table,
forming a new class. For example, if all numbers are positive, then the missing
numbers are replaced by (-1) (see "Tip 4.5" from [4]).

7. Filtering of abnormal values. It will be described below.

2.2 Clustering and data dimensionality reduction

After performing data preprocessing, they are often clustered, or reduced

in dimension, sometimes it is necessary to look for associations, and only then
the results of these operations are analyzed more thoroughly.

Data clustering – it is the process of grouping similar objects into classes
or clusters based on their characteristics. The main goal of clustering is to find
hidden structures in the data and highlight groups of objects that are similar to
each other without a prior known distribution or classification. This is a classic
task "unsupervised".

Search for association consists in finding connections and relationships
between different elements in a data set. The main goal of association search is
to find association rules that indicate which elements often occur together or
with similar characteristics. This may include identifying items that are fre-
quently purchased together; events that take place under similar conditions, etc.
Association is a task "supervised". Usually, such methods as Apriori, Eclat, FP-
growth and others are used for these tasks. For example, see the Kaggle note-
book «Apriori Association Rules | Grocery Store».

Dimensionality Reduction – it is a process of reducing the amount of data
or features (dimensionality) in a data set. The goal of this process is to reduce
the number of features that should be considered during data analysis, retaining
as much useful information as possible about the structure of the data and the
relationships within it. This operation allows:

- increase the efficiency and speed of calculations;
- reduce the risk of overtraining due to the reduction data noise;
- improve visualization (for example, it is possible to reduce the multi-

dimensional feature space to 2- or 3-dimensional, which can be displayed and
analyzed visually).

The following methods are popular:
- Principal Component Analysis (PCA);
- t-Distributed Stochastic Neighbor Embedding (t-SNE);
- UMAP;
- Autoencoders (see below), etc.
The clustering operation is most often used in machine learning, so let's

consider it in details.
Basic functions of clustering:

https://www.kaggle.com/code/ekrembayar/apriori-association-rules-grocery-store

59

– detection of data structure to search for new important regularities;
– simplifying complex data to reduce the dimensionality of the data or to

decompose it into smaller datasets or tables (for example, see the notebook);
– filling in missing data with statistical averages by cluster or class.
All clustering methods can be conditionally divided into the following

types [7]:
− Partitioning methods;
− Hierarchical methods;
− Density-based;
− Graph-based methods;
− Model-based clustering.
The following are the most popular methods of clustering:
1. Kmeans. Divides the data into k clusters, where k is a predetermined

number.
Work algorithm: k input data are randomly selected as centroids of future

clusters. Next, the distance from each point to each of the clusters is determined,
and then the point belongs to the cluster to which this centroid is the closest. At
the next iteration, another point is selected among the points of each cluster,
which is better suited to the role of the centroid, and all operations are repeated.
It continues until the distance between the old and new centroid becomes less
than a certain threshold. Other criteria can be the maximum number of iterations
or inertia (sum of squared distances between objects and the centroid of their
cluster) (Fig. 2.1).

Figure 2.1 – Stages of the clustering method Kmeans

https://www.kaggle.com/code/vbmokin/fungi300-research

60

A number of approaches and metrics are used to determine the optimal
number of clusters (Sklearn has nearly 20 ones). The most popular are the use of
such criteria [8]:

- «Silhouette score» (sklearn.metrics.silhouette_score) – the extent to
which points within one cluster are similar to each other compared to points in
other clusters;

- «Calinski and Harabasz Score»
(sklearn.metrics.calinski_harabasz_score) analyzes the ratio of the sum of vari-
ance between clusters and variance within clusters for all clusters;

- «Davies and Bouldin Score» (sklearn.metrics.davies_bouldin_score) –
compares the distance between clusters with the size of the clusters themselves;

- «Adjusted Rand Index» (ARI);
- «Adjusted Mutual Information» (AMI).
In fig. 2.2 gives an example of analyzing the sensitivity of patients to var-

ious allergens based on real data from the author's notebook. As can be seen in
fig. 2.2a, the optimal number of clusters is 4.

a) b)

Figure 2.2 – Illustration of choosing the optimal number of clusters in the
Kmeans method using the Silhouette criterion for analyzing the sensitivity of pa-

tients to various allergens based on real data from the author's notebook: a)
curve of the Silhouette criterion, depending on the number of clusters; b) the re-

sult of applying the Kmeans clustering method with 4 clusters

The modern version of the Kmeans method implemented in the Sklearn
library uses an improved method called "Kmeans++". Its main differences are as
follows:

1) instead of the distance between the point and the centroid, the square of
this distance is determined;

2) only the first centroid is selected, and each subsequent one is selected
taking into account the probability of being selected as a centroid, proportional
to the square of the distance from the point to the nearest already selected cen-
troid;

3) the criterion of the method is the minimization of the inertia.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.cluster
https://www.kaggle.com/code/vbmokin/fungi300-research
https://www.kaggle.com/code/vbmokin/fungi300-research

61

KMeans is very computationally expensive and requires a lot of memory.
MiniBatch is used for large data or with limited computing resources. This
method does not work with all data, but only with a certain random sample.
Centroids are updated after each such mini-batch. It is interesting that this meth-
od can give sometimes no worse results than the KMeans method on all data,
but in much less time and can be effective for a relatively small amount of data.

To increase the speed of the method, it is recommended to perform data
preprocessing using PCA.

There is an option for time series:
tslearn.clustering.TimeSeriesKMeans. The author's notebook provides an ex-
ample of clustering by this method of the exchange rate of about 80 cryptocur-
rencies with a capitalization of more than a billion (in US dollars) as of April
2022.

2. The DBSCAN method (Density-Based Spatial Clustering of Applica-
tions with Noise) is clustering based on data density under noisy conditions.
Each point can be the centroid of the cluster (the "main" point) if there is a given
minimum number of points within a certain radius from it (Fig. 2.3).

Figure 2.3 – Operation of the method DBSCAN (in dynamic)

3. Hierarchical clustering methods. The method of agglomerative cluster-

ing is the most popular of these methods: it starts with individual objects and
successively iteratively pairs them together into clusters, depending on the
method of aggregation (by the smallest, by the largest, by the average distance
between them or others). It does not require the number of clusters. After form-
ing a hierarchical tree of pairs of points, the cut level should be set and the
method will immediately return clusters that will correspond to this level (Fig.
2.4).

https://www.kaggle.com/code/vbmokin/cryptocurrencies-1b-time-series-clustering
https://primo.ai/index.php?title=Density-Based_Spatial_Clustering_of_Applications_with_Noise_%28DBSCAN%29

62

Figure 2.4 – Method of agglomerative clustering

4. Clustering and dimensionality reduction methods "UMAP" ("Uniform

Manifold Approximation and Projection") and t-SNE ("t-Distributed Stochastic
Neighbor Embedding"). The goal of both methods is to reduce the dimensionali-
ty of the data while preserving important local structures and dependencies be-
tween the data. UMAP uses distances in a low-dimensional space to find simi-
larities between points, while t-SNE uses the probabilities of having these simi-
larities

A bright demonstration of the possibilities of clustering and dimensionali-
ty reduction methods «UMAP», «t-SNE» and «PCA» is «Embedding Projec-
tor» for an interactive visualization of how these methods work on typical and
user datasets. Also, see author's notebooks «MNIST Digits Original : 2D t-SNE
with Rapids», «MNIST Original : 2D tSNE, 3D UMAP with RAPIDS» (Fig.
2.5).

The Sklearn library contains a nice comparison table for different cluster-
ing methods.

See in notebook «Titanic Top 3% : cluster analysis» clustering of Titanic
passengers using 11 methods (see Fig. 2.6).

https://umap-learn.readthedocs.io/en/latest/clustering.html
https://projector.tensorflow.org/
https://projector.tensorflow.org/
https://www.kaggle.com/code/vbmokin/mnist-digits-original-2d-t-sne-with-rapids/notebook
https://www.kaggle.com/code/vbmokin/mnist-digits-original-2d-t-sne-with-rapids/notebook
https://www.kaggle.com/code/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis

63

Figure 2.5 – The result of applying the UMAP clustering method to the MNIST
handwritten Arabic numerals dataset («MNIST Original : 2D tSNE, 3D UMAP

with RAPIDS»)

Figure 2.6 – Clustering of Titanic passengers using 11 methods and their com-
parison with the values of the target characteristic («Titanic Top 3% : cluster

analysis»)

https://www.kaggle.com/code/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://www.kaggle.com/code/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis
https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis

64

Notebook “Titanic Top 3%: cluster analysis” contains a universal function
that immediately performs clustering by a given method with given parameters
(new methods can be easily added in clustering_algorithms).

Fig. 2.7 provides an infographics of the toolkit mentioned in subsections
2.1 and 2.2 in the S(I) coordinate system.

Figure 2.7 – Infographics of data preprocessing and clustering

2.3 Exploratory data analysis

Exploratory data analysis (EDA) – it is an analysis of the main properties

of the data, finding general regularities, distributions and anomalies in them us-
ing relatively simple models.

The purpose of EDA is the following:
- maximum study and "understanding" of data;
- identification of main structures and systematization of data;
- detection of deviations and anomalies (outliers);
- testing the main hypotheses;
- construction and researching data using relatively simple models (re-

gressions, decision trees).
EDA methods are applied both to all data and to their clusters and sepa-

rately to training, validation and test data:
- analysis of probability distributions of variables;
- construction and analysis of correlation matrices;
- factor analysis;
- discriminant analysis;
- multidimensional scaling, etc.
Depending on the specifics of the task and research results, EDA may in-

clude the following stages:
1. Calculation of quantitative indicators in the dataset (see section 2.1):

https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis

65

- the total number of rows and columns and the number of missing values
in each column (see «Tip 4.3» from [4]);

- identifying rows where there is a significant percentage of missing val-
ues in various attributes and possibly removing such rows or filling in these
missing values;

- format and examples of values in each column – see "Tip 5.2" from [5].
2. Drawing various plots for the analysis of regularities regarding the val-

ues of each feature and their combinations, etc. (libraries matplotlib, seaborn,
etc. – see notebooks Plotting with pandas, matplotlib, and seaborn, Data-
Visualization-Using-MATPLOTLIB-SEABORN-PLOTLY, Visualization Mat-
plotlib vs Seaborn).

3. Building descriptive statistics: characteristics are analyzed for each fea-
ture: min, max, mean, std, counts, quantiles (quartiles) (P25(Q1), P50(Q2) and
P75(Q3), rarely – P05, P10, P90 and P95); number of missing values, number of
unique values.

4. Advanced primary statistical analysis of each feature and their combi-
nations. For each feature, a distribution law should be constructed and a hypoth-
esis regarding its type should be checked whether it is normal (Gaussian) [9,
10].

As a rule, distribution laws are built for each class separately, for exam-
ple, see the example in Fig. 2.8 from notebook) (Fig. 2.8) and analyze whether
there is no need to balance them. Feature balancing (FE stage) is described in
Chap. 3.

Figure 2.8 – Distribution laws for different target values t=0 and t=1
from the notebook

5. If the dataset contains training, validation and test data or at least 2 of

these 3 options, then their characteristics are compared, first of all, distribution
laws – this is a very important step that is recommended to be done every time
(Fig. 2.9).

https://www.kaggle.com/code/chandraroy/plotting-with-pandas-matplotlib-and-seaborn
https://www.kaggle.com/code/abhishekvaid19968/data-visualization-using-matplotlib-seaborn-plotly
https://www.kaggle.com/code/abhishekvaid19968/data-visualization-using-matplotlib-seaborn-plotly
https://www.kaggle.com/code/fazilbtopal/visualization-matplotlib-vs-seaborn
https://www.kaggle.com/code/fazilbtopal/visualization-matplotlib-vs-seaborn
https://www.kaggle.com/code/cdeotte/200-magical-models-santander-0-920/notebook
https://www.kaggle.com/code/cdeotte/200-magical-models-santander-0-920/notebook

66

Figure 2.9 – Comparison of distribution laws training and test datasets [9]

Analysis of plots in Fig. 2.9 shows that the distribution laws are normal

and very similar, so the datasets are good for further processing. The function
plotly.create_distplot [9] was used to construct distribution laws. Also, you can
use other functions, such as seaborn.distplot, as in notebook.

6. Correlation analysis (determining the presence of dependence and
strength of influence between characteristics). For example, the intercorrelations
of features and the detection of those that are most dependent on each other are
analyzed. The result can be both a matrix of numbers and a graph of the
"heatmap" type or a hybrid variant. Out of every two strongly correlated fea-
tures, one should be removed if there are enough features. Sometimes, as for ex-
ample, with the analysis of the "Open", "High", "Low", "Close" features of the
cryptocurrency exchange rate, they are usually not removed, although they are
highly correlated, as they contain very valuable information, and there are few
such features in these datasets [11].

7. Regression analysis – construction and analysis of simple models (line-
ar or logistic regression, decision trees, etc.) to study certain regularities between
characteristics to confirm the presence and determine the nature and form of in-
fluence of one indicator on others.

8. Analysis of outliers and data anomalies. This can be done in three
ways:

1) by quantiles, when filtering feature values where the maximum or min-
imum value is times bigger than P90 (or P95) or less than P10 (or P05), respec-
tively, then all values bigger than P90 or less than P10, respectively, are discard-
ed – see [11];

2) visually – plots are built, as a rule, using interactive plots of the plotly
library, and anomalies are investigated by value or by the first and/or second
change of values, news on the Internet is studied, whether it is really an anomaly
that has some explanation (for example, when a large companies or the govern-

https://www.kaggle.com/code/cdeotte/200-magical-models-santander-0-920/notebook

67

ment of the country bought something or, on the contrary, sold something, or
something, or an outbreak of a disease, or a natural disaster, etc.) and then this
value refers to abnormal (see Crypto - BTC : Advanced EDA, COVID in UA:
Prophet with 4, Nd seasonality);

3) using special libraries for time series, which will be detailed in Chap. 5.
9. Analysis of patterns of data using methods of clustering, factor analysis

and dimensionality reduction – see subsection. 2.2.
10. Analysis of the variability of features, that is, whether there is a suffi-

cient number of different variants of the values of each feature. Features that
take a single value should be removed, as they will prevent the model from
learning.

11. Grouping of data by certain features and analysis of how other fea-
tures are clustered relative to this one (see subsection 2.2).

12. For time series: detection of seasonality of values and identification
of periods of these fluctuations, checking of series for stationarity and hetero-
scedasticity (see below subsection 5.4).

A more complete overview of these methods and their classification is
presented in articles [2, 3] of one of the co-authors.

In addition to these methods, various system analysis methods can be used
to identify important patterns between features and identify features that are
most closely related: Bayesian modeling [12-16], associative data analysis, sta-
tistical modeling, etc.

The ultimate goal of EDA is to answer such questions:
1. Is the data ready for building models or does it need additional pro-

cessing?
2. What models should be built to solve the given problem, according to

what metrics and with what initial values of parameters and hyper-parameters?
The easiest way to build descriptive statistics for a Python dataframe is

the "describe" method of the pandas library (Fig. 2.10).

Figure 2.10 – Statistics of the describe function of the pandas library for the data
of the contest regarding the passengers of the Titanic from the author's notebook

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-eda
https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality
https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality
https://www.kaggle.com/code/vbmokin/automatic-eda-with-pandas-profiling

68

Appendix E lists some specialized Python libraries that allow you to per-
form automatic IDA.

In addition, to build analytical plots according to your own script, you can
use universal libraries that have built-in functions for EDA: Matplotlib, Seaborn,
Plotly, Pandas (see the notebook «EDA for tabular data: Advanced Tech-
niques»).

Fig. 2.11 presents infographics of the toolkit mentioned in the Chap. 2 in
general, in the coordinate system S(I).

Figure 2.11 – Exploratory data analysis (EDA) infographics

Practical exercises
1) Find the median for the given list of numbers. The median is the aver-

age value of a sorted list of numbers. If the number of numbers is even, the me-
dian is the average of the two middle numbers.

Python: np.median(np.array(numbers_list))
But it can be useful to be able to find the median manually (Fig. 2.12).

List of numbers: 20 7 2 10 9 5 1
Sort a list and find the median:
1 2 5 7 9 10 20 => median = 7
1 2 5 7 9 10 => median = (5+7)/2 = 6

Figure 2.12 – Determining the median of the list of numbers

2) Find the mode for the given list of numbers. The mode is the meaning

of the list that occurs most often. The list can have several modes if they occur
equally often (Fig. 2.13).

https://www.kaggle.com/code/vbmokin/eda-for-tabular-data-advanced-techniques
https://www.kaggle.com/code/vbmokin/eda-for-tabular-data-advanced-techniques

69

10,12,12,23,23,23,23,38,45,45,45 => mode – 23
10,12,12,23,23,23,38,45,45,45 => modes – 23 and 45

Figure 2.13 – Determining the modes of the list of numbers

3) There are three points: A(x1, y1), B(x2, y2), and C(x3, y3). Calculate

the distance between the nearest points that can form a cluster using the Ag-
glomerativeClustering method with the parameter linkage='single'.

For example, there are three points: A(1, 1), B(2, 3), and C(5, 6). Calcu-
late the distance between the nearest points (Fig. 2.14).

Figure 2.14 – Distances between the nearest points A, B, C

As you can see on Fig. 2.14, the smallest distance is between points A and

B. Also, answer: 2.236.

Possible topics of practical tasks
Topic No. 1. "Exploratory data analysis and visualization of analysis

results in Python").
The purpose of the lesson is to study information technologies and Python

libraries for intelligence analysis and data visualization, and to master practical
skills in their application using the example of one of the Kaggle datasets or data
downloaded via the API.

Lesson plan:
1. Find a dataset with real or realistic data with a description that is inter-

esting for analysis. It is optimal to find a Kaggle dataset in which there are pub-
lic notebooks with medals (at least bronze ones). Describe it.

2. Choose the Python libraries that will be used for exploratory analysis
and data visualization (EDA): Matplotlib, Seaborn, Plotly, Pandas, Sklearn, etc.,
and specify what exactly for.

3. To review notebooks or articles regarding the dataset from point 1 us-
ing bibliographies from point 2 for its EDA. Provide at least 5 graphs, with a de-
scription of exactly what laws they illustrate and what exactly is visible on them.

70

4. Develop your own notebook that carries out a similar or other study (it
is optimal to take an existing well (with a gold or silver medal) Kaggle notebook
and adapt it to another dataset and draw conclusions about the EDA results
yourself.

Samples of notebooks with EDA:
- EDA for tabular data: Advanced Techniques
- Heart Disease – Multiple Clustering by 12 methods
- MNIST Original : 2D t-SNE, 3D UMAP with RAPIDS
- MNIST Digits Original : 2D t-SNE with Rapids
- Automatic EDA with Pandas Profiling 2.9 (09.2020)
- Titanic Top 3% : cluster analysis
- Heart Disease – Automatic AdvEDA & FE& 20 models
- Autoselection from 20 classifier models & L_curves
- Biomechanical features - 20 popular models
- Suspended substances prediction in river
- AI-ML-DS Training. L1T: NH4 – linear regression
Also, you can use all notebooks from datasets COVID-19 in Ukraine: dai-

ly data or Forecasting Top Cryptocurrencies.

Test questions
1) What does the process of data preprocessing involve and why is it

important before further analysis?
2) Name several methods of data cleaning and give examples of situa-

tions where they can be used.
3) What clustering methods are used to group similar objects? Give ex-

amples of their use.
4) How can data dimensionality reduction techniques help in further

analysis and modeling?
5) What is exploratory data analysis (EDA) and what tasks does it solve

in the data analysis process?
6) What visualization tools can be used for EDA? Give examples of

plot types.
7) What are the main steps involved in the data analysis performed by

the Kaggle competition winners?
8) What intelligent techniques are used for data analysis in Kaggle

competitions?
9) How to identify anomalies or outliers in data during EDA, and how

does this affect further analysis?
10) Why is it important to understand the distribution of the target fea-

ture during exploratory data analysis?

https://www.kaggle.com/vbmokin/eda-for-tabular-data-advanced-techniques
https://www.kaggle.com/vbmokin/heart-disease-multiple-clustering-by-12-methods
https://www.kaggle.com/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://www.kaggle.com/vbmokin/mnist-digits-original-2d-t-sne-with-rapids
https://www.kaggle.com/vbmokin/automatic-eda-with-pandas-profiling-2-9-09-2020
https://www.kaggle.com/vbmokin/titanic-top-3-cluster-analysis
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models
https://www.kaggle.com/vbmokin/autoselection-from-20-classifier-models-l-curves
https://www.kaggle.com/vbmokin/biomechanical-features-20-popular-models
https://www.kaggle.com/vbmokin/suspended-substances-prediction-in-river
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l1t-nh4-linear-regression
https://www.kaggle.com/vbmokin/covid19-in-ukraine-daily-data/code
https://www.kaggle.com/vbmokin/covid19-in-ukraine-daily-data/code
https://www.kaggle.com/datasets/vbmokin/forecasting-top-cryptocurrencies

71

3 FEATURE ENGINEERING

3.1 Main tasks and stages of feature engineering

Feature engineering (FE) is the analysis and processing of features of a
dataset, including removal of uninformative ones and synthesis of new ones.

The purpose of FE is:
– detection of uninformative features that can be removed, reducing the

noise of the solution and increasing the speed of the model;
– identification and removal of features that have a deterministic depend-

ences on other;
– detection of highly correlated pairs of features;
– detection and removal of "leaks", when some feature contains the target

value or can be obtained from it on the basis of deterministic dependencies, that
is, the model can simply accurately calculate the target based on it;

- analysis of the importance of each feature using both relatively simple
models (regressions, decision trees) and more complex models, in case of pass-
ing this stage again after the stage of building complex models;

- synthesis of new ("secondary") more informative features based on the
values of the existing ones;

- improvement of features values.
Depending on the specifics of the task and research results, FE may con-

tain the following stages:
1. Synthesis of fundamentally new features based on knowledge of the

subject area. To do this, they study the content of the features, the statement of
the task, study analogues of solving similar problems in GitHub, Kaggle, in pro-
fessional articles in Google Scholar and in other special sources.

2. Analysis of data types of all features. Typically, using the function for
dataframes using df.info() of the pandas library. See "Type 5.1" and "Type 5.2"
from [4]).

3. Identification of the most informative features that satisfy the following
minimum requirements:

- is not a leak;
- is not a constant;
- does not have missing values (after preprocessing);
- is not a feature highly correlated with others.
An additional requirement is the high importance of the feature, but this is

discussed in the subsection 3.3.
4. Discretization of informative features by forming a small set (3-10) of

values of a numerical feature instead of a large number or fractional values in a
certain range, for example, by dividing an integer by a certain number – see of
advice "Tip 5.5" in [5].

72

5. Formal synthesis of new ("secondary" or "synthetic") features from
those available according to such an algorithm (see the example in "Tip 5.5" in
[5]):

1) convert the value of the available informative features to a type «str»;
2) combine the values of 2, 3 or more characters through some symbol

("_"or "-"), and then:

df[i + "_" + j] = df[i].astype('str') + "_" + df[j].astype('str'); (3.1)

3) encode the newly formed values with the numbers of the values in the

list.
The most interesting thing is to use some non-linear function (multiplica-

tion, division, root, power, etc.) rather than addition, then the new feature will be
fundamentally new, which most models will not be able to synthesize on their
own. Example: synthesis of technical indicators of cryptocurrency in subsection
2.4 of the notebook Crypto - BTC : Advanced Analysis & Forecasting. Another
interesting example is the synthesis of features in the "Google Analytics Cus-
tomer Revenue Prediction" (Google Online Store) contest, where it was neces-
sary to analyze when a user browsing the pages of an online store will finally
buy something and for what amount. In Fig. 3.1 see the "pageviews/hits" attrib-
ute, which is the ratio of the number of viewed web pages divided by the total
number of hits.

Figure 3.1 – The relationship between the total revenue from transactions in the
Google online store "transactionRevenue" and "pageviews/hits" – the number of

views divided by the number of operations (button clicks)

As can be seen from Fig. 3.1, it is already possible to obtain a solution to
the problem with considerable accuracy, since it is clearly visible after which
threshold value the client will almost certainly buy something, and up to which –
not.

The FE stage also often includes some reprocessing operations to save
memory by specifying the format of features and transforming formats (see
clauses 1 and 2 in subsection 2.1).

6. Reduction of the dimension (number) of features (see subsection 2.1).

https://www.kaggle.com/c/ga-customer-revenue-prediction/overview
https://www.kaggle.com/c/ga-customer-revenue-prediction/overview

73

7. Factor analysis is the identification of hidden (latent) factors that can
explain the observed relationships between features in the dataset.

8. Feature engineering can include feature value operations (they can also
be applied at the preprocessing stage). For example, see "Type 4.4" in [4].

9. It is advisable to divide features with date and time into separate ones:
year, month, day, hour... with different increments (quarter, season, half hour...).
And the date and time itself is often removed over time to avoid overtraining.

10. Balancing of different target classes in the training dataset using the
Synthetic Minority Oversampling TEchnique (SMOTE) method or others – see
an example in the article on the analysis of coronavirus patients in Great Britain
[17].

The mentioned FE operations require some creativity and are usually carried
out alternately with the EDA stage, in a cycle. But there are FE operations that
are already carried out with the final dataset, which at the EDA stage is defined
as meeting the minimum requirements and promising for building a model.
These are operations of standardization and normalization of data – they are de-
voted to the following subsection 3.2.

In addition, there is an important stage of FE as feature importance analysis.
This requires machine learning models – either simplified (at the first stage) or –
already after the stage following FE – the model building stage. We will consid-
er these operations in more detail in subsection 3.3.

3.2 Standardization and normalization of features

Most machine learning models try to adapt to all features equally, but

those features that have a greater dispersion, a greater variety of values and de-
viations from them will be more influential. And then the model can "overfit"
for them. To avoid this, the data should be standardized (Fig. 3.2a).

The Sklearn library has a number of methods for this:
1. Standardization (sklearn.preprocessing.StandardScaler) (see Fig. 3.2b),

which is applied to all values of the feature , except for target, with obtaining
the centered value according to the formula (the denominator and the numera-
tor are optional – you cannot subtract the average or divide by variations):

. (3.2)

74

Figure 3.2 – Typical methods of standardization and normalization of features
using Python libraries Sklearn – from the documentation: a) sample data; b) re-

sult of normal standardization; c) scaling result; d) the result of robust standardi-
zation; e) result of normalization

2. Minimax scaling (sklearn.preprocessing.MinMaxScaler) (see Fig. 3.2c)

of the feature shall be performed by its minimum and maximum
values

. (3.3)

It is usually widely used for displaying different features on one graph in
the range from 0 to 1 along the y-axis.

1. Standardization according to formula (3.2) can lead to significant data
distortions, if there are significant anomalies. In such cases, robust standardiza-
tion sklearn.preprocessing.RobustScaler is used (see Fig. 3.2d).

2. Some clustering methods are more effective for heterogeneous data if
they are first normalized (see Fig. 3.2e). 3 normalization options are possible,
depending on the selected norm: based on the sum of vector modules, based on
the Euclidean norm (length of the vector), which is the default option), based on
the maximum value of the vector.

Usually, all these standardization and normalization functions are adjusted
(scaler.fit_transform) to training data, and (scaler.transform) is applied to both
training and test data, otherwise there will be a data leak, that is, the model will
become inoperable under real conditions when the test data unknown in ad-
vance.

https://python-data-science.readthedocs.io/en/latest/normalisation.html

75

3.3 Construction of feature importance diagrams and automation of
feature selection based on Sklearn, SHAP, LIME libraries. Interpretability
of models

As mentioned above, it is important not only to build a machine learning

model, but also to be able to draw correct conclusions based on it. Often, an ad-
equate model is not needed for prediction, but for providing reasonable conclu-
sions based on it. Therefore, the interpretability of models is important. And it is
often carried out on the basis of a relative comparison of the importance of fea-
tures under certain conditions.

For the first application of FE, simple models are used to analyze the im-
portance of features, for example, linear regression or decision trees from the
Sklearn library, and feature importance (FI) is determined. A corresponding FI-
diagram is built according to the decrease of this importance and analyzed (Fig.
3.3).

Figure 3.3 – An example of a feature importance diagram for a decision tree in

the problem of predicting the cost of a New York taxi ride
in the 2018 Kaggle Author's Solution Competition (see Fig. 1.15)

76

The following conclusions should be drawn from the diagram of the im-
portance of features:

1. If a feature occurs very often (perhaps in all lines of the dataframe),
but its importance is very low, then it should be removed as uninformative,
which only introduces additional noise (see Fig. 3.3 on the feature "passen-
ger_count" – that is the number of passengers).

2. If the feature is very important, then it should remain.
3. If the feature has low importance, but it is rare, then its value should be

analyzed only by the accuracy of the model (if it increases with it, then it should
be left, if not, then it can be removed).

At the FE stage, not only methods for analyzing the importance of fea-
tures are important, but also automated methods for selecting the best features.
For this, there are special automation methods of "Feature Selection" (FS) from
the Sklearn library [18]. Most of them use a machine learning model chosen by
the analyst, which will be explained in more detail in the next chapter.

1. Selection of features by the Pearson correlation coefficient (corr in the
pandas library – for linear dependencies or features distributed according to the
normal law) or Spearman (corr(method='spearman') in the pandas library – that
is, for non-linear dependencies or features not distributed according to the nor-
mal law by law).

2. Selection of features using the SelectFromModel method using a specif-
ic machine learning model, usually linear.

3. The SelectKBest method – selects the K best features that have the
greatest impact using a given criterion. Criteria:

- for classification problems: F-statistics, for categorical features – Chi-2
(χ2-criterion);

- for regression problems: ANOVA ("ANalysis Of VAriance"), Pearson's
or Spearman's correlation coefficient, etc.

4. Feature selection using the Recursive Feature Elimination (RFE) meth-
od. The algorithm gradually removes less important features (a given number or
percentage) until a given number is reached. Any given models are used.

5. Selection of features using VarianceThreshold — features with low
variability (a small number of unique values) are removed. Hence, the name:
threshold for variance.

Tips 5.6-5.13 in [5] provide examples of the application of these FE
methods.

More effective tools for exploring and visualizing the importance of fea-
tures are library methods based on game theory and on approximation by simpli-
fied models around a specific example of data. Let's consider them in more de-
tail.

The most interesting and detailed explanations of features with good visu-
alization are provided by methods of the SHAP, LIME library (see Appendix F).

77

In Kaggle, competitions are often held to solve certain problems, where in
order to win, you need to be able to analyze the importance of features and be
able to process and generate them (see section 1.5):

1. FE for predicting the risk of loan default from Home Credit.
2. Development of methods for automatic detection of personally identifi-

able information (PII) in educational data from The Learning Agency Lab.
3. Highlighting key characteristics for predicting the behavior of prosum-

ers in the energy sector from Enefit.
4. Processing and aggregation of data from the order block and the final

auction to predict stock price movements in the final minutes of trading from
Optiver.

5. Isolation of important features for predicting chemical effects on vari-
ous cell types from Open Problems – Single-Cell Perturbations and others.

Fig. 3.4 presents an infographics of the toolkit mentioned in section 3 as a
whole, in the S(I) coordinate system.

Figure 3.4 – Infographics of all the main operations and technologies of feature
engineering (FE)

Possible topics of practical tasks
Topic. Analysis of the importance of features.
The purpose of the class is to learn information technologies and Python

libraries for analyzing the importance of features and performing FeatureEngi-
neering of data and mastering practical skills of using some of them on the ex-
ample of one of the Kaggle datasets or on data downloaded via the API.

Lesson plan:
1. Select a dataset (see Chapter 1).
2. Carry out primary EDA of the dataset and define tasks for FE.

78

3. Characterize the stages of feature processing (which existing ones are
deleted and why, which new ones are created and for what, which ones are
transformed and why).

4. Give a diagram of the importance of the features of one of the models
and what conclusions can be drawn from it.

5. Indicate which optimal features were selected based on the results of
clauses 3, 4 (these clauses can be applied alternately and repeatedly: 3, 4, 3,
4...). Also, a combined (or complex) diagram of the importance of features, built
according to several models at the same time, can be given – see example in
notebooks: FE - Feature Importance – Advanced Visualization (for the classifi-
cation problem)

- FE-FI for Regression Task – Advanced Visualization (for the regression
problem).

Notebook samples:
The following notebooks are recommended for this work:
- for the classification task: FE - Feature Importance – Advanced Visuali-

zation;
- for the regression task: FE-FI for Regression Task – Advanced Visuali-

zation;
Also, you can see other examples of notebooks with feature importance

charts:
- Autoselection from 20 classifier models & L_curves
- Biomechanical features - 20 popular models
- Suspended substances prediction in river
- WQ SB river : EDA and Forecasting
- Heart Disease – Automatic AdvEDA & FE & 20 models

Test questions
1) What does feature engineering (FE) involve and why is it important in

data analysis and model building?
2) What are the main stages of feature engineering and what problems do

they solve?
3) What methods can be used to synthesize new features based on exist-

ing data?
4) What is the standardization and normalization of features, and why is

it important before building a model?
5) How can you build a feature importance diagram, and what is its role

in choosing the most important features for the model?
6) What Python libraries can be used to automate feature selection, and

what methods do they provide for this?
7) How to ensure the interpretability of machine learning models from

the point of view of feature engineering?

https://www.kaggle.com/vbmokin/fe-feature-importance-advanced-visualization
https://www.kaggle.com/vbmokin/fe-fi-for-regression-task-advanced-visualization
https://www.kaggle.com/vbmokin/fe-feature-importance-advanced-visualization
https://www.kaggle.com/vbmokin/fe-feature-importance-advanced-visualization
https://www.kaggle.com/vbmokin/fe-fi-for-regression-task-advanced-visualization
https://www.kaggle.com/vbmokin/fe-fi-for-regression-task-advanced-visualization
https://www.kaggle.com/vbmokin/autoselection-from-20-classifier-models-l-curves
https://www.kaggle.com/vbmokin/biomechanical-features-20-popular-models
https://www.kaggle.com/vbmokin/suspended-substances-prediction-in-river
https://www.kaggle.com/vbmokin/wq-sb-river-eda-and-forecasting
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models

79

8) What strategies are used to process categorical features during feature
engineering?

9) What are the possible problems that can occur during feature engi-
neering and how can they be avoided or solved?

80

4 TRAINING AND TUNING OF MACHINE LEARNING MODELS

4.1 Types of machine learning models and their advantages

Machine learning models are divided into the following main classes (see

documentation of the library Sklearn):
1) Linear models (the package “sklearn.linear_model” – about 20 models

and methods), the most common:
• LinearRegression;
• Ridge;
• Lasso;
• LogisticRegression;
• Stochastic Gradient Descent;

2) Models based “Support Vector Machine” (the package “sklearn.svm” –
several models, but with many variations), the main:

• SVC;
• LinerSVC;

3) Models based on the “Neighbors Method” (the package
“sklearn.neighbors” – near 10 models), the main: NearestNeighbors;

4) Forecasting methods based on the “Gaussian Process” and when not
the values themselves are forecast, but their probabilistic characteris-
tics (the package sklearn.gaussian_process – several models, but with
many variations), the main: GaussianProcess;

5) The Naive Bayes model (the package "sklearn.naive_bayes" – several
models), the main: GaussianNB;

6) Decision Trees;
7) Ensembles of models:

• ensemble of Decision Trees:
• the baging;
• the boosting;
• the stacking;
• the voting;

8) Neural Networks and their ensembles:
• Perceptron (Sklearn);
• MLP – Multi-Layer Perceptron (Sklearn);
• Neural Networks of frameworks Keras, TensorFlow and

PyTorch.
The last 2 classes are the most effective and popular, but in order to un-

derstand them better, you must first master the first six.
The personal experience of the authors and the results of studying many

solutions and sources in various fields of application allow to state:

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor

81

- linear models work well for small or very noised datasets;
- logistic regression works quickly in classification tasks and is often used

for post-processing in solutions using Neural Networks;
- Decision Trees allow a good understanding of data patterns, have good

possibilities for visualization, selection of features according to their im-
portance;

- ensembles are the most effective, but very sensitive to the quality of the
models they consist of;

- Neural Networks and their ensembles require larger datasets than linear
models or Decision Trees but are more efficient for big data.

4.2 Training of machine learning models and their regularization

Each model of machine learning, for example, name_model (with param-

eters model_params) from the package name_package of the library sklearn
using the dataframe train and target (a column of data frame as type «series») is
built in the same way:

From sklearn.name_package import name_model
model = name_model(model_params)
model.fit(train, target)

and then the prediction (predict) of the values y_pred or prediction of the prob-
ability (predict_proba) of these values by the model according to the test data-
frame is carried out in the following way:

y_pred = model.predict(test)

Next, we will give only values for each model: name_package,
name_model and examples model_params.

Almost all models, except for LinearRegression, Lasso, GaussianNB, in
the Sklearn library have an option for the classification problem (the word
"Classifier" is added at the end of the name) and for the regression problem
("Regressor"): DesicionTreeClassifier and DecisionTreeRegressor, etc. There is
no LinearClassifier, LassoClassifier, or GaussianNBClassifier model variant.

LogisticRegression is the only classification model that can’t be used to
solve regression problems. It is intended only for classification tasks, despite the
name.

In all models, as a rule, there is a random_state parameter of the "int"
type, which must be fixed, for example, random_state=42, or 0, 1, 2, or another
integer. This ensures the reproducibility of the results, else calculation result
can’t be repeated.

And there is also the verbose parameter, which is usually equal to 1 (dis-
play intermediate results of calculations) or 0 (do not display).

82

All models other than LinearRegression typically have specific
model_params. In machine learning, these are called hyperparameters – pa-
rameters that are not learned by themselves during model training, but define the
architecture or configuration of the model. They are set before training begins
and determine how the model should learn and how it should adapt to the data.

It is important to configure hyperparameters in such a way as to prevent or
minimize the risk of overtraining. To do this, regularization is used – a tech-
nique in machine learning to reduce the values of model parameters to improve
its generalization ability and avoid overtraining. It is best to explain its essence
in the example of identifying polynomial regression for one feature (Fig. 4.1).

 a) b)

Figure 4.1 – Examples of polynomial regression construction: a) parabola
(polynomial of order n=2), which exactly passes through n+1=3 points;

b) polynomials of the (m=6) and lower orders that are close to m+1=7 points

As you know, a straight line can be precisely drawn through n=2 points,
that is, a polynomial of order n-1=1. Through n=3 points – a parabola, that is, a
polynomial of order n-1=2 (Fig. 4.1, a), through n=7 points – a polynomial of
order n-1=6 (Fig. 4.1, b, blue line). However, this very precise curve will differ
significantly from the basic trend line between the known points. Theoretically,
the parameters can be sign-changing and have a value of 106or more. Because of
this, when test data with values that differ from the training dataset arrive, the
model will give significantly inadequate results. To avoid this, artificial limita-
tion of parameter values is introduced. It is necessary to limit both positive and
negative values, and therefore, use 2 types of functions of the 1st or 2nd orders
with the corresponding designation L1 or L2:

- L1: module function:

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification

83

 (4.1)

- L2: square function:

 (4.2)

Almost all machine learning models have 3 parameters: L1 and L2, which
take the value True or False, or one (for example, "penalty"), which takes the
value L1, L2, or None. The third parameter is the degree of regularization (usu-
ally denoted as "alpha" if larger values mean more regularization, or as "C" if
vice versa) – a positive float number. There are models with both types of regu-
larization at the same time, for example, ElasticNet.

Let's consider how the models are trained and how the effectiveness and
accuracy of their training is controlled.

4.3 Tuning of models' hyperparameters and controlling their

training's effectiveness

The key stage of machine learning is actually model training (hence the

name). The purpose of training is to achieve some goals (in the direction of de-
creasing importance):

- achieving a better value of the metric on the validation dataset val_loss;
- there is no or minimal difference between the value of the metric on the

training train_loss and validation val_loss datasets;
- shorter duration of calculations;
- lower cost of calculations, as well as lower requirements for the neces-

sary computing power in the form of GPU or TPU.
That is, among models with the same very good values, for example,

val_loss, you need to choose the one in which train_loss=val_loss (or almost
so), and if it also coincides, then – the one that makes predictions faster (and
training too) and is also cheaper, that is, it requires less power for calculations.

The main goal is to achieve a better metric value on the val_loss valida-
tion dataset, but it is important that the loss value on the training data is also
good and does not significantly differ from val_loss (at least by no more than 5–
10%). According to the ratio of these values, 3 types of machine learning results
are distinguished (Fig. 4.2):

- Undertraining (very bad learning): the value of loss is "bad" or unsat-
isfactory, then the value of val_loss no longer has a special value, or train_loss
= val_loss;

- Just Right or Appropriate-Fitting (good learning): both val_loss and
train_loss are good or at least satisfactory (val_loss should be worse than
train_loss, but slightly, for example by 3-10%);

84

- Overtraining (bad learning): train_loss is good but train_loss is
"bad" or unsatisfactory or train_loss is better than val_loss by more than 10%.

 a) b) c)
Figure 4.2 – Types of machine learning model results: a) Undertraining; b) Just

Right or Appropriate-Fitting; c) Overtraining

Usually, in the case of a good implementation of the models and advice
from subsections 4.1 and 4.2, it is possible to achieve a good loss, and then the
main problem is overtraining itself, which takes place in very many cases. That
is why it is often said that the main task of machine learning is to avoid over-
training! There are a number of techniques to achieve this.

1. Using cross-validation to select training and validation datasets (see
"Tip 6.1" in [5]).

2. Using the sklearn.model_selection.GridSearchCV function, which al-
lows you to perform a complete search of model parameter options in given lists
of discrete values with given cross-validation (see "Tip 6.2" in [5]).

https://stanford.edu/%7Eshervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks

85

There is also a RandomizedSearchCV option – this is the same as
GridSearchCV, but without the full selection of options. Only certain random
combinations are taken – not as accurate, but works much more accurately and
you can try more options, also set continuous ranges of values.

First of all, you need to configure:
- the architecture of the models, if they provide for the use of different

components;
- for Decision Trees: maximum depth (max_depth) and/or number of

leaves (num_leaves);
- learning_rate (lr);
In addition to tuning the hyperparameters of the model itself, other tech-

niques for improving the accuracy of models can still be effective:
- parameters of cross-validation (cv);
- changing the size or number of batches (batch);
- method of selecting random features during model tuning (ran-

dom_state).
During tuning, it is necessary to analyze various combinations of parame-

ters to find the most successful ones and form a plan for their further change. In
author's notebooks (GRU & LSTM mix & custom loss - tuning by 3D visual,
Stock Embedding - FFNN - upgrade & 3D, MoA: Pytorch-RankGauss-PCA-NN
upgrade & 3D visual) there are nice 5D (3D coordinates + shape + color) visual-
izations of how different parameters affect accuracy. According to those graphs,
it is possible to improve this accuracy well.

There are special methods to automate the setup process. The most popu-
lar among them are the following:

- GridSearchCV from sklearn.model_selection;
- HyperOpt from the hyperopt library;
- Optuna from the optuna library.
Good examples of using GridSearchCV and HyperOpt (Fig. 4.3) are in the

notebook for predicting Titanic survivors (in the Kaggle competition).
Good examples of using the Optuna method with detailed explanations

and infographics are in the notebook.
Recommended model training algorithm:
1. Based on the results of the exploratory analysis, possible ranges of val-

ues are selected.
2. Apply the HyperOpt or Optuna method and significantly narrow the

possible ranges of values and the number of hyperparameters that can be
changed and that have the greatest impact on accuracy.

3. GridSearchCV is used to refine the global optimum for the values and
hyperparameters selected in point 2.

Although, sometimes the algorithm ends at point 2, and sometimes, with a
small number of possible value options, point 2 is skipped and only
GridSearchCV is used.

https://www.kaggle.com/code/vbmokin/titanic-0-83253-comparison-20-popular-models
https://www.kaggle.com/code/corochann/optuna-tutorial-for-hyperparameter-optimization

86

Figure 4.3 – An example of XGB Classifier model parameter tuning by the Hy-
perOpt method: the best parameter combinations (the last 2 out of 10 are shown)

and the selected optimal model parameter combination
(see last dictionary {}) (from the notebook)

When analyzing model training accuracy, it is important not only to calcu-

late the basic metric but also to analyze the learning curve and confusion matrix.
The Learning Curve displays the dependence of the metric on the amount

of training data or on the number of training iterations. It shows: how best to
choose cross-validation parameters. Is the data evenly distributed between
batches? Is there overtraining or undertraining, and which steps of cross-
validation increase this risk? A learning curve helps you evaluate how a model
learns and how its performance changes over time or with different data. Usual-
ly, 2 learning curves are built: the Training Curve and the Validation Curve. It is
valuable to analyze not only them but also their comparison. The optimal situa-
tion is when the validation curve at the end of training is close to the training
curve, but has slightly worse accuracy than it, and they both achieve good accu-
racy values.

Confuse Matrix or Error Matrix is a square matrix, the size of which is
equal to the number of classes of the target feature, so it is built only in classifi-
cation problems. Each row of this matrix corresponds to the predicted classes,
and each column corresponds to the true classes. In each cell, the relative num-
ber of correctly predicted corresponding classes is displayed (there may also be
an absolute value of this number and how much data had to be predicted in to-
tal). An ideal confusion matrix is a single diagonal matrix, that is, a matrix in
which all 1s are in the diagonal, and 0s in the other cells. For a binary target, the
confusion matrix is shown in Fig. 4.4.

https://www.kaggle.com/code/vbmokin/titanic-0-83253-comparison-20-popular-models

87

Figure 4.4 – The structure of the Confusion Matrix

Error "False Positive" (FP) is also called "error of the I kind" or "false

alarm", and error "False Negative" (FN) is "error of the II kind" or "missing the
target". A large FP value indicates overtraining, and a large FN indicates under-
training.

These errors determine 2 more important metrics Precision and Recall,
which are used to determine the effectiveness of models for binary classifica-
tion:

- Precision or "Positive Predictive Value" (PPV)) determines how accu-
rate the positive (target = 1) predictions of the model are:

, (4.3)

 - Recall or "True Positive Rate" (TPR)) determines what part of all posi-
tive (target = 1) instances the model identified correctly:

 . (4.4)

If it is important to choose a model that has balanced values of both of

these metrics, then the metric (harmonic average) is used:

. (4.5)

Metrics that are still popular in Kaggle competitions are:
- ROC-AUC (Receiver Operating Characteristic – Area Under the Curve)

– the area under the ROC curve, which graphically displays the dependence be-
tween TP and FPR shares at different threshold values in the classification mod-
el; the larger the AUC value (from 0 to 1), the better the model, where 1 indi-
cates a perfect model and 0.5 indicates a random classification model;

https://en.wikipedia.org/wiki/Confusion_matrix

88

- – for cases where it is more important to give more weight to Recall,
especially in tasks where it is important to avoid false negative results as little as
possible.

In fig. 4.5 and 4.6 are examples of learning curves and confusion matri-
ces.

a)

b)

Figure 4.5 – Analysis of the learning results of the "Stochastic Gradient De-
scent" model from the notebook: a) learning curves; b) confusion matrices

Analysis of Fig. 4.5 shows that the model learned normally, but the addi-

tion of batches worsened its accuracy, so it is advisable to revise the cross-
validation parameters.

https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models?scriptVersionId=46390285

89

a)

b)

Figure 4.6 – Analysis of the learning results of the "GradientBoostingClassifier"
model from the notebook:learning curves; b) confusion matrices

In fig. 4.6 the confusion matrix indicates clear overtraining. Moreover,

values target=0 are predicted worse. To reduce overtraining, it is necessary to
optimize the model parameters. The learning curve shows that the addition of
batches allows you to increase the accuracy of prediction of validation data, but
it is not enough, that is, it is advisable to optimize the cross-validation parame-
ters as well.

It should be noted that the confusion matrix can be built not only for bina-
ry classification problems. In fig. 4.7 shows the confusion matrix for the prob-
lem of recognizing and classifying Arabic numerals.

https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models?scriptVersionId=46390285

90

Figure 4.7 – Confusion matrix for the problem of recognizing and classifying
Arabic numerals from the notebook

In fig. 4.8 presents an infographics of the toolkit mentioned in subsections

4.1-4.3 in the S(I) coordinate system.

Figure 4.8 – Machine learning model tuning infographic

Let's consider the main models in more detail.

https://www.kaggle.com/code/vbmokin/mnist-model-testing-typographic-digits

91

4.4 Linear Regression, Ridge and Lasso models. Logistic Regression

4.4.1 Linear Regression, Ridge and Lasso models
Linear Regression is a method that describes the relationship between n

features (input data) and target (output feature) using linear functions
(Fig. 4.9).

Figure 4.9 – Linear regression from notebook

It can be used both for features with integers (classification problem) and

fractional numbers (regression problem), without changing the name:
name_package = linear_model
name_model = LinearRegression()
Mathematically, this model looks like this:

 (4.6)

where is the constant component (shift),

 – feature importance coefficients,
 – random noise with zero average and fixed dispersion, less than that of fea-

tures.
The result is the – models coefficients, which reflect the importance of

the respective features and the value of the shift. Chapter 3 is devoted to their
analysis.

Linear regression itself has no parameters, but has 2 popular varieties, de-
pending on the type of regularization:

1. Lasso is a linear regression with L1 regularization (4.1).
name_package = linear_model
name_model = Lasso (regressor)
model_params = alpha=1.0, *, fit_intercept=True, precompute=False,

copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False,
random_state=None, selection='cyclic'

https://www.kaggle.com/code/vbmokin/tutorial-linear-and-logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

92

The Lasso model, like linear regression, does not have a separate option
for classification tasks. For them, it is used in the same form.

2. Ridge is a linear regression with L2 regularization (4.2).

name_package = linear_model
name_model = Ridge (regressor), RidgeClassifier
model_params = alpha=1.0, *, fit_intercept=True, copy_X=True,

max_iter=None, tol=0.0001, solver='auto', positive=False, ran-
dom_state=None

The parameters for the regressor and the Ridge classifier are the same.

Higher alpha values mean higher regularization.
It is not recommended to set alpha = 0 in both types of models. Instead, it

is better to use the LinearRegression model.
The main parameters that need to be varied to improve accuracy are:
- tol is the precision (positive float) at which the algorithm stops;
- max_iter is the maximum number of iterations if tol is not reached;
- solver is an optimization algorithm.
There is another subspecies of these regressions and types of regulariza-

tion, when both types of regularization L1 and L2 are applied simultaneously.
This is a model of sklearn.linear_model. ElasticNet. It is useful when some fea-
tures are highly correlated, but it is not desirable to remove them (the Lasso
model will leave one of them, ElasticNet – all of them).

Fig. 4.10 presents an example of prediction of 5 different datasets by dif-
ferent types of linear regression with different regularization.

Figure 4.10 – Classification of data from 5 different datasets by different types
of linear regression with different regularization (in the lower right corner –

accuracy_score for test (validation) data, test data are circles outlined in black)
[19]

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

93

As can be seen from Fig. 4.10, using Lasso as an example, a lower level
of alpha regularization increases the accuracy of the models, but on some da-
tasets, the accuracy of the models is very low. The threshold of minimum per-
missible accuracy is conventionally considered to be values greater than 0.5,
since if you do not make any prediction, but simply randomly generate answers,
then the probability, theoretically, will reach just 0.5. Therefore, if the accuracy
is higher, then it is already better. A satisfactory level is usually 0.7. Excellent –
0.9. But there are problems where 0.9999 may not be enough, especially in Data
Science competitions in Kaggle. If the accuracy is less than 0.5, then this is un-
acceptable!

On Fig. 4.10 one of the best models in terms of accuracy on test data is
Ridge(alpha=0.1), at least on the first (0.85) and last (0.9) datasets.

4.4.2 Logistic Regression
Logistic Regression is a statistical regression method based on the logistic

function, which is used to predict the target in the case when the input varia-
bles are categorical, that is, they can acquire a fixed number of values
(2–10, rarely more). It is used only for classification tasks (Fig. 4.11).

Figure 4.11 – Logistic regression from the notebook

As can be seen from the plot in Fig. 4.11 and from notebook, the probabil-

ity of a given class model.predict_proba(x_values) is calculated for the input
values. It is displayed on the graph in red, and then, according to simple condi-
tions, it is assigned to a certain class. The most common option is 1 if bigger
than 0.5, and – 0 otherwise (as in Fig. 4.11). It is important to realize that
LogisticRegression can apply this rule to a large number of features at the same
time, and for multi-class problems, when there are more than 2 classes. The
main thing is that there are not too many of these classes, as a rule, no more than
10-20.

https://www.kaggle.com/code/vbmokin/tutorial-linear-and-logistic-regression
https://www.kaggle.com/code/vbmokin/tutorial-linear-and-logistic-regression

94

It can be used both for features with integers (classification task) and frac-
tional numbers (regression task), without changing the name:

name_package = linear_model
name_model(model_params) = LogisticRegression (penalty='l2', *, du-

al=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver='lbfgs', max_iter=100, mul-
ti_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

Most often, the same parameters are changed as for the models of Ridge
regression and Lasso regression (see above), but instead of alpha: C is the in-
verse of the regularization force (positive float): the lower the values, the
stronger the regularization, i.e. the stronger the constraints of the – coeffi-
cients.

Mathematically, this model allows you to compute the probability of each
class for the input and then select the option with the highest probability P. For
example, for binary targeting, the probability of class 1 () for one feature

 is calculated using the formula.

, (4.7)

where is the feature importance factor , and is shift.

The result is -coefficients of the model, which reflect the importance of
the relevant features and the value of the shift for analysis by FE methods.

Fig. 4.12 shows an example of prediction of 5 different datasets by lo-
gistic regression with different parameters.

Figure 4.12 – Classification of data from 5 different datasets by Logistic

regression with different parameters (in the lower right corner – accuracy_score
for test (validation) data, test data are spaces circled in black) [19]

95

On Fig. 4.12 one of the best models in terms of accuracy on test data is
LogisticRegression(L1, C=1). It is the best on the first (0.85), third (0.6) and
fourth (0.95) datasets. In second (0.8) and fifth (0.85) it ranks second. In addi-
tion, it can be seen that regularization and the choice of metric (L1 or L2) gives
different results. The first dataset is invariant to parameter changes, the second
dataset is the choice of L2 regularization with stronger regularization (lower C
values) increases accuracy. On the third, L1 gives better accuracy, but still low
(0.6). In fourth, both L1 and L2 are better. On the 5th, a good accuracy of 0.9 is
provided by L2 with stronger regularization (C=0.1) and the solver='liblinear'
optimization method (see the "lin" parameter on the graph). Conclusion: there is
no universal advice, in each case you need to carry out individual diligent tuning
of the model.

4.5 SGD, SVM, k-NN, GP, NB models

4.5.1 Stochastic Gradient Descent

Stochastic Gradient Descent is an iterative method for optimizing gradient

descent using stochastic approximation. It is used to speed up the search for a
target by using a limited sample (batch) of training data, which is selected ran-
domly at each iteration. It can be considered as a stochastic approximation to the
gradient descent optimization method, the actual gradient for the entire training
dataset is replaced by its score (Fig. 4.13). The method significantly reduces the
volume computing, allows to work with big data when data is loaded in batches.

Figure 4.13 – Illustration of the Stochastic Gradient Descent method
from the article

https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D1%96%D1%81%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%96%D1%8F
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

96

name_package = linear_model
name_model(model_params):
- SGDClassifier(loss='hinge', *, penalty='l2', alpha=0.0001,

l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True,
verbose=0, epsilon=0.1, n_jobs=None, random_state=None, learn-
ing_rate='optimal', eta0=0.0, power_t=0.5, early_stopping=False, valida-
tion_fraction=0.1, n_iter_no_change=5, class_weight=None,
warm_start=False, average=False);

- SGDRegressor(loss='squared_error', *, penalty='l2', alpha=0.0001,
l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True,
verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling',
eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1,
n_iter_no_change=5, warm_start=False, average=False).

The main popular parameter that is varied to improve accuracy, in addi-

tion to the above-mentioned tol, alpha, max_iter, is learning_rate – the speed of
learning at each epoch (iteration).

An example of predicting 5 different datasets will be in the next para-
graph, along with other methods.

4.5.2 Support Vector Machine
Support Vector Machine is a method of data analysis using a model that

assigns new data to one or another category (class, cluster) by drawing the wid-
est "corridor" between support vectors, which are the "walls" of neighboring
classes in multidimensional space, and then assigns the data to each of these
classes (Figure 4.14).

Figure 4.14 – Illustration of drawing a "corridor" between support vectors
("walls" of this "corridor") in the method of support vectors for a two-

dimensional plane in the case of two input features

https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D0%B8%D1%85_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D1%96%D0%B2

97

To complicate the algorithm, a preliminary nonlinear transformation of
data is carried out using one of the types of kernels (Fig. 4.15). In addition to
those shown in Fig. 4.15, kernels can also be: "sigmoid", "precomputed".

a) b) c) d)

Figure 4.15 – Types of kernels of the Support Vector Method
with illustrations of their application from documentation: a) the linear core of
the "linear" of the SVC method; b) the linear core of the LinearSVC method; c)

"rbf" (radial basis functions); d) 3rd-order polynomial kernel "poly"

The type of kernel is a hyper parameter.
The LinearSVC method is similar to SVC(kernel="linear"), but uses a

slightly different model and works better for larger datasets.

name_package = svm
name_model(model_params):
- Classifiers:
- SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0,

shrinking=True, probability=False, tol=0.001, cache_size=200,
class_weight=None, verbose=False, max_iter=-1, deci-
sion_function_shape='ovr', break_ties=False, random_state=None);

- LinearSVC(penalty='l2', loss='squared_hinge', *, dual='warn',
tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None, max_iter=1000).

- Regressors:
- SVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001,

C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False,
max_iter=-1);

- LinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0,
loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1.0, du-
al='warn', verbose=0, random_state=None, max_iter=1000).

The main parameter that is varied to improve accuracy, in addition to the
above-mentioned tol, C, max_iter, in the SVC and SVR models is kernel.

Fig. 4.16 shows an example of prediction of 5 different datasets by the
Stochastic Gradient Method and the Support Vector Method with different pa-
rameters.

https://scikit-learn.org/stable/modules/svm.html#classification

98

Figure 4.16 – Classification of data from 5 different datasets using
the Stochastic Gradient Method (SGD) and the Support Vector Method (SVC)
with different parameters (in the lower right corner – accuracy_score for test

(validation) data, test data are spaces circled in black) [19]

As shown in Figure 4.16, increasing regularization (larger alpha) for the

Stochastic Gradient (SGD) model increases accuracy on the first 3 datasets. For
the SVC model, the "RBF" kernel provides the highest accuracy for all datasets
except for the second one, where the "linear" kernel is the best. Increasing regu-
larization (less than C) for the LinearSVC model increases accuracy on the last 2
datasets. In general, the best in terms of accuracy on test data are:

- on the first dataset (0.9): SVC with the kernel "RBF";
- on the second dataset (0.85): SGD (alpha=0.1), SVC with the kernel

"linear";
- on the third dataset (0.65): SVC with the "RBF" core;
- on the fourth dataset (0.95): LinearSVC (C=0.1);
- on the fifth dataset (0.9): SGD (alpha=10-4), SVC with the kernel

"RBF".
So, the best in this example may be considered SVC with the kernel

"RBF" and LinearSVC (C=0.1).

4.5.3 K-nearest neighbor method
K-nearest neighbor method (KNN) is a simple non-parametric classifica-

tion method, where objects with the shortest distance are selected to classify ob-
jects in the multidimensional feature space, they are allocated to a separate class.
Objects of different classes are analyzed at a given distance k and the object is
attributed to the one that is the most numerous among them.

99

Fig. 4.17 provides an example that explains the essence of the method.
The test sample (green circle) should be classified as either blue squares or red
triangles. If k = 3 (circle of a solid line), then it belongs to red triangles because
there are 2 triangles inside the inner circle and only 1 square. If k = 5 (dashed
line circle), then it is referred to as blue squares (3 squares versus 2 triangles in-
side the outer circle).

Figure 4.17 – Illustration to explain the principle of operation of
the k-nearest neighbor method

Fig. 4.18 shows examples of how the method works.

a) b)

Figure 4.18 – Examples of k-nearest neighbor method:
a) example1; b) example2

name_package = neighbors
name_model: KNeighborsClassifier, KNeighborsRegressor
model_params (n_neighbors=5, *, weights='uniform', algorithm='auto',

leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)

https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_k-%D0%BD%D0%B0%D0%B9%D0%B1%D0%BB%D0%B8%D0%B6%D1%87%D0%B8%D1%85_%D1%81%D1%83%D1%81%D1%96%D0%B4%D1%96%D0%B2
https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_k-%D0%BD%D0%B0%D0%B9%D0%B1%D0%BB%D0%B8%D0%B6%D1%87%D0%B8%D1%85_%D1%81%D1%83%D1%81%D1%96%D0%B4%D1%96%D0%B2
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/

100

For the classifier and the regressor, the parameters are the same, except
for the first one, which specifies the "neighbors" and it is the one that needs to
be configured for the model, first of all:

- For the classifier: n_neighbors – positive natural int;
- For a regressor: radiusis – the radius in which you need to look for

"neighbors" – positive float.
The weights parameter allows you to set different weights for points, de-

pending on the distance to the specified one.
It has advantages and disadvantages, as in clustering methods, since their

principles of operation are similar. It is effective for data in the field of econom-
ics when there are many different factors that are poorly tracked, and there may
not be a single adequate model. You just need to cluster the data, and then make
predictions using the same algorithm.

This model does not have a random_state parameter.
An example of predicting 5 different datasets will be in one of the follow-

ing paragraphs, along with other methods.

4.5.4 Forecasting methods based on the Gaussian process
Forecasting methods based on the Gaussian process predict not the values

of the data themselves, but their probabilistic characteristics (average value and
mean square deviation). The prediction is probabilistic, and therefore empirical
confidence intervals can be easily calculated (Figure 4.19).

Figure 4.19 – An example of a prediction method based on the Gaussian process
with documentation

https://scikit-learn.org/stable/modules/gaussian_process.html#gaussian-process

101

You can specify kernels for additional data transformation. The method

works with all data at once, so it is not suitable for big data.

name_package = gaussian_process
name_model(model_params):
- GaussianProcessClassifier(kernel=None, *, optimizer='fmin_l_bfgs_b',

n_restarts_optimizer=0, max_iter_predict=100, warm_start=False,
copy_X_train=True, random_state=None, multi_class='one_vs_rest',
n_jobs=None);

- GaussianProcessRegressor(kernel=None, *, alpha=1e-10, optimiz-
er='fmin_l_bfgs_b', n_restarts_optimizer=0, normalize_y=False,
copy_X_train=True, n_targets=None, random_state=None).

The main popular parameter, which is varied to improve accuracy, is the

kernel – (RBF, ConstantKernel, DotProduct, ExpSineSquared, Matern, possible
combinations of ConstantKernel and DotProduct), which defines the covariance
function of Gaussian processes.

An example of predicting 5 different datasets will be in the next para-
graph, along with other methods.

4.5.5 Naive Bayes model
Naïve Bayes Classifier is a probabilistic classifier that uses Bayes' theo-

rem to determine the probability of data belonging to one of the classes, usingthe
"naive" hypothesis about the statistical independence of features (Fig. 4.20).

Figure 4.20 – Example of work of the "naive" Bayes model

The method has high speed, minimal memory usage and can give results
when other methods simply cannot run. However, it is effective only if the hy-
pothesis about the independence of features is really similar to the true one. At
the first stage of the development of spam filtering algorithms, it was this meth-
od that gave good results, and then spammers learned to add useful text to the
title and content, and this method ceased to be effective.

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html

102

name_package = naive_bayes
name_model(model_params): GaussianNB(*, priors=None,

var_smoothing=1e-09).

The method can be run without parameters: GaussianNB(). Interestingly,

this model does not even have a random_state parameter .
 Figure 4.21 shows an example of prediction of 5 different datasets by the

k-nearest neighbor method, a classifier based on Gaussian processes, and a naive
Bayesian classifier with different parameters.

Figure 4.21 – Classification of data from 5 different datasets
 using the k-nearest neighbor method (KNeighbors), a classifier based on Gauss-
ian processes (GPC) and a naïve Bayesian classifier (GaussianNB) (in the lower
right corner – accuracy_score for test (validation) data, test data are spaces cir-

cled in black) [19]

As shown in Fig. 4.21, the smaller the k in the k-nearest neighbors method

(KNeighbors), the higher the precision, which is quite expected. In fact, bigger
k is an analogy of a higher level of regularization. And for the second dataset, it
works, because the best model is KNeighbors with k=10.

In the GPC classifier, the best results are provided by the Matern core.
A model based on a naive Bayesian classifier is not the best on any da-

taset.
So, the best in this example are KNeighbors with k=3 and 10 and GPC

with the Matern kernel.

103

4.6 Decision Trees. Comparative analysis of models on an example

4.6.1 Decision Trees
Decision Tree in Machine Learning is a structured decision-making model

based on branching conditions if... then... else, which looks like a "tree" and is
made up of nodes, branches, and leaves. Each node is a solution for a specific
subset of data, the branches indicate the direction to be taken to reach the new
node or the final result in the form of leaves. Usually, you specify the maximum
amount of data that can be in a leaf. This sets the condition by which the nodes
differ from the leaves.

Decision trees are handy for understanding patterns, for visualizing a solu-
tion that is easy to understand. To avoid overtraining, conditions of the “prun-
ing” are set for trees. Theoretically, a tree with a depth of n would have 2n
leaves. For example, if the depth is 6, then it would be 64 leaves. And then one
of two "cropping" options is specified: or at a depth of 6 require, so that there is
no more, for example 40 < 64 leaves, or if the number of leaves is 64, it is re-
quired that the maximum depth does not exceed, for example, 8 > 6. And then
the algorithm is forced to build a "pruned" tree, which will be much more gener-
alized than an "unpruned" one. Model parameters:

name_package = tree
name_model(model_params):
- DecisionTreeClassifier(*, criterion='gini', splitter='best',

max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None,
ccp_alpha=0.0),

- DecisionTreeRegressor(*, criterion='squared_error', splitter='best',
max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0)

The parameters of the classifier model and the regressor differ only

inthemetric (criterion):
- Classifier: {"gini", "entropy", "log_loss"};
- Regressor: {"squared_error", "friedman_mse", "absolute_error", "pois-

son"}.
The developers of the model strongly recommend specifying the parame-

ter max_depth as some kind of integer, starting from 2.
The main advantage of a decision tree is good interpretability. There is a

method of mapping the decision tree as a tree with all the conditions, and then it
can be replaced by a sequence of conditions if ... then… else. This technique
was used by one of the authors of the manual during the Kaggle competition to
predict the survivors of the Titanic ("Titanic - Machine Learning from Disas-

https://www.kaggle.com/competitions/titanic

104

ter"), in its public notebook "Titanic – Top score : one line of the prediction
(Figure 4.22).

a)

b)

Figure 4.22 – Visualization of the decision tree for the competition "Titanic -
Machine Learning from Disaster" with parameters max_depth=3,

min_samples_leaf=2: a) code for visualization of the model decision tree using
the Graphviz library; b) the result of running the code

Fig. 4.22, b presents clearly visible branches, nodes and leaves. Nodes are
rectangles into which an arrow enters and from which 2 arrows come out. The
arrow only enters the leaves. The color of the rectangle corresponds to the
"class" (0 or 1 – the person did not survive or survived, respectively). Color sat-
uration is inversely proportional to the value of the "gini" criterion (the closer it
is to 0, the more "pure" it is, that is, it contains data of only one class).

 Fig. 4.22 is a classic decision tree visualization. As you can see, it
"grows" in depth, not in height, and therefore its depth max_depth, not height, is
limited in the parameters. Although, by analogy with biology, the first vertex is
called root. This may be unusual for biologists, but that's quite common for ma-
chine learning. Probably, the reason lies in the features of visualization. As a
rule, on computers, the first point on the screen is at the top left. In the case of
showing the course of "growth" of the tree in the cycle, it is advisable to start
from top to bottom. Therefore, everyone is used to the fact that it "grows"

https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/code/vbmokin/titanic-top-score-one-line-of-the-prediction
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic

105

downwards, although, in most cases, the tree is first calculated programmatically
and mathematically, and then visualized, and this problem would no longer ex-
ist, but everyone is used to this approach.

The convenience of decision tree interpretability lies in the fact that it can
be simply "read": if ..., then..., and then, if ..., then... And so on until the end.
And then the whole tree can be replaced with one condition, which will be the
solution to the problem. And so it was done in the notebook "Titanic – Top
score : one line of the prediction (2019) (Figure 4.23). Of course, this solution is
preceded by the FE stage, where new features are synthesized that give such a
beautiful and simple solution. This solution gives an accuracy of 0.80383, which
as of April 2024 gives a level of "Top4%" (place 540 out of 15.5 thousand
teams, although, in fact, higher, since a large part of the teams have an accuracy
of 1.0, uploading answers known from the history of the Titanic, contrary to the
rules of the competition).

Figure 4.23 – One line of code for predicting test data in the problem ("Titanic -
Machine Learning from Disaster", which corresponds to the decision tree in
Fig. 4.22,b and gives an accuracy of the "Top4%" level of the competition

The construction of decision trees is based on Shannon's information theo-
ry and probability theory, which is well described in the article and in the docu-
mentation.

Fig. 4.24 shows an example of predicting 5 different datasets by decision
trees with different parameters.

 As is shown in Fig. 4.20, the metric "log_loss" is clearly better suited to
the binary classification problem than the metric "gini". A minimum number of
samples per leaf is a way to regularize the model, but results in degraded accu-
racy (however, for larger datasets, this can have the opposite effect). Increasing
the maximum depth of the decision tree allows for increased accuracy, except
for the second dataset, where it leads to overtraining.

So, the best models in Fig. 4.24 are "DT(d=3, gini, s=1)" (first place on
the first, second and fifth datasets) and "DT(d=8, log_loss, s=2)" (first place on
all but the second).

https://www.kaggle.com/code/vbmokin/titanic-top-score-one-line-of-the-prediction
https://www.kaggle.com/code/vbmokin/titanic-top-score-one-line-of-the-prediction
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic
https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-3-classification-decision-trees-and-k-nearest-neighbors-8613c6b6d2cd
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation

106

Figure 4.24 – Classification of data from 5 different datasets by decision trees
with different parameters: maximum depth (d), "gini" or "log_loss" metric, min-

imum number of samples per leaflet (s) (in the lower right corner – accura-
cy_score for test (validation) data, test data are spaces circled in black) [19]

4.6.2 Comparative analysis of models on an example
Fig. 4.25 shows an example of prediction of 5 different datasets

by the 9 best models of subsections 4.4-4.6.

Figure 4.25 – Classification of data from 5 different datasets by 9 models
 (in the lower right corner – accuracy_score for test (validation) data, test data

are circles outlined in black) [19]

107

As can be seen from Fig. 4.25, the best in terms of accuracy on test data
are:

- on the first dataset (0.95): KNeighbors with k=3 and 10, GPC with the
"Matern" core and DT(d=8, log_loss, s=2);

- on the second dataset (0.85): Ridge(alpha=0.1), KNeighbors with k=3;
- on the third dataset (0.75): KNeighbors with k=3, GPC with the core

"Matern", DT(d=8, log_loss, s=2);
- on the fourth dataset (1,0): DT(d=8, log_loss, s=2);
- on the fifth dataset (0,9): SVC with the kernel "RBF", KNeighbors with

k=3, GPC with the kernel "Matern", DT(d=3, gini, s=1), DT(d=8, log_loss, s=2).
So, the best in this example are KNeighbors with k=3, GPC with the Ma-

tern kernel, and DT(d=8, log_loss, s=2).
Let's take a closer look at them.

4.7 Randomized ensembles of trees: Random Forest and others

Some of the most common classes of machine learning models that pro-
duce good results based on the same type of model are ensembles of randomized
decision trees. In them, subsets of features are randomly (randomly) selected
and trees are built for each combination, and then generalized in a certain way.
The most famous among them are the following ensembles:

- RandomForest (RF) – in the classification problem (RandomForestClas-
sifier),the best prediction is determined by voting on the predictions of trees in
the ensemble, and in the regression problem (RandomForestRegression) – by
average in the values;

- ExtraTrees (ET) – analyzes a number of randomized decision trees (extra
(very) randomized) on different subsets of the dataset and uses averaging to im-
prove prediction accuracy;

- IsolationForest is good at detecting anomalous values when building a
forest of trees.

For most tasks, RandomForest presents the best results, although in reality
they are rarely the best. ExtraTrees sometimes gives even better solutions, but,
in most cases, is prone to significant overtraining.

Fig. 4.26 shows an example of prediction of 5 different datasets by the
RandomForest model with different parameters.

As shown in Fig. 4.26, the increase in the number of decision trees in en-
semble n is expected to increase accuracy. Similarly, there is a greater maximum
depth d, with the exception of the second and third datasets, on which overtrain-
ing is observed. An increase in the number of samples in leaf (s), i.e., greater
regularization, succeeds just on the second dataset. Also, on the second dataset,
the accuracy increases if the number of decision trees in the ensemble is in-
creased by 10 times.

So, in Fig. 4.26 The best models are "RF(d=8, n=1000)" (1st place on da-
tasets 1, 4, 5), "RF(d=5, s=5)" (1st place on datasets 2, 3, 5).

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

108

Figure 4.26 – Classification of data of 5 different datasets by the RandomForest
model with different parameters: maximum depth (d), number of decision trees

in the ensemble (n), minimum number of samples in a leaf (s), metric every-
where – "log_loss" (in the lower right corner – accuracy_score for test (valida-

tion) data, test data are circles outlined in black) [20]

4.8 Boosting models

Data boosting is a method of machine learning of an ensemble of weak

base models, which consists in the fact that models are built sequentially in such
a way that each corrects the errors of the previous one. This principle is well il-
lustrated by Fig. 4.27.

 (a) b) c) d)
Figure 4.27 – Illustration of the boosting (AdaBoost) of 3 decision trees: a) the

first iteration, b) the second, c) the third; d) the answer is the
consolidation of results

https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81

109

As can be seen from Fig. 4.27, the task is to distinguish blue "-" and red
"+" (classification problem). The first model (it can also be a decision tree with
max_depth=1, i.e., the usual condition "if... then… else") divides the data into 2
classes. Next, errors are analyzed (they are also called outliers in this context);
In the lower figure (Fig. 4.27, a) they are circled with ellipses. The following
model tries, first of all, to classify this data circled by an ellipse. At the same
time, new errors are generated and analyzed (see circled by an ellipse in the
lower figure (Fig. 4.27, b), the third iteration is performed in the same way (Fig.
4.27, c). And then, if it is decided that there are enough iterations, the models
from all 3 iterations are consolidated and the final decision is obtained. In Fig.
4.27, d the accuracy (accuracy_score) on training data reaches 100%. Normally,
there are more features and elements, they are more mixed, and therefore power-
ful methods and many different technologies and thousands of iterations are
used.

Among the most well-known boosting models are:
- AdaBoost (AdaptiveBoosting) (see Fig. 4.27);
- Gradient Boosting Machines (GBM) or simply "GradientBoosting";
- XGBoost (eXtremeGradientBoosting) from Google;
- Microsoft's LightGBM is another fast and efficient library for gradient

boosting. It uses a special algorithm to optimize calculations and supports cate-
gorical features.

The most effective XGBoost and LightGBM are the main competitors for
data prediction and tend to perform better than the Sklearn library models, but
they contain a lot of parameters and you need to be able to configure them. In
addition, these two models have the ability to work with categorical and textual
features directly, without over-processing, which improves accuracy compared
to Sklearn models, which still require re-processing, which often leads to the
loss of valuable information.

Sklearn's library models tend to be quicker and easier to set up, but well-
tuned XGBoost and LightGBM are more accurate.

The XGBoost and LightGBM models require the data to be pre-
transformed into a special format using xgb methods. DMatrix and lgbm. Da-
taset, respectively. An example of such a transformation is given in notebook.

XGBoost models are considered to be more accurate than LightGBM-
based models, but, in practice, it is much more difficult to find the same combi-
nation of parameters that will prove this claim. LightGBM-based models are
easier and faster to set up than XGBoost-based models, and therefore are used
more often.

There are even faster and simpler variants of XGBClassifier, XGBRegres-
sor, LGBMClassifier, LGBMRegressor, which do not require preliminary data
transformation and are used as regular Sklearn models, but they do not always
work or give an acceptable result.

To avoid overtraining XGBoost models, developers strongly recommend
setting the parameter max_depth (maximum depth of the decision tree), and for

https://www.kaggle.com/code/vbmokin/merging-fe-prediction-xgb-lgb-logr-linr

110

LightGBM – num_leaves (maximum number of leaves (nodes)). It is also im-
portant to correctly specify the metric of these models. Fig. 4.28 shows an ex-
ample of XGBoost documentation on this subject, but this list is several pages
long.

Figure 4.28 – Several variants of the metric parameter "objective" in the
XGBoost model

A similar few pages for metric variants in LightGBM are in Fig. 4.29.

Figure 4.29 – Part of the metric variants for the "objective" parameter
in the LightGBM model

https://xgboost.readthedocs.io/en/latest/parameter.html#learning-task-parameters
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric

111

Fig. 4.30 shows an example of prediction for 5 different datasets by boost-
ing models with different parameters.

Figure 4.30 – Classification of data from 5 different datasets by boosting
models: AdaBoostClassifier (AB), XGBoostClassifier (XGB),

GradientBoostingClassifier (GBC) with different parameters: maximum
depth (d), number of decision trees in the ensemble (n), learning rate (lr) (in the
lower right corner – accuracy_score for test (validation) data, test data are cir-

cles outlined in black) [20]

As can be seen from Fig. 4.30, increasing the number of decision trees n
in the AdaBoostClassifier ensemble increases accuracy as expected. Similarly,
greater maximum depth d in the XGBoostClassifier model and lower lr learning
rate in the GradientBoostingClassifier and AdaBoostClassifier models.

So, in Fig. 4.30 the best models are "AB(n=200,lr=.1)" (1st place on da-
tasets 1, 2, 5), "XGB(d=8)" (1st place on datasets 1, 3, 4) and
"GBC(n=100,lr=.1)" (1st place on datasets 1, 2, 3).

In the XGBoost model for the 5th dataset, some combinations of parame-
ters give an error, so its graphs in Fig. 4.30 are not given. It is better to try to use
the original xgb method for this dataset, rather than the simplified version of
XGBClassifier. It was noted above that the last one does not always work or
gives acceptable accuracy.

112

4.9 Ensembles of models. Comparative analysis of model ensembles
on an example

The sklearn library provides good opportunities both for using the most

common ensemble models of decision trees, and for building your own ensem-
bles from any models.

There are a number of models (let's call them aggregators) in the
sklearn.ensemble library that allow you to form ensembles from other sklearn
library models. All of them have a special parameter estimator or estimators for
this. These models are as follows:

- Bagging (Bootstrap aggregating) – trains a model of one type (estima-
tor, by default it is a decision tree) based on subsets of data, and then aggregates
their predictions (for classifiers – voting, for regressors – averaging); in fact,
RandomForest and ExtraTrees are also decision tree bagging, but, unlike these
models, the Bagging aggregator can work with other types of evaluation mod-
els;

- Stacking – training several estimator models defined in the form of a list
of estimators and using their predictions as input data for the main fi-
nal_estimator estimator model (it is also called a meta-classifier or meta-
regressor, depending on the type of task);

- Voting – training several estimator models defined in the form of a list
of estimators and aggregating their predictions by voting in one of two ways,
depending on the voting parameter:

- hard voting (voting = "hard"), when the class that provides for the
majority of models is chosen element-by-element (as a weighted average with
the same weights) – this is effective when the models are quite diverse;

- soft voting (voting = "soft"), when the weight of votes depends on
the model's confidence in its prediction: the final class is chosen based on the
sum of probabilities for each class, i.e. the one with the largest sum and is effec-
tive when the models are comparable in accuracy.

The n_jobs parameter of the Voting aggregator allows you to implement
parallelization of calculations, which can significantly speed them up. In the
weights parameter, you can specify an array of weights for each model's predic-
tions, and then these weights will be taken into account during the vote (works
for both voting values). This is effective when some models are more confident
than others.

A variant of ensemble formation for a regression problem using Vot-
ingRegressor(voting ="hard"), where weights is given as an array of weights, is
often replaced by the usual weighted average. See for example, a notebook
with 4 models in a competition with the prediction of the survivors of the Titan-
ic.

https://www.kaggle.com/code/vbmokin/merging-fe-prediction-xgb-lgb-logr-linr

113

Fig. 4.31 shows an example of prediction for 5 different datasets by en-
sembles selected in subsections 4.8 and 4.9 of the best models:

- Decision tree bagging ("Bagging(DT)");
- Bagging RandomForest models ("Bagging(RF)");
- Staking based on predictions using the method of support vectors, Ridge

and logistic regression with the final classifier RandomForest
("Stack(SVC,RD,LgR) RF");

- Stacking based on predictions by a decision tree, a model based on
Gaussian processes and a model based ont he k-nearest neighbor method with
the final classifier RandomForest ("Stack(DT,GP,KN) RF");

- Ensemble based on soft voting between
RandomForest predictions, a model based on Gaussian processes, and a model
based on the k-nearest neighbor method ("Voting(RF,GP,KN,soft)");

- An ensemble based on hard voting between RandomForest predictions, a
model based on Gaussian processes, and a model based on the k-nearest neigh-
bor method ("Voting(RF,GP,KN,hard)").

Figure 4.31 – Classification of data of 5 different datasets by ensembles of
models: bagging, stacking and prediction voting with different combinations of
models and parameters (in the lower right corner – accuracy_score for test (vali-

dation) data, test data are circles outlined in black) [20]

As shown in Fig. 4.31, using simple DT decision trees instead of random

RF forests during bagging degrades accuracy for all but the first dataset. The
best results are given by the ensemble based on a hard vote on the predictions of
the models.

114

So, in Fig. 4.31 the best models are "Bagging(RF)" (1st place on datasets
2, 4, 5), "Voting(RF,GP,KN,hard)" (1st place on ALL datasets), the staking
models are obviously overfitted.

For other types of models, see the Sklearn documentation (Fig. 4.32).

 (a) b)

Figure 4.32 – Sklearn Library Machine Learning Models:

a) classifiers; b) regressors

Notebook [20, Chapter 5] lists the best of the best models built in subsec-

tions 4.4-4.9 for each of the given 5 datasets according to the accuracy_score
metric. Models with overtraining risk, in which the difference between the error
on training and test data exceeds 0.1, are filtered out. Fig. 4.33 shows the predic-
tion results of the 4 best models for each dataset. As for the first dataset (No. 0),
GPC, GBC, DT, AB models have the same accuracy.

It is important to remember that this is just an example of building models
and analyzing them. The conclusions drawn from them cannot be extended to all
other similar tasks. Each task requires its own analysis using the tuning methods
from section 4.3.

https://scikit-learn.org/stable/

115

Figure 4.33 – Results of prediction by the best data models of 5 different da-
tasets [20]

Figure 4.34 shows an infographics of the tools mentioned in subsections

4.4-4.9 in the S(I) coordinate system.

Figure 4.34 – Infographics of machine learning models and their ensembles (ex-

cluding neural networks)

116

4.10 Neural Network (NN) training and analyzing its accuracy. Deep
Learning (DL) Concepts

A neural network in machine learning is a layer of neurons and connec-

tions between them. A neuron is a function with many inputs and one output, the
value of which is formed depending on the function of activating the neuron. As
soon as the output of this function crosses a certain threshold, the output is 1,
otherwise 0. Connections are channels through which neurons send meaning to
each other. Each connection has its own weight – a parameter by which the val-
ue in the channel is multiplied (Fig. 4.35). It is the adjustment of these weights
(but not only them) that is carried out during the tuning (tuning) of the neural
network.

Figure 4.35 – Illustration of the operation of one neuron of a neural network

in machine learning

Layers are formed from neurons. Within a layer, they are not related, but
are related to the previous and next layers (Fig. 4.36).

Figure 4.36 – Neural network with 4 layers, in particular with 2 hidden

The input data matrix (usually a 4-dimensional matrix, which is called a
"tensor" in machine learning) goes to the first layer. The data is directed from
left to right. Therefore, one of the most common libraries for working with neu-
ral layers is called TensorFlow. Google acquired TensorFlow and integrated it

117

into the Keras library, so now it is enough to work only with the latter. Its main
competitor is PyTorch. Professionals, as a rule, use PyTorch, and for educational
purposes, it is better to master Keras, so it is also easier and faster.

Usually, the user "sees" (can programmatically send signals or read them)
only inputs and outputs, and the values in the nodes of the neural network are
hidden from him, so such layers are called hidden. If the number of hidden lay-
ers of the neural network is greater than 1, then this is "Deep Learning" (DL).

Activation function ("excitation function" or "squashing function", "trans-
fer function") of an artificial neuron is the dependence of the output signal of an
artificial neuron on the input signal. Typically, this function displays real num-
bers in the interval [0, 1] or [-1, 1]. The most popular types of neural network
activation functions are shown in Fig. 4.37. There is an even larger list of
"Activation Functions", which is constantly updated from published articles, is
available at the link (as of April 2024, the list has 73 functions).

Figure 4.37 – The Most Popular Activation Functions of Neural Networks

https://paperswithcode.com/methods/category/activation-functions
https://www.linkedin.com/posts/danleedata_which-activation-function-do-you-use-often-activity-7124783582253846528-3MMa/

118

In all hidden layers, ReLU is the most popular, and in the source layer,
especially for classification tasks, sigmoid (if all target values are positive) or
hyperbolic tangent (if there are negative values) is used.

Implementation of a simple neural network from Fig. 4.36 using the Keras
library (TF) looks quite concise (Fig. 4.38).

Figure 4.38 – Implementation of the neural network from Fig. 4.36 in Keras

(TF) from notebook

Similar code in PyTorch will look much larger (Figure 4.39).

Figure 4.39 – Implementation of the neural network from Fig. 4.36 in PyTorch

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545

119

Each stage of neural network training is called an epoch (Figure 4.40).

Figure 4.40 – Fragment of an example of intermediate results
of neural network training from a notebook

It is more efficient to use the variable step learning_rate (abbreviated: lr).

The code from Fig. 4.38 with variable pitch is shown in Fig. 4.41.

Figure 4.41 – Neural network code from Fig. 4.36
in the Keras framework with variable pitch from notebook

Fig. 4.41 illustrates the ReduceLROnPlateau command, which monitors

the change monitor="val_loss" against the MSE metric ("val_mse") and, if its
value does not change within patience=3 steps, then the lr value is multiplied
by factor=0.5, i.e. halved. This will continue until the lr value decreases to
min_lr=0.0001, and then stop decreasing. Fig. 4.42 shows an example of a vari-
able step learning curve lr.

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545

120

Figure 4.42 – Training a neural network with the architecture from Fig. 4.40
Variable Pitch LR from the notebook

To increase the generalization capacity of the neural network and reduce

the risk of overtraining, the Dropout operation with a parameter from 0.1 to 0.4
can be used between its layers. This means that between 10% and 40% of neu-
rons are randomly shut down during model weight training to increase its gener-
alizing properties (Fig. 4.43).

Figure 4.43 – Illustration of the Dropout operation to disable part
of the neurons when training a neural network from a notebook

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/kanncaa1/convolutional-neural-network-cnn-tutorial/notebook

121

Fig. 4.44 shows a fragment of adding a Dropout to the code from Fig.
4.41.

Figure 4.44 – Adding Dropout for 20% of neurons to the code from Fig. 4.41 in
notebook

The learning curve of a neural network with Dropout from Fig. 4.44 is

shown in Fig. 4.45.

Figure 4.45 – Training a neural network with Dropout in the code from Fig.
4.44, which is added to the code from Fig. 4.41 in Notebook

As can be seen from Fig. 4.45, Dropout introduces significant noise into

the learning process. It is more efficient in large amounts of data and in neural
networks of complex architecture, which have a high risk of overtraining.

To analyze the process of learning a neural network online, there is a spe-
cial service called TensorBoard. Callbacks (https://keras.io/callbacks/) are added
to the code and what exactly needs to be tracked is specified (Fig. 4.46).

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://keras.io/callbacks/

122

Figure 4.46 – An example of visualization of the current results of neural net-
work training in the browser in online mode from TensorFlow documentation

Sometimes it is quite effective to use the model of a multilayer perceptron

(neural network) from the Sklearn library: MLP ("Multi-layer Perceptron")

name_package = neural_network
name_model(model_params):

- Classifier:
- MLPClassifi-

er(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.000
1, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power
_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose
=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early
_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsi-
lon=1e-08, n_iter_no_change=10, max_fun=15000);

- Regressor:
- MLPRegressor(hidden_layer_sizes=(100,), activation='relu', *, solv-

er='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learn-
ing_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, ran-
dom_state=None, tol=0.0001, verbose=False, warm_start=False, momen-
tum=0.9, nesterovs_momentum=True, early_stopping=False, valida-

https://www.tensorflow.org/guide/summaries_and_tensorboard

123

tion_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no-
change=10, max fun=15000).

The main parameters of the MLP model, which vary to improve accuracy,

are the number of hidden layers hidden_layer_sizes and the type of activation
function ("identity", "logistic", "tanh", "relu").

Fig. 4.47 shows the learning results of the 4 models described in this sub-
section in the author's notebook.

Figure 4.47 – Result of training 4 models in notebook

As can be seen from Fig. 4.47, the best on the validation dataset is the

Sklearn MLPRegressor model, although the neural network built on the basis of
the TensorFlow library with Keras, which uses Dropout, achieved higher accu-
racy on training data. Note that the notebook is not representative, since the
models are built on a very small sample (hundreds of data), as for a regression
problem. For good conclusions and high accuracy of neural networks, millions
of data are needed!

Figure 4.48 shows an infographics of the tools mentioned in this section
4.10 in the S(I) notation.

Figure 4.48 – Infographics of building and training neural network models

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models

124

Practical exercises
1) There are 2 lists of binary numbers: target and prediction. Construct a

confusion matrix for this task and calculate metrics:
- Precision;
- Recall;
- MSE;
- Accuracy_score.

See Chapter 4 for definitions of these metrics and how to calculate them
in Python.

Example of a manual calculation for the target = [0, 1, 1, 1, 1, 0] and the
prediction = [0, 1, 0, 1, 1, 0] see on the Fig. 4.49-4.53.

Figure 4.49 – Confusion matrix

We draw attention to the fact that the confusion matrix in Fig. 4.49 differs
from the same matrix in Fig. 4.4. There are "Predicted Positive" (1) in the left
column and is "Predicted Negative" (0) in the right one in Fig. 4.4, and on Fig.
4.49 vice versa. Similarly, "Actual Positive" (1) is in the top row, and "Actual
Negative" (0) is in the bottom in Fig. 4.4, and in Fig. 4.49 on the contrary. Fig.
4.4 is taken from the documentation, and Fig. 4.49 is how the matrix is dis-
played by the tools of the Sklearn library (as a rule, lists of values are shown in
ascending order: [0 1]).

Figure 4.50 – Precision calculation

125

Figure 4.51 – Recall calculation

Figure 4.52 – MSE calculation

Figure 4.53 – Accuracy calculation

126

2) Calculate the output of a neuron with the ReLU activation function if

the neuron's input values are u = [u1, u2] and the neuron's weights are
w =[w1, w2]. An example of the solution is shown in Fig. 4.54, 4.55.

Figure 4.54 – Calculation of the output of a neuron with

the activation function ReLU

Figure 4.55 – Calculation of the output of a neuron with

the activation function ReLU and one negative input

127

Possible topics for practical and laboratory tasks

Topic No. 1. Selection of methods and adjustment of machine learning
models for solving problems of analysis and prediction (or "Building an in-
telligent model for predicting data on the state of a complex system and an-
alyzing input data with its help").

The purpose of the lesson is to study information technology and Python
libraries for setting up machine learning models to solve problems of analysis
and prediction and mastering practical skills in applying some of them using the
example of one of the Kaggle datasets or from data uploaded via API.

Lesson plan
1. Find a dataset.
2. Describe the exact statement of the problem and determine whether it is

a classification or regression problem.
3. Select the Python libraries that will be used to build machine learning

models and use them to predict values, for example: Sklearn, Xgboost,
Lightgbm, etc., and specify for what exactly, for which models.

4. Build at least 3 different models.
5. Make an ensemble of models or perform one of the types of generaliza-

tion of their solutions.
6. Provide a table (for the classification task – also confusion matrices)

with the achieved accuracy of models and their ensembles and/or generalized
solutions on training and validation data, provide a graph of the predicted test
data. Infer the best solution and justify it based on comparison and analysis of its
accuracy on training and validation data.

For beginners in this field, it is recommended to take a notebook blank as
a basis: AI-ML-DS Training. L2T: NH4 – Tree Regress models.

It is recommended to listen to the video with comments:
- Classifier Models of Tabular Data on the Example of the Titanic Compe-

tition - AI-ML-DS Training Course
- Tabular Data Regressor Models on the Example of Water Quality Mod-

eling - AI-ML-DS Training Course
- AI Models: Data Processing, Tuning, and Model Accuracy Evaluation -

AI-ML-DS Training Course
- Regressor Decision Trees on the Example of Water Quality Modeling -

AI-ML-DS Training Course
- Real-World Problem Example - Water Quality Simulation - AI-ML-DS

Training Course
Examples of notebooks:
- WQ SB river : EDA and Forecasting
- AI-ML-DS Training. L1T: Titanic – Decision Tree
- AI-ML-DS Training. L2T: NH4 – Tree Regress models
- AI-ML-DS Training. L4AT: Heart Disease prediction
- Heart Disease – Automatic AdvEDA & FE & 20 models

https://www.kaggle.com/vbmokin/ai-ml-ds-training-l2t-nh4-tree-regress-models
https://www.youtube.com/watch?v=WERtPBptOWw&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=8
https://www.youtube.com/watch?v=WERtPBptOWw&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=8
https://www.youtube.com/watch?v=Jg6_bnyo76Q&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=9
https://www.youtube.com/watch?v=Jg6_bnyo76Q&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=9
https://www.youtube.com/watch?v=mfK_a7w_Sd0&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=10
https://www.youtube.com/watch?v=mfK_a7w_Sd0&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=10
https://www.youtube.com/watch?v=cwKzC2ToUm8&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=11
https://www.youtube.com/watch?v=cwKzC2ToUm8&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=11
https://www.youtube.com/watch?v=Tmx17mINvNY&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=13
https://www.youtube.com/watch?v=Tmx17mINvNY&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=13
https://www.kaggle.com/vbmokin/wq-sb-river-eda-and-forecasting
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l1t-titanic-decision-tree
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l2t-nh4-tree-regress-models
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l4at-heart-disease-prediction
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models

128

- Autoselection from 20 classifier models & L_curves
- Biomechanical features - 20 popular models
- Suspended substances prediction in river
- Merging FE &Prediction - xgb, lgb, logr, linr
- BOD prediction in river - 15 regression models

Topic No. 2. Machine Learning and Intelligent Model Application in

Kaggle Competition
The purpose of the lesson is to study information technology and Python

libraries for setting up machine learning models to solve problems of analysis
and prediction and mastering practical skills in applying some of them using the
example of one of the Kaggle datasets or from data uploaded via API.

Lesson plan.
1. Find a dataset.
2. Understand the problem statement and all its aspects (target feature,

type of task, metric, data provided, whether external data can be used and with
what license, etc.).

3. Form a team (individual participation in the competition is also possi-
ble). Organize its work.

4. Explore available solutions and tips in the "Code" and "Discussion"
sections.

5. Conduct an exploratory analysis of the data, in particular the FE stage,
and develop your own hypotheses for solutions.

6. Build models.
7. Submit a series of solutions, each time improving them.
8. At the end of the competition, study the decision of the winners.
9. Write an article with an overview of the problem, its solution, and your

own hypotheses. Draw conclusions. What worked, what didn't. Publish your
successful and interesting solutions. Make a link in the article to the notebooks
and posts of others and to your own.

Test questions
1) What are the main types of machine learning models and their ad-

vantages?
2) What is model and hyperparameter training? How do they affect the

process of building a model?
3) What is regularization and what role does it play in minimizing the

risk of overtraining?
4) What is Linear regression, what are its features?
5) How does Logistic Regression work, in what areas is it applied?
6) What is Stochastic Gradient Descent, how is it used to train models?
7) how do Support Vector Methods work when they are applied?
8) How does the k-nearest neighbor method work, what are its features?

https://www.kaggle.com/vbmokin/autoselection-from-20-classifier-models-l-curves
https://www.kaggle.com/vbmokin/biomechanical-features-20-popular-models
https://www.kaggle.com/vbmokin/suspended-substances-prediction-in-river
https://www.kaggle.com/vbmokin/merging-fe-prediction-xgb-lgb-logr-linr
https://www.kaggle.com/vbmokin/bod-prediction-in-river-15-regression-models

129

9) What are model ensembles, how do they help in improving forecast-
ing results?

10) How is hyperparameter learning used to improve the efficiency of ma-
chine learning models, how is their effectivenes checked?

11) What is a neural network? Neuron? A neural network layer?
12) What is the activation function, what are the main types you know?
13) What is Deep Learning? How many minimum layers should a neural

network have to implement deep learning?
14) How is the neural network trained and how is its accuracy evaluated?
15) What techniques are used to reduce neural network overtraining?
16) What tools and libraries can be used to create neural networks?

130

5 INTELLIGENT DATA ANALYSIS

The main purpose of intelligent models is to use them to solve problems

of data analysis of various types, first of all, the main ones: numerical, textual,
graphic. Also, this data can be various kinds of sensor signals, people's voices,
geospatial data, data from virtual or augmented reality systems, and various
complex data structures (graphs, ontological networks, etc.) [1-5, 9-11, 18, 21-
38].

The most common concept of analysis basic data types is to first convert
this data into numerical data, but with maximum preservation of its specifics and
features, and then the problem is reduced to what is already known using ma-
chine learning models and exploratory data analysis (see Chapters 2-4).

5.1 Intelligent Analysis of Images and Videos

The most striking results of the application of IDA technologies are tradi-

tionally associated with the analysis of images and videos.
For training and testing algorithms, there are a number of typical datasets,

for example, MNIST ("Mixed National Institute of Standards and Technology")
– a database of 70 thousand samples of handwriting 10 Arabic numerals (60
thousand training and 10 thousand test). Data is available in the Kaggle (Figure
5.1).

Figure 5.1 – Images of MNIST in Kaggle (monochrome, 28×28 pixels)

MNIST Fashion is a dataset of images of 10 categories of clothing items
(Fig. 5.2).

https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://github.com/zalandoresearch/fashion-mnist

131

Figure 5.2 – Images of MNIST Fashion (monochrome, 28×28 pixels)

We will characterize typical tasks of graphic data analysis and methods
and technologies for their solution.

5.1.1 Basic concepts, colors encoding, basic types, tensors
Normally, all videos are treated as a sequence of images.
Each image (denoted U) is cut into a collection of fragments (chunks or

patches), such as squares of a certain size [39]. Occasionally, these are rectan-
gles. Each patch is a matrix of pixels. Let X and Y specify the number of each
pixel by the height and width of this matrix. For each pixel, you specify the
number of C color channels. Generally: C = 3 in RGB format ("Red – Green –
Blue"). Or it could be C = 1, if the image is monochrome. In the first case, the
color is represented by a 6-digit number in the hexadecimal number system (Fig.
5.3). And for black-and-white images, the color is binary: 0 or 1, or, as in the
MNIST dataset, numbers from 0 to 255.

Figure 5.3 – Examples of RGB pixel colors in hexadecimal notation

https://github.com/zalandoresearch/fashion-mnist
https://en.wikipedia.org/wiki/RGB_color_model

132

Consequently, each fragment of the U image is encoded as a four-
dimensional matrix

U = [<N>, <X>, <Y>, <C>], (5.1)

where each cell contains a number that corresponds to the color of the corre-
sponding pixel.

Such a multidimensional matrix of numbers (5.1) is called a tensor. If the
images are large, then they are also divided into batches of these fragments. That
is, it is already a 6-dimensional matrix (array) of data or a two-dimensional ten-
sor.

And the black-and-white image of 28 by 28 pixels of the MNIST dataset
is not divided into parts or fragments and is a one-dimensional tensor. The num-
ber of channels is C=1, and the numbers in the tensor cells are 0 (white) or inte-
gers up to and including 255 (black) (see Fig. 5.3): (1, X, Y, 1), where X and Y
are integers from 0 to 27 inclusive. And the pixel color of an HD quality image
will be a hexadecimal number, which will be decoupled into a pixel numbered
for example (8, 16, 22, 2). These numbers mean the 9th fragment (numbering
starts with zero), 16 and 22 are the coordinates in this fragment along different
axes, the 2nd channel (green).

5.1.2 Typical tasks
The classic tasks of image and video processing and intelligent analysis

are the following:
1. Image Classification – defining a class or category of images. It can be

either a specific type (pollen on the microscope images [27], roofs on the aerial
photography [34], face, car number, whether there is a person wearing a mask, a
type of plant, military equipment based on satellite or aerial photography, etc.),
or a classification of certain changes in the object (emotions on faces, destruc-
tion of houses, deforestation, emergence of crops in the fields, etc.).

2. Object Detection – detection and localization of objects in the image.
Detecting vehicles on the streets (counting traffic, searching for traffic jams),
calculation of pollen concentration in atmospheric air using a laser [33], detect-
ing a person's face and their key points, detecting points for finger print analysis,
etc.

3. Semantic Segmentation – as signing a class to each pixel in the image:
such a definition of different classes in the image with high accuracy, as deter
analysis the contours of a road and sidewalks. It is also used when analyzing
video online using YOLO technology.

4. Image (Video) Generation – creation of new images (the so-called
deepfakes). "Deep Fake" based on training datasets and custom deep learning
models. Images can be created both from several images (GAN models, etc.)
and from text descriptions (Stable Diffusion models, etc.). Images can also be
generated using templates from well-known graphics packages, controlling their
parameters [38].

133

5. Anomaly Detection – detection of unusual or anomalous patterns in im-
ages: a comet in space, oil spills at sea, damaged plants, or other problem areas
that require a quick response. An example of solving such a problem is de-
scribed in an article by one of the authors [39].

6. Face Recognition – identification of faces in images, including by turn-
ing their faces, wearing a mask, wearing makeup, fingerprint recognition on a
smartphone, etc.

7. Image (Video) Enhancement and Generation by applying filters and
transformations to enhance or generate new images (videos), improve the quali-
ty of images, create artistic and creative images, convert black and white images
to color. To solve such problems, the OpenCV library is often used. Let's take a
closer look at it.

5.1.3 Image preprocessing. OpenCV library
The library OpenCV (short for "Open Source Computer Vision Library")

is designed to solve many problems: computer vision, video processing, image
processing, etc.

The library contains more than 2500 algorithms optimized in speed and
accuracy for various purposes (Fig. 5.4):

a) b)

c) d)

Figure 5.4 – Examples of OpenCV library:

a) construction of 3D models and image identification;
 b) face recognition; c) finding similar architectural forms;

 d) finding similar images, taking into account their geometric alones
transformations

https://www.analyticsvidhya.com/blog/2019/03/opencv-functions-computer-vision-python/
https://www.kaggle.com/code/serkanpeldek/face-detection-with-opencv/notebook
https://www.kaggle.com/code/wesamelshamy/tutorial-image-feature-extraction-and-matching/notebook
https://www.kaggle.com/code/dataenergy/object-recognition-using-feature-matching/notebook
https://www.kaggle.com/code/dataenergy/object-recognition-using-feature-matching/notebook

134

- face detection and recognition, identification of objects in images or vid-
eos;

- classification of human actions in the video;
- tracking camera movements;
- tracking moving objects (for example, during football matches, the cam-

era can automatically track the ball on the field);
- building 3D models, obtaining 3D point clouds from stereo cameras,

which allows you to immediately build and analyze a model of the entire envi-
ronment in dynamics around a UAV (car, plane or quadrocopter);

- connecting images together to produce a high-resolution image of an en-
tire scene;

- finding similar images in the image database;
- removing red-eye from images, tracking eye movements;
- landscape recognition;
- setting markers to overlay them on augmented reality, etc.

5.1.4 Convolutional Neural Networks (CNN): principles of work and

typical architecture
CNN (Convolutional Neural Network) is the most common type of neural

network model for analyzing images and classifying objects on them.
Let's consider the application of CNN to the recognition and classification

of digits of the MNIST dataset (Fig. 5.5, a, b).

a)

b)

Figure 5.5 – Typical architecture of a CNN: a) to recognize the digits of the
MNIST dataset [40]; b) to recognize the species of the animal [41]

135

The main element of CNN is a convolution. To use it, you need an input
matrix of numbers M×M (can be rectangular) with the colors of the image pix-
els and a convolution kernel W×W (can also be rectangular), which allows you
to process a submatrix of the same size W×W: the matrices are multiplied ele-
ment-by-element and the result (one number) fits into the final matrix in the cor-
responding cell (Fig. 5.6).

Figure 5.6 – Illustration of the convolution process [40]

The convolution operation is applied in a loop and "collapses" all the ele-

ments of the input matrix. Obviously, if you multiply the matrix M×M = 7×7 by
the core matrix "kernel") W×W = 3×3, then this can only be done

 once. This version of the convolution (the "pad-
ding" parameter is responsible for this) is called "value" (the notebook has a nice
gif illustration that shows in dynamics how the final matrix is formed using the
kernel in the "value" mode). But the more popular option is padding = "same",
when the size of the final matrix is the same as the input one: M×M. For such
convolution, zeros (0) are added to the input matrix in adjacent cells to ensure
the possibility of applying the operation as many times as necessary (Fig. 5.7).

Figure 5.7 – Illustration of convolution mode with padding = "same" [40]

https://www.kaggle.com/code/rafetcan/convolutional-neural-network-cnn-tutorial/notebook

136

Applying a convolution using the Keras (TF) framework:

x = Conv2D(9, (3, 3), activation='relu', stride = (2, 2), pad-
ding='same')(x)

which means that a two-dimensional Conv2D 3×3 pixels convolution is applied
to the input image 9 times, activation function – ReLU (Fig. 5.8), the kernel
jumps 2 steps vertically and horizontally, and the result of the convolution will
be the same size as the input image.

Figure 5.8 – Illustration of the use of the ReLU activation function [41]

Each such convolution allows you to find some important patterns in the
input image and save them for the next stage of analysis. For example, in Fig.
5.9 shows an example of image segmentation.

Figure 5.9 – Example of the use of different types of convolutions
to the input image from notebook

As a result of using the convolution, the original image will be quite di-

verse. Therefore, in tandem with each convolution, as a rule, the MaxPooling or
AveragePooling operation is used (see Fig. 5.5). As a result of this operation, the
maximum or average value, respectively, of all elements of this submatrix is
simply determined (Fig. 5.10):

https://www.kaggle.com/code/jagdmir/all-you-need-to-know-about-cnns

137

MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding="valid")
MaxPooling2D(pool_size=(4, 4), strides=None, padding="valid")
AveragePooling2D(pool_size=(3, 3), strides=3, padding="same")

Where pool_size is the size of the submatrix of the input matrix to which
the operation is applied, strides is the jump (None means 1).

Figure 5.10 – Example of
MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid") [41]

The convolution is only the Conv operation, unlike MaxPooling, Aver-
agePooling, because they do not use the convolution kernel. All of these 3 types
of operations have options for 1D, 2D, 3D, depending on the dimension of the
input.

Often, but not always, Conv layers are used with padding = "same" and
MaxPooling, AveragePooling with padding = "value". These operations are
used in pairs (see Figure 5.5) or in blocks (2–3 convolutions and then Pooling).
At their output, sometimes, they put a Dropout, mentioned in subsection. 4.10.

After the "Conv-Pooling" pairs with the Dropout, the "Flatten" layer is
used, which converts all the resulting matrices into one one-dimensional data ar-
ray (Fig. 5.11).

Figure 5.11 – An example of using the Flatten operation [41]

138

Data from Flatten is sent to a classic Fully Connected neural network (see
Figure 5.5). If this is a classification task, then in the last layer of this neural
network, as a rule, the Softmax activation function is used. It allows you to more
accurately determine which class is the final one.

The main principle and advantage of CNN is that the researcher only
forms the architecture, and the values of all matrices and convolution cores and
other internal parameters are calculated automatically.

CNNs have become widely used, and not only in image recognition tasks.
They work for text analysis, and for the analysis of tabular data, and for fore-
casting time series, since they are able to successfully process various numerical
information.

5.1.5 Modern architectures of neural networks
Appendix G lists the neural network architectures that were relevant in

2016, and many of them are still in active use. Also in Appendix G it is noted
that neural network models ResNet, ResNeXt, Efficient.Net and their variations
have recently become popular and effective.

There is a web portal "Papers with Code", which registers and displays on
one graph all known models and their accuracy, there is also a code and descrip-
tion of each model. Hence the name comes from it. Fig. 5.12 shows all models,
including the best ones from 2016, as of April 2024.

Figure 5.12 – Comparison of the accuracy of models for the classification of im-
ages of the ImageNet dataset on the portal “Papers with Code”

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

139

As can be seen from Fig. 5.12, the most accurate models for today are
those of the ViTs ("Vision Transformers") class, which contain both convolu-
tional, transformer and other blocks.

To train CNNs with complex architectures, the amount of input or variety
of inputs is often not enough. Then the so-called augmentation is used, i.e. arti-
ficially enlarging the dataset. For example, using the OpenCV library, the image
is rotated at different angles, rotated around one of the axes, deformed (com-
pressed, stretched, etc.), added or removed noise, changed size or resolution, etc.
(Fig. 5.13).

Figure 5.13 – Example of image augmentation from the notebook

5.1.6 Auto encoders in unsupervised tasks
As described above, there are unsupervised tasks where you need to find

unknown patterns in a large dataset. One of the most common ways to solve this
problem is to use "Convolution Auto Encoder" ("CAE").

The basic principle of operation of the autoencoder is illustrated in Fig.
5.14.

Figure 5.14 – The principle of operation of autoencoder (the upper figure is a

small compression, the lower one is almost 400 times)

https://www.kaggle.com/code/kanncaa1/convolutional-neural-network-cnn-tutorial/notebook
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2366/2292

140

The input image is uploaded to a multilayer convolutional neural network,

which transforms with a simultaneous reduction in dimensionality to a condi-
tional "throat". And then, using a neural network with a mirrored architecture
and the same parameters, it performs an inverse transformation from the same
"throat" to the original image. The model is trained to ensure maximum similari-
ty between the input and output images.

The article [39] describes an example of constructing a CAE by one of the
authors of this book.

5.1.7 Videos analysis and recognition. YOLO.
YOLO (“You Only Look Once”) is an intelligent real-time object recogni-

tion technology, especially effective in analyzing streaming video from video
cameras, etc.

The basic principle of YOLO is to predict both bounding boxes with cer-
tain objects and the probabilities of assigning these objects to a certain class in
each image in one model at once. The idea behind YOLO is that the network di-
vides the image into a grid, and for each cell of that grid, it predicts bounding
boxes and class probabilities that are compared to a certain threshold. Fig. 5.15
shows an example of object recognition with a threshold of 0.3.

a) b)

Figure 5.15 – Example of recognition of objects with a threshold of 0.3:

a) all possible potential objects; b) only the best objects
with an identification accuracy of at least 0.3

Currently, it is one of the main algorithms for recognizing objects in video

streaming, on video cameras, etc. Fig. 5.16 shows an example of image recogni-
tion on city streets.

https://www.kaggle.com/zikazika/what-is-object-detection-yolo

141

Figure 5.16 – Examples of work YOLO in the city

Usually, there are 5 variants of YOLO, depending on the number of pa-
rameters: "nano" (n), small (s), medium (m), large (l) and extremely large (x). In
sources [42-44] there is an interesting overview of the differences between the
YOLO versions since the first version in 2015 and there are interesting compari-
sons of the performance of these versions (Fig. 5.17).

Figure 5.17 – Comparison of the effectiveness of technologies
YOLO8 and YOLO5

Figure 5.18 shows an infographics of the operations mentioned in section

5.1 above, in notation S(I).

https://www.kaggle.com/zikazika/what-is-object-detection-yolo
https://learnopencv.com/ultralytics-yolov8/

142

Figure 5.18 – Infographics with smart technologies for the preprocessing and
classification of images and videos

5.1.8 Image generation and detection: GAN, VAE, Stable Diffusion
One of the newest areas of application of neural network technologies is

the generation and detection of images and videos based on them.
Images and videos generated using deep neural networks are commonly

referred to as "DeepFakes". Recently, this term has been extended not only to
fully generated samples, but also to slightly altered real images or videos: faces,
voices, sounds, backgrounds have been replaced and adjusted, any element of
the image has been added, changed or removed.

Along with examples of the use of deepfakes for fraud and disinfor-
mation, there are also useful applications:

1) in films, animated films, commercials, music videos, and other enter-
tainment industries;

2) to create educational content, in particular for various kinds of simulators;
3) to simulate realistic scenarios, also with the participation of people;
4) reconstruction of images from ancient or damaged documents;
5) generation of specified information in a convenient form for people

with disabilities;
6) to generate virtual assistants and in the provision of various services;
7) for trying on clothes, hairstyles, makeup, etc.;
8) as avatars in social networks;
9) creation of samples for testing models and technologies, including

deepfake detectors, etc.
Thanks to the efforts aimed at the development of intelligent information

technologies for the task of generating and detecting deepfakes, the following
are constantly being improved:

143

- intelligent prediction models;
- clustering methods;
- technologies for removing noise from images, videos, audio files;
- repair of corrupted videos;
- automatic colorization of black and white videos;
- improving the resolution of images and videos;
- file archiving;
- transforming files from one format to another;
- generating images and videos from text descriptions or, conversely, gen-

erating text from images and videos (see the Kaggle competition "Stable Diffu-
sion – Image to Prompts»), etc.

Fig. 5.19 shows a series of images generated in Kaggle by one of the au-
thors of the manual using the "StyleGAN2-ADA" model.

Figure 5.19 – Deepfakes generated using the "StyleGAN2-ADA" model from
GitHub and from the Kaggle notebook, changing different style settings for a

given photo

There are many different ways to generate deepfakes, but among them, it
is worth highlighting the 3 best types of models and technologies, the principle
of which is similar to the work of autoencoders (see subsection 5.1.6):

1. GAN (Generative Adversarial Network). Each model has the following
components: a generator that generates a deepfake of a given type from the
noise distributed according to the normal law, and a discriminator (deepfake de-
tector) that checks whether it is a fake or not. The generator learns and improves
each time in such a way as to "outwit" the discriminator. The result is a deepfake
that the discriminator does not consider to be a fake, or the probability that it is a
fake is as low as possible. This is a competition between two powerful neural

https://www.kaggle.com/competitions/stable-diffusion-image-to-prompts/overview
https://www.kaggle.com/competitions/stable-diffusion-image-to-prompts/overview
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://www.kaggle.com/code/rkuo2000/stylegan2-ada

144

networks, hence the name comes from here. Accordingly, the realism of fakes is
very high, as well as the required computing resources and duration of work,
compared to other approaches [45].

One of the most successful is the StyleGAN2 model, which does not so
much generate a new image as focuses on changing certain styles of it (emotions
on the face, background, lighting, skin color, face elements, etc.) (see Fig. 5.19).

2. VAE (Variational Autoencoder). The principle of operation is the same
as in convolutional autoencoders (see subsection 5.1.6), but at the throat there is
a matrix, which is a probability distribution over the latent space. The VAE en-
coder compresses many images to the same set of multi-dimensional probability
distributions, which are their counterpart in a sense. And then the VAE decoder
randomly selects a number of parameters from this distribution and generates an
output image from them. His work is described in more detail in the article [45].
One of the advantages is the high variety of images. Generally, VAE-based
models are faster than GANs.

3. Diffusion models. Diffusion models are based on the formalization of the
generation process in the form of a Markov chain. Markov Chain is a mathemati-
cal model of a stochastic process, where the future state of a system depends only
on its current state, without taking into account its previous states. A given image
undergoes a series of step-by-step transformations by adding Gaussian noise at
each stage until it turns into white noise. And then the original image is repro-
duced from that white noise in reverse order. At each stage, the match is checked
and, accordingly, the neural network that performs this reproduction is improved.
Trained in this way, the model is able to generate quite realistic images from sim-
ple white noise. Generally, with each iteration, it adds different details, and the
image gains more and more clarity. Provides high realism, but takes a bit of a
long time to learn. Although some techniques for accelerating learning have
emerged recently, however, it is still believed that GAN and VAE work faster.
Diffusion models are described in more detail in the article [46].

Evaluating the performance of generative models includes assessing the
quality and diversity of the samples generated. Three metrics are commonly
used for this purpose: Inception Score (IS), Fréchet Inception Distance (FID),
Precision and Recall for Distributions (PRD), Diversity Metrics (e.g., Mean
Pairwise Distance or LPIPS - Learned Perceptual Image Patch Similarity), and
Human eYe Perception Evaluation (HYPE). Each of these metrics provides
unique information about the performance of generative models by criteria for
quality, diversity, etc.

In addition to generating images, you need to highlight the video genera-
tion separately. It's not just a sequence of images. When generating deepfakes,
you need to adjust the movements of the elements of the images to make them
more realistic. Deepfake video detectors usually analyze the dynamics of
movements for realistic behavior, in particular, from the point of view of the
laws of physics and anatomical constraints. The movements of the arms, legs,
especially of people, have many limitations. Many well-known misconceptions

145

are related to objects that cross parts of people's bodies, for example, a hand that
passes through a microphone or deep into the surface of a table immediately
emits a deepfake. It also analyzes how the person speaks and whether the sound
really corresponds to what the person is saying (the most popular and simple
way to deepfake is to replace the audio sequence of the video with another). Ac-
cordingly, video generators take this into account. As a rule, successful deepfake
videos are quite short videos where the real video replaces the face of another
person. At the same time, a person should look at the camera, and not stand
sideways, be without glasses, a beard or a lush hairstyle (fitting facial hair is a
significant problem), and almost not move. Then, even with the use of readily
available models from GitHub, it is possible to generate quite realistic, high-
quality deepfakes.

In 2020, Kaggle held a competition "Deepfake Detection Challenge",
where it was necessary to detect a deepfake video. We recommend that you read
the progress of solving the problem by its winners who took 1st place (Efficient
Nets models), 3rd place (3 models EfficientNet-B7 with 3D CNN) and 5th place
(SE-ResNeXT50, different 3D CNN).

Intelligent information technologies for analysis and generation (synthe-
sis) of images allow solving many applied problems:

- analysis of CT tomography, fluoroscopy, analysis of ultrasound images,
etc., for medical purposes;

- image recognition and conversion into information convenient for the
perception of the blind and other people with disabilities;

- recognition of graphic information and its conversion into tabular or de-
scriptive form;

- reconstruction of the image (inscriptions on ancient scrolls, etc.) from
fragments from scans obtained in various ways, etc.

5.2 Intelligent Analysis of Text: Natural Language Processing and
Generating

5.2.1 NLP: basic concepts, types of problems, data collection and
preprocessing

Natural Language Processing (NLP) is one of the most popular types of
data analysis problems nowadays.

NLP technologies refer to both text (in any language) and language, i.e.,
audio signals. But the most widespread use of NLP has recently become for the
processing of natural language text.

A corpus is a large dataset (collection) of texts on a topic.
NLP solves the following tasks:
− translation from one language to another (audio, text);
− sentiment analysis;

https://www.kaggle.com/competitions/deepfake-detection-challenge/overview
https://www.kaggle.com/competitions/deepfake-detection-challenge/discussion/145721
https://www.kaggle.com/competitions/deepfake-detection-challenge/discussion/158158
https://www.kaggle.com/competitions/deepfake-detection-challenge/discussion/140364

146

− data searching or analysis, including web scraping (loading the page
and removing blocks of useful text from it) and parsing (formalizing and struc-
turing the text according to certain criteria and templates) (see, for example, the
author's Kaggle notebook);

− data summarization;
− filling in missing text in sentences or continuing a set of sentences

(e.g., T9 algorithm);
− text classification, deter analysis the author of the text (a human or

AI?);
− filtering spam in the mail;
− detection of phishing sites;
− recognition of a text request in order to respond to it, as well as gener-

ating a response ("Quation-Answear" systems), support for the operation of sys-
tems for call centers;

− generating an image based on a text request;
− chatbots – generating information in dialog mode,
− creation of recommendation systems;
− NER (Name Entity Recognition) – recognition of named entities (ge-

ographical names, company names, names of people) and relationships between
them based on natural language text;

− keywords mining for the georeferencing of the whole text [30];
− key phrases extraction from the text [32];
− augmentation of texts [35];
− search and selection in the text of certain parts of a sentence (nouns,

verbs, adjectives, etc.) or parts in a word (prefixes, suffixes, etc.), etc.
An example of an NLP algorithm for, for example, text classification (see

the implementation in Kaggle notebook by one of the authors in his dataset):
1. Find data.
2. Markup the data.
3. Clear data and perform other preprocessing.
4. Tokenize the text by dividing it into individual words or syllables.
5. Select and configure the model and choose the technology of its appli-

cation.
6. Select and carry out post-processing.
7. Analyze outliers and, maybe, improve something at the previous stages.
Examples of text cleaning and preprocessing (this stage of bringing the

text to a standard form is also often called normalization):
1. Convert all characters to lower case if the capital letter does not carry

valuable information.
2. Spelling correction (examples: "goal", "goooooaaaall").
3. Remove punctuation marks.
4. Remove non-natural language characters (program code, numbers, hy-

pertext links, emoticons, etc.).

https://www.kaggle.com/code/vbmokin/web-scraping-from-html-buwr-sb-site-parser
https://www.kaggle.com/code/vbmokin/nlp-for-en-bert-classification-for-water-report
https://www.kaggle.com/datasets/vbmokin/nlp-reports-news-classification
https://towardsdatascience.com/machine-learning-text-processing-1d5a2d638958

147

5. Carry out lemmatization, that is, bringing all words to a single diction-
ary form (Fig. 5.20).

6. Removal of stop words – "the", "is", etc., which do not have specific
semantics;

7. Apply stemming when words are reduced to the root by removing the
variable part of the word form, by discarding unnecessary characters, usually
suffixes or endings (see Fig. 5.20).

Figure 5.20 – Examples of stemming and lemmatization from Kaggle notebook

Examples of code for using many of these functions are available in the
author's Kaggle notebook.

To automate these operations, the re (regular expression) and NLTK
(Natural Language Toolkit) libraries are used. For more information on NLTK,
see sorces [6, 47] and in documentation.

Large (powerful) language models usually do not require normalization
operations.

5.2.2 Linguistic models and classification of natural language text
One of the most illustrative and popular NLP problems is the classifica-

tion of natural language text.
5.2.2.1 Bag of Words.
One of the first and most popular NLP methods of text classification is

based on "Bag of Words" (abbreviated: "BOW" or "BW"). The method consists
in making a list-dictionary of unique words in the text. Then each sentence, par-
agraph or other part of the text is presented as a vector, in which 0 is placed if
the word is a dictionary of unique words, and 1 – in the opposite case (Fig.
5.21). One of the main disadvantages of using BOW is ignoring the order of
words and the relationships between them, which is very important for natural
language text.

Figure 5.21 – Example of number vector formation in the BOW method
from the Kaggle notebook

https://www.kaggle.com/code/andreshg/nlp-glove-bert-tf-idf-lstm-explained#3.-Data-Pre-processing-%F0%9F%9B%A0
https://www.kaggle.com/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert
https://docs.python.org/uk/3/library/re.html
https://www.nltk.org/
https://www.kaggle.com/code/andreshg/nlp-glove-bert-tf-idf-lstm-explained#5.-Vectorization

148

5.2.2.2 TF-IDF.
To increase the effectiveness of the BOW method, we decided to take into

account the frequency of words appearing in the text in order to filter out com-
monly used words that are less valuable for analysis. This method is called "TF-
IDF" because it ranks words by a metric that is the product of the "TF" and
"IDF" scores:

- "Term Frequency" ("TF") is equal to the ratio of the number of times the
term T appears in the document to the number of terms in the document;

- "Inverse Document Frequency" ("IDF") is equal to log (N/n), where N is
the number of documents and n is the number of documents in which the term T
appears.

An example of calculating TF and IDF indicators is shown in Fig. 5.22.

a) b)
Figure 5.22 – An example of calculating TF and IDF indicators [48]:

a) examples of 2 sentences; b) the result of the calculation of the indicator for
these "TF" and "IDF"

As shown in Figure 5.22, words with a higher meaning of this criterion
are more significant in terms of TF-IDF: "car", "truck", "road", "highway".

You can also practice this problem in the Kaggle contest "Natural Lan-
guage Processing with Disaster Tweets (Predict which Tweets are about real
disasters and which ones are not)", the task of which is to determine whether a
given tweet is related to a disaster or not. An example is a notebook [49].

5.2.2.3 GloVe. Embeddings.
Most of the more effective NLP methods are based on the concept of em-

bedding. In NLP, embedding is a number vector into which textual information
tokens (words or syllables) are converted, taking into account the semantic
meaning and typical relationships with other tokens in the natural language text
of a given subject area.

Methods, models and technologies of GloVe, Word2Vec, transformers, in
particular, BERT and others are based on embaddings. The way embeddings are
calculated is different in different methods.

The most easy-to-understand concept is used in the GloVe (Global Vec-
tors for Word Representation) method. A large corpus is taken (hundreds of
thousands, millions, even billions of words – texts from Wikipedia, GitHub,
etc.). Words are numbered and parsed in pairs. A matrix is created where each
element (i, j) contains the number of times the word j occurs in the context of

https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started

149

the word i. The probability of this occurrence is then calculated. And then vec-
tors are formed that characterize the probabilities of the appearance of other
words in the context of a given one. This is a rather complex optimization algo-
rithm, but it shows impressive results. An example of operations with the words
"king" and "queen" is canonical, given, for example, in a blog. Fig. 5.23 shows
the embedding of the word "king", determined by the GloVe method based on a
corpus with 400 thousand unique English words from Wikipedia.

Figure 5.23 – Embedding of the word "king", defined by the GloVe method
based on a corpus of 400,000 unique English words from Wikipedia

(from the blog)

Figure 5.24 shows the canonical example of embedding operations.

Figure 5.24 – Result of operations with embeddings "king" – "man" + "woman"
and comparison of the result with embedding of the word "queen"

(from the blog)

http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/

150

As can be seen from Fig. 5.24, if we apply element-by-element addition
and subtraction of vectors according to the formula "king" – "man" + "woman",
then the result, according to the blog, will be the closest to the word "queen"
among all 400 thousand unique English words.

The article [50] gives another example: "Paris – France + Italy = Rome".
The GloVe method scales well on big data, but its effectiveness is mani-

fested only with very large cases, and such training is long-term, and this is one
of its main disadvantages.

5.2.2.4 Word2Vec.
More original and faster is the Word2Vec method. It combines 2 con-

cepts: predicting the context by word and the word by context (Fig. 5.25):
- the CBOW (Continuous Bag-of-Words) method predicts a word by its

context: the neural network takes each word as a target and analyzes the words
in each sentence next to it (context), trying to predict this target word;

- skip-grams predict the context of a word (neighboring words) behind the
word itself using its vector representation.

Figure 5.25 – Word2Vec method model architecture:
CBOW and skip-grams [50]

The way skip-grams are formed is similar to the way GloVe embeddings
are formed, but, firstly, GloVe analyzes only pairs of words, and skipgrams ana-
lyze the entire adjacent context of many words, and secondly, GloVe analyzes
the entire text globally, and skipgrams analyze only a given sentence or another
part of the text each time.

It is also advisable to read the article [50], where this method was pro-
posed back in 2013. Fig. 5.26 shows an example of foresight.

http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/

151

Figure 5.26 – Example from article [50]: predicting a word by context using
Word2Vec trained on a corpus of 783 million words with skip-grams with a di-

mension of 300

5.2.2.5 Transformer
As mentioned above, the most up-to-date and powerful model for classify-

ing data (both textual and graphic) is the Transformer model.
A very well-detailed and illustrated explanation of how transformers work

in NLP is given in the blog. Its following important features can be distin-
guished:

1. Using the "encoder-decoder" architecture (the encoder transforms text
to vector representation, and the decoder – vice versa: vectors to text).

2. The words themselves are processed separately, their position in the
sentence is processed separately, which allows you to parallelize part of the cal-
culations and significantly speed them up, due to the GPU or TPU;

3. Use of the Attention Heads Mechanism "attention") to account for the
relationship between words in a sentence. To do this, a special neural network is
used that evaluates the relationships between words and their importance for un-
derstanding the entire sentence and which words connect the parts of the sen-
tence. This is the key feature of transformers, which have led to a revolution in
the processing of natural language text, and subsequently in image processing.

The blog provides a good example for the sentence "The animal didn't
cross the street because it was too tired". Fig. 5.27 shows a diagram of which
words the word "it" is associated with, which attaches the last 4 words to the
main sentence and is therefore important.

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

152

a) b)
Figure 5.27 – Analysis of which words the word "it" is most associated with in

the sentence "The animal didn't cross the street because it was too tired"
 (from the blog): a) from 2 attention heads; b) with 8 attention heads

Typically, 8 different approaches ("attention heads") are used, as shown in
Fig. 5.27, and then the results obtained are averaged and a single embedding is
formed.

Transformer as a model is considered one of the best ("State-of-the-art")
for both NLP problems and image-related tasks (this can also be seen in Fig.
5.12), where they are called "Vision Transformers" (ViTs). To do this, images
are divided into fragments (patches) in the same way as text is divided into
words, subwords or syllables. And then the entire powerful apparatus of trans-
formers is used to find connections and dependencies between these patches.
And this allows you to solve various problems: segmentation, detection and
recognition of objects, as well as people, classification of objects and even gen-
eration of new images.

5.2.2.6 BERT.
A fairly modern and powerful solution is BERT (Bidirectional Encoder

Representations from Transformers) models and technology. Bidirectionality
means that the context of a word in a sentence is analyzed in both directions:
both before and after it.

1. BERT uses sub-word tokenization ("WordPiece Tokenization"),
which allows you to consider words at a lower level and take into account the
morphological features of the language.

2. It uses its own tokenization system with additional marks, which de-
pend on the problem to be solved (Fig. 5.28). The beginning and end of each
sentence are also marked in a special way.

http://jalammar.github.io/illustrated-transformer/

153

Figure 5.28 – Types of BERT tasks and features of token formation
for them (from the blog)

3. The architecture of the model uses Dropout, which allows you to bet-
ter predict missing words in a sentence (Fig. 5.29).

Figure 5.29 – Illustration of missing word prediction
using BERT (from the blog)

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-bert/

154

A very nicely detailed and illustrated explanation of how BERT works is
given in the blog.

5.2.2.7 Hugging Face (HF).
The Hugging Face (HF) collection contains a large number of pretrained

language models BERT, GPT, T5, etc., which can be applied to different NLP
tasks in different languages at once (Fig. 5.30).

Figure 5.30 – Hugging Face (HF)

As of January 2024, HF contents:
- more than 600 thousand models, including more than 125 thousand dif-

ferent transformers;
- more than 140 thousand datasets.
Usually, the following algorithm is used to classify natural language texts

using HF:
1. Download the data and separate the target from it.
2. Select and install the transformers library and pretrained models from

the Hugging Face (HF) collection.
3. Perform data preprocessing, normalization and tokenization of text

sentences (often synonyms) using the tools of the Hugging Face (HF) collection.
4. Apply the selected language model and get embeddings for the input

from it.
5. Create additional features.
6. Combine embeddings from step 4 with other features from step 5 and

target from step 1 to get a dataset for supervised machine learning.
7. Divide the data into training, validation, and test.
8. Train one of the models from Chap. 4 to predict a given target.

http://jalammar.github.io/illustrated-bert/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/

155

9. Predict test data.
10. Analyze the results. If the result is not satisfactory, then you can try to

change something in the previous stages.
Examples of the use of this algorithm are given in the following note-

books, including author's ones:
1. Kaggle Contest Notebooks «Natural Language Processing with Disas-

ter Tweets»;
2. Notebooks of the "NLP: Reports & News Classification" dataset;
3. Dataset notebooks «NLP with Disaster Tweets – cleaning data" for the

Kaggle contest "Natural Language Processing with Disaster Tweets».
4. A very short notebook based on the simple transformers library:

"Supershort NLP classification notebook" for Kaggle competition «Natural
Language Processing with Disaster Tweets»).

Let's dwell on step 5 of the algorithm, which is somewhat specific for
NLP problems.

5.2.2.8 FE in NLP tasks.
To effectively solve NLP problems, it is important to be able to take into

account additional information, extract other features, in addition to embed-
dings. To do this, you can effectively use the NLTK library mentioned above.

Usually, features in NLP tasks are formed in one of the following ways:
1. Use of syntactic or grammatical features such as Part of Speech

("POS") or grammatical dependencies (for this you can use the NLTK, SpaCy,
etc. libraries);

2. Statistical characteristics of syllables, words, sentences, paragraphs,
documents in the corpus of texts in general (for this, you can use the NLTK, re,
ordinary statistical analysis libraries, etc.); A good example is in the notebook,
where the author tries to distinguish texts (essays) written by a machine (large
language models) from texts written by students by features (in the Kaggle prize
competition "LLM - Detect AI Generated Text");

3. The "TF-IDF" metric, which displays the frequency of unique words
without taking into account commonly used words (see, for example, the com-
ment on his decision by the participant who took 19th place (Top1.5%) in the
Kaggle competition "Google AI4Code – Understand Code in Python Note-
books");

4. N-gram formation, etc.
N-grams in NLP are sequences of N elements (words or symbols) that oc-

cur in sentences, paragraphs, or other parts of the text. Normally, 2 numbers are
given where which means searching for sequences that con-
tain from to including elements.

For example, in Kaggle's "LLM - Detect AI Generated Text" competition,
most public best solutions use (3, 5) and (3, 6)-grams using the TfidfVectorizer
(ngram_range=(3, 5)) command from the sklearn.feature_extraction.text pack-
age.

https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/datasets/vbmokin/nlp-reports-news-classification
https://www.kaggle.com/datasets/vbmokin/nlp-with-disaster-tweets-cleaning-data
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/code/vbmokin/supershort-nlp-classification-notebook
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/code/tivfrvqhs5/20-feature-xgboost
https://www.kaggle.com/competitions/llm-detect-ai-generated-text
https://www.kaggle.com/competitions/AI4Code/discussion/343614
https://www.kaggle.com/competitions/AI4Code/discussion/343614
https://www.kaggle.com/competitions/AI4Code/overview
https://www.kaggle.com/competitions/AI4Code/overview
https://www.kaggle.com/competitions/llm-detect-ai-generated-text

156

A notebook on keyword extraction, created with the help of one of the au-
thors of the manual, used (N,N)-grams. One of the results is shown in Fig. 5.31
[32].

Figure 5.31 – Examples of (3, 3)-gram words and their number in the corpus of
words [32]

5.3 Large Language Models (LLM) and Chatbots

A real revolution has recently been caused by the emergence of ChatGPT
("Chat Generative Pre-training Transformer") version 3.5 (Fig. 5.32), and later
4.0 from OpenAI.

Figure 5.32 – ChatGPT 3.5

Millions of people have joined its testing. Billions of dollars began to be
allocated for the development of similar services by all leading IT companies.
Governments and individual companies initially tried to ban this service, but the
"Pandora's box" has already been opened. Realizing that progress could not be
stopped, they focused on developing rules and restrictions. For example, chat-

https://www.kaggle.com/code/vbmokin/nlp-for-ua-keybert-keywords-extractions
https://chat.openai.com/?model=text-davinci-002-render-sha

157

bots began to write more often: "I can't answer because it violates ... phrase the
question in a different way." "I can't answer, it's better to contact ..." etc.

The following features of this system are especially valuable:
1) The ability to ask questions in your native language, although experi-

ence shows that the answers to questions are the most complete;
2) Detailed answers with the ability to ask clarifying questions and receive

continuation of explanations in a dialogue mode;
3) You can edit a previously asked question, rather than writing a new

one, and get a different answer;
4) You can click "Regenerate" ("Restart") and generate another answer

option, and the system will ask if the new version is better, reminding that all
users are its testers, and it constantly self-learns on them;

5) Generates Python programs at the level of a fairly professional pro-
grammer who knows all the most interesting programs from GitHub, Kaggle,
StackOverFlow, etc.;

6) Allows native translation from one language to another in different
styles;

7) Allows you to shorten your own text to a given number of words or
sentences;

8) There are convenient buttons for copying the entire answer or just the
program code;

9) All previous chains of questions and answers of the user are stored in
their profile under the names assigned to them by the chatbot, but the user can
rename them;

10) Availability of API access (paid, but inexpensive), which allows you
to significantly expand the possibilities of its application in your applications;

11) Ability not to monitor the literacy of the query – compare the results
of queries (good and short with errors in the text):

Figure 5.33 – Variants of prompts for the ChatGPT to obtain the simple
Python code for the neural network building

12) The ability to ask a question, simply giving the input data that is avail-

able and the output that needs to be obtained, and he himself will guess how to
write a program that will carry out such a transformation;

158

13) It can draw a primitive graph to illustrate the answer, but using
pseudographics (from symbols from the keyboard), just to convey an idea, but
there are also opportunities to integrate with other services that do it much bet-
ter, or write code for high-quality visualization of the results in Python.

Of course, there are also disadvantages (there are fewer of them in the
paid version than in the free version). "Hallucinations" are common, when the
chatbot does not know the answer, but, taking advantage of the fact that it is a
language model (a good "writer"), begins to quite realistically generate text in
response, for example, web addresses of datasets or articles used in the answer,
titles of books, etc., which have never existed, so all its answers need to be
checked. In addition, there are errors in the answers for various reasons:

- due to problems in the material on which he studied and which also has
errors;

- due to the problems of the chatbot model, which is constantly evolving;
- due to a misunderstanding of the request;
- due to user errors in the formulation of the request;
- due to the obsolescence of the material, especially when it comes to dy-

namically developing software libraries.
There are also limitations of the functionality itself in terms of the output

format, but they can be eliminated by other services. Most of the typical disad-
vantages (duration of text generation, etc.) are absent in the paid version.

It is these shortcomings that still leave the existence of the profession of
programmers relevant, because:

1) You need to be able to ask the right question in order to get a really ef-
fective answer, and for this you need to navigate the question and know exactly
what to ask, for example, compare the answers to the queries:

Figure 5.34 – Variants of prompts for the ChatGPT to obtain the more extend

Python code for the neural network building

159

2) A chatbot will not write the entire program ready to be used along with
other blocks, it will only give key blocks that an experienced programmer must
combine;

3) You need to be able to recognize hallucinations and errors in the an-
swer and guess what they need to be replaced with (theoretically, you can write
to him what mistakes there are and he corrects himself, but sometimes he gets
hung up – advises the previous first, also erroneous, answer);

4) Many companies categorically prohibit writing examples of data from
these companies in a query so that it writes code for their processing – the pro-
grammer himself must come up with an analogue and then transfer it to the nec-
essary data;

5) Many companies prohibit the use of chatbots for writing code at all,
otherwise there are serious copyright problems for this code;

6) Someone needs to write new programs for such services, create new
language models and datasets on which they will learn;

7) Often, answers are needed for a specific very narrow and modern field
with its specific terminology, which the chatbot does not know enough about.

Chatbots like ChatGPT 3.5 are built on the use of the "Large Lingual
Model" (LLM). Examples of LLMs at the moment are large multilingual models
GPT3, GPT4, BERT, RoBERTa, XLNet, etc. The LLM for ChatGPT 3.5 is
GPT3. Before GPT3, there were previous versions as well, such as GPT2. See,
for example, the author's example [51] – a notebook using GPT2, BERT and
XLNet for text generalization in 2022 in Kaggle, developed before the advent of
ChatGPT 3.5.

ChatGPT has a "temperature" parameter that adjusts the degree of variety
of responses.

Two relatively new directions in this area have emerged and are rapidly
developing:

- Prompt Engineering is a set of knowledge and skills for generating a
series of requests to the chatbot that will provide a truly relevant and most useful
answer;

- LLM Fine Tuning is a technology of "learning" or continuing to teach a
large language model on a given subject area, on a special corpus of words.

There are open-source LLMs "open-source" for example: LLAMA2
(https://ai.meta.com/llama/) from Meta (versions 7B, 13B and 70B), Falcon
(https://falconllm.tii.ae/), Mistral (https://docs.mistral.ai/), MPT-7B
(https://www.mosaicml.com/blog/mpt-7b) and many others [52, 53].

In the article of one of the authors of the manual, there is an analysis of
the capabilities of LLM to generate training data for solving problems of the
Kaggle competition "LLM — Detect AI Generated Text": GPT 3.5 Turbo; GPT
4; Mistral 7b Instruct; OpenAI text-ada-001; OpenAI text-babbage-001;
OpenAI text-curie-001; OpenAI text-davinci-001; OpenAI text-davinci-002;
OpenAI text-davinci-003; Google BARD (Gemini); Google PaLM; Claude
Instant 1; Intel Neural Chat 7b v3.1; LLaMA 2 70b; Falcon 180b.

https://ai.meta.com/llama/
https://falconllm.tii.ae/
https://docs.mistral.ai/
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2984/2773
https://www.kaggle.com/competitions/llm-detect-ai-generated-text

160

Figure 5.35 shows an infographics of the operations mentioned in sections
5.2, 5.3 on NLP problems in the S(I) notation.

Figure 5.35 – Infographics of technologies for preprocessing and intelligent
analysis of natural language text

5.4 Intelligent Analysis and Forecasting of Time Series

5.4.1 Basic concepts and types of problems
The problems of time series analysis and forecasting are among the most

common that need to be solved. Often, it is important not only to build a model
that can accurately and reliably predict data series, but the model itself can be
valuable. The identified period and frequency of seasonality, the type of best
model can say a lot about the series itself.

Important concepts are the spacing of the series and the forecasting hori-
zon.

The spacing of the series is the difference between adjacent values. A
number of models, such as ARIMA, require that the step be the same and that
there are no missing values. For example, you can perform imputing from the
Sklearn library.

The forecast horizon is the number of steps for which a forecast is made.
It is important that these can be not only future values. This is the basis for the
concept of cross-validation diagnostics of a series model that uses, for example,
the Prophet library. The task is seen as a supervised task. The horizon is the val-
ues within the existing data interval – different parts of the data are selectively
taken and used as validation, and then analyzed as the model predicts them well,
using all other data for training (Fig. 5.36).

161

Figure 5.36 – Cross-validation in time series diagnostics with a horizon within
the interval of known observational data [54]

Popular examples of time series forecasting problems are the following:
- forecasting of environmental parameters monitoring data: meteorologi-

cal data, water status, atmospheric air status, solar activity, etc.;
- forecasting the exchange rate of cryptocurrencies or other as sets in fi-

nancial markets;
- forecasting the values of device indicators in various technical systems;
- prediction of the results of analyzes of medical devices to predict the

condition of patients;
- forecasting the number of patients during pandemics or epidemics in

different regions to predict the extent of the disease and analyze possible direc-
tions of its spread;

- forecasting changes in radio signals, in particular of cosmic origin, etc.

5.4.2 EDA and FE for time series.
As a rule, the analysis of the time series is carried out in the following

stages:
1. Analysis of missed values and regularity of the step.
The ARIMA model requires regular data, while Prophet does not.
2. Detection and analysis of series anomalies.
The simplest way is the one mentioned in Chap. 3 filtering by quantiles

P10, P05, P90, P95, etc., but there are also special libraries [55] (Fig. 5.37):

162

a)

b)

c)

Figure 5.37 – Automatic identification of anomalies in the value of dust concen-
tration in the ambient air using various libraries according to the data of the pub-
lic monitoring network of the state of atmospheric air EcoCity from a notebook
«Anomaly detection for air pollution» [55]: a) SESD; b) Isolation Forest; c) the

method «seasonal_decompose» from the statsmodels library

https://eco-city.org.ua/
https://www.kaggle.com/code/dimashmundiak/anomaly-detection-for-air-pollution

163

- SESD (Seasonal Hybrid ESD) – the method with a combination of sea-
sonal adaptation with an Exponential Smoothing and Extreme Studentized De-
viate (ESD) to detect deviations from the expected data distribution;

- IsolationForest (library Scikit-learn) – the method for detecting anoma-
lies by isolating anomalies in the data using a decision tree model in the entire
feature space and without any regularization;

- statsmodels – a library that contains various statistical functions and
models for anomaly detection, and a residual analysis method (season-
al_decompose).

In addition, anomalies can be found manually visually on the chart (it is
worth using the interactive graphs of the plotly library), and then find confirma-
tion of these anomalies. For example, the reasons for the abnormal fall in the
bitcoin rate can usually be found in the news (Fig. 5.38).

Figure 5.38 – Sharp drop in the bitcoin exchange rate in June 2022 [56] due to

the collapse of the Celsius Network crypto exchange, the Tron stablecoin
(USDD), etc. [57]

3. Analysis of the law of distribution of the series. Is it normal? Normal-

ize data, if necessary.
To analyze the normality of the distribution law, there is a function

stats.probplot(x, dist=stats.norm). It calculates quantiles. If the distribution
law is normal, then these quantiles line up. If this condition is not met, then the
Box-Cox transformation (stats.boxcox(x)) ensures the alignment of these quan-
tiles (Fig. 5.39).

https://github.com/nachonavarro/seasonal-esd-anomaly-detection/blob/master/README.md
https://rdrr.io/github/twitter/AnomalyDetection/f/README.md
https://rdrr.io/github/twitter/AnomalyDetection/f/README.md
https://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest
https://www.statsmodels.org/stable/index.html

164

Figure 5.39 – The result of applying the Box-Coxmethod to the normalization of
the time series

Also, it is important to compare the distribution laws of training and vali-

dation data. If they are too different, the model will not be effective.
4. Analysis of the stationarity of the series, although for ARIMA this

step can be skipped – there it is analyzed automatically. Apply to stationarize
this series, if necessary.

A stationary series is a series in which statistical indicators are invariable
over time. Therefore, the statistical indicators of different samples of the series
will be the same or comparable within a given error. To do this, the Dick-Fuller
test is used, which is performed by the function stats-
models.tsa.stattools.adfuller (Fig. 5.40).

a) b) c)

Figure 5.40 – Dick-Fuller test on stationarity of the time series of the bitcoin ex-
change rate (feature "Close") for 2020-2022 from the author's notebook: a) Py-
thon code, b) the result of checking the series; c) the result of checking the first

difference of the series

5. Analysis of the seasonality of the series: is there a periodicity and with
what period? There may be several different seasons at the same time [58]. Re-
move seasonal components, if necessary (depending on the models used).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html
https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-eda

165

The main difference between time series models and other machine learn-
ing models is that they specialize in taking into account the seasonality of series.
It is on periodic series that time series models demonstrate higher accuracy than
the universal data models described in Chapter 4. There is a typical test to see if
the x series has at least one seasonal component. For this, there is a function
statsmodels.tsa.seasonal.seasonal_decompose(x, T), where T is the period of
the series in its steps (hour, day, ...) (Fig. 5.41).

Figure 5.41 – The result of decomposing data on the bitcoin exchange rate in

December 2021 using seasonal_decompose (from the author's notebook)

6. If the series was transformed at stages 3-5, then it is worth repeating
steps 1-5.

7. FE: Synthesize new features if section 4 models are used.
It is popular to use the TSFresh library, which allows you to synthesize up

to 1200 features for a given time series. After analysis and filtering, as a rule,
50-100 features are left, which are quite interesting and effective for forecasting.
For example, see author's examples of forecasting the average daily bitcoin ex-
change rate according to several years [11, 36, 59] in 2020-2021, which made it
possible to predict the daily rate 10 days ahead with an accuracy of 2.44%, us-

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-forecasting

166

ing about 60 features, almost 50 of which were obtained using the TSFresh li-
brary from the values of the "Close" feature (Fig. 5.42).

a)

b)

Figure 5.42 – Forecasting the bitcoin exchange rate in December 2021 with an
accuracy of 2.44% using the "MLP Regressor" model based on about 50 features
synthesized by the TSFresh library (from the author's notebook): a) features syn-

thesized using the TSFresh library; b) the result of a 10-day rate forecast

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-forecasting

167

8. Determine forecast horizons and form training and validation datasets.
As a rule, test and validation data are selected at the end of the series if the

prediction task is solved (see examples [11, 36, 59]).
9. Make forecasts and analyze the results.

5.4.3 Construction of time series models: ARIMA, Prophet
All models in Section 4 can be used to predict time series. Neural network

recurrent models GRU and LSTM can also be used. But, more often, they use
time series specific models ARIMA and Prophet (previous name: “Facebook
Prophet”).

The mathematical apparatus ARIMA (Autoregressive Integrated Moving
Average) is described in detail in textbooks of one of the co-authors [60, 61]. To
automate ARIMA in Python, one of two options is used:

1) ARIMA method of the package arima_model the "Time Series Analy-
sis" library, which allows you to identify the model for a given series with a giv-
en order ARIMA(p,d,q), where p is the autoregressive order, d is the order of
difference, q is the order of the moving average;

2) method auto_arima the pmdarima library, which itself selects the pa-
rameters of the SARIMAX model, where in addition to p, d, q there are also pa-
rameters of seasonal components (Fig. 5.43).

The main aspects of the Prophet model are described in the article [62]
and in the documentation. Mathematically, the Prophet model for modeling and
predicting the values of the series , depending on time t, is written as fol-
lows [54, 58, 62]:

- For the additive case:

, (5.2)

- For the multiplicative case:

, (5.3)

where is the trend of the series (logistic or piecewise linear approximation
of data); – seasonal component approximated by the Fourier series; –
a component that takes into account the impact of holidays or other anomalies
that operate with a certain "window", that is, in the range of certain dates (steps);

 – "noise" error with zero mean.
For a more detailed example of effective setting of the parameters of the

Prophet model on the example of forecasting the number of daily new cases of
coronavirus in Ukraine in 2020 (Fig. 5.44 from the article [58]).

https://www.statsmodels.org/stable/tsa.html
https://www.statsmodels.org/stable/tsa.html
https://pypi.org/project/pmdarima/
https://facebook.github.io/prophet/docs/quick_start.html

168

Figure 5.43 – Example of the result of the auto_arima work on identifying the
SARIMAX model for predicting the bitcoin exchange rate (from the notebook)

Figure 5.44 – Example of forecasting the number of daily new cases of corona-

virus in Ukraine (2020) using the Prophet (from the notebook)

https://www.kaggle.com/code/vbmokin/crypto-btc-analysis-forecasting
https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality

169

See more examples of using the Prophet model and tuning its parameters
with real data [37, 58, 63, 64].

The constructed model allows us to analyze the patterns inherent in the
data. For example, it is possible to analyze environmental factors which increase
Alternaria or Cladosporium spores [28, 29], find main factors that increase the
risk of patient death of Coronavirus [31].

Fig. 5.45 shows an infographics of the operations and models mentioned
in section 5.4 in notation S(I).

Figure 5.45 – Infographics of technologies for preprocessing and intelligent

analysis of time series

Practical exercises
1) There is a 2x2 matrix A and there is a 2x2 kernel K. What will be the

result of applying the convolution K to the matrix A using the Conv2D com-
mand in stride = (1, 1), padding='valid' mode? An example of the calculation is
shown in Fig. 5.46.

170

Figure 5.46 – Application of convolution

2) There is a 2x2 matrix A and there is a 2x2 kernel K. What will be the

result of applying MaxPooling2D (pool_size=(2, 2), strides=(2,2), pad-
ding="valid") to this matrix? An example of the calculation is shown in Fig.
5.47.

Figure 5.47 – Application of MaxPooling2D

3) There is a 2x2 matrix A and there is a 2x2 kernel K. What will be the

result of applying AveragePooling2D(pool_size=(2, 2), strides=(2,2), pad-
ding="valid") to this matrix? An example of the calculation is shown in Fig.
5.48.

171

Figure 5.48 – Application of AveragePooling2D

4) In the TF-IDF method, calculate the TF indicator for the word that oc-

curs most often in a given sentence (without punctuation marks). An example of
the calculation for the sentence “In the project, output the result in this way: sen-
tence sentence sentence paragraph paragraph picture picture picture picture pic-
ture” is shown in Fig. 5.49.

Figure 5.49 – Calculation TF index for TF-IDF method

172

5) Calculate the TF-IDF indicator of the "TF-IDF" method for a given
word in the given sentence (without punctuation marks) if the IDF of this word
is a certain value for your corpus of words. An example of the calculation of the
TF-IDF indicator for the word “picture” (IDF = 0.7) for the sentence “In the pro-
ject, put the result in this way: sentence sentence sentence paragraph paragraph
picture picture picture picture picture” is shown in Fig. 5.50.

Figure 5.50 – Calculation TF-IDF index

6) For a given time series in the form of a list of values at successive

moments of time [10, 12, 11, 15, 14, 17], calculate the first (if you start counting
from 1) rolling value, which will be the result of the following command: roll-

173

ing(window=3).mean() (or max, or min), which will not be equal to np.nan. An
example of the calculation is shown in Fig. 5.51.

Figure 5.51 – Calculation rolling(window=3).mean() (or max, or min)

7) There is a sequence of time series values in the form of a list of num-

bers. Binaries it according to the principle "Will there be an increase in values?".
Predict the next value of this new binary time series using the mean value meth-
od (with rounding to the nearest integer according to the rules accepted in math-
ematics). An example of the calculation is shown in Fig. 5.52.

174

Figure 5.52 – Data binarization and simple time series forecasting

Possible topics for practical and laboratory tasks

Topic No. 1. Image Analysis and Classification (or "Intelligent Analy-
sis of Graphical Data on the State of a Complex System Using Artificial In-
telligence Technologies in Python").

Topic No. 2. Natural Language Text Analysis and Classification Using
Deep Learning and NLP Technologies.

Topic No 3. Identification of the time series model and solution of the
forecasting problem.

Topic No. 4. Data analysis.
The purpose of the work is to study information technologies and Python

libraries for data analysis and master practical skills in applying machine learn-
ing models and artificial intelligence technologies on the example of one of the
Kaggle datasets or from data uploaded via API.

175

Lesson plan:
1. Select a dataset.
2. Download data.
3. Conduct EDA, FE, and data preprocessing.
4. Choose information technology to solve the problem.
5. Apply information technology to convert input data into numerical da-

ta, depending on its type (image, video or text). For the rows, this stage can be
skipped.

6. Train intelligent models using machine learning methods and choose
the optimal one among them.

7. Apply intelligent models and analyze the results.
8. Provide a link to the created notebook, which contains all the results of

the work, and draw conclusions.
Examples of notebooks that can be used:
- For Image Analysis and Classification:

o MNIST model testing : typographic digits
o MNIST model testing : user hand written digits
o CNN over MNIST
o Introduction to CNN Keras - 0.997 (top 6%)
o Fashion MNIST Classification using CNNs
o notebooks dataset MNIST models testing : handwritten digits
o notebooks dataset MNIST models testing: typographic digits

- For Intelligent Analysis and Classification of Natural Text:
o Data Science with DL & NLP: Advanced Techniques
o NLP - EDA, Bag of Words, TF IDF, GloVe, BERT
o NLP with Disaster Tweets - EDA and Cleaning data
o NLP for UA : BERT Classification for Water Report
o NLP for EN : BERT Classification for Water Report

- For time series analysis:
o COVID in UA: Prophet with 4, Nd seasonality
o COVID-19 UA: one region forecasting
o AI-ML-DS Training. L1T : COVID in UA - Prophet
o COVID-19 : Hospitalizations in Ukraine
o COVID-19 in Ukraine: EDA & Forecasting

- other notebooks with Kaggle profile Prof. Vitalii Mokin:
https://www.kaggle.com/vbmokin/code

Test questions
1) What types of information do you know about data analysis problems?
2) What are the typical datasets for training models in image classifica-

tion?
3) What are tensors and how are they used in image processing?

https://www.kaggle.com/vbmokin/mnist-model-testing-typographic-digits
https://www.kaggle.com/vbmokin/mnist-model-testing-user-handwritten-digits
https://www.kaggle.com/mosius/cnn-over-mnist
https://www.kaggle.com/yassineghouzam/introduction-to-cnn-keras-0-997-top-6
https://www.kaggle.com/faressayah/fashion-mnist-classification-using-cnns
https://www.kaggle.com/vbmokin/mnist-models-testing-handwritten-digits
https://www.kaggle.com/vbmokin/typographic-digits-first-10-fonts
https://www.kaggle.com/vbmokin/data-science-with-dl-nlp-advanced-techniques
https://www.kaggle.com/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert
https://www.kaggle.com/vbmokin/nlp-with-disaster-tweets-eda-and-cleaning-data
https://www.kaggle.com/vbmokin/nlp-for-ua-bert-classification-for-water-report
https://www.kaggle.com/vbmokin/nlp-for-en-bert-classification-for-water-report
https://www.kaggle.com/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality?scriptVersionId=60244069
https://www.kaggle.com/vbmokin/covid-19-ua-one-region-forecasting
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l1t-covid-in-ua-prophet
https://www.kaggle.com/vbmokin/covid-19-hospitalizations-in-ukraine
https://www.kaggle.com/vbmokin/covid-19-in-ukraine-eda-forecasting
https://www.kaggle.com/vbmokin/code

176

4) Even examples of setting typical tasks for image processing?
5) What image upgrading operations can be performed using the OpenCV

library?
6) What are convolutional neural networks, and how are they used for im-

age analysis?
7) What complex neural network architectures do you know?
8) How are autoencoders used in unsupervising image processing tasks?
9) What is YOLO and for what purposes is this technology used?
10) What are generative adversarial networks (GANs) and variational au-

toencoders (VAEs), and how are they used to generate and detect deepfakes?
11) What intelligent information technologies are used to analyze and

generate images and videos?
12) What does data processing contain in natural language text?
13) What are the basic concepts used in language models to solve NLP

Problems?
14) What is "Bag of Words" and how is it used in text analysis?
15) How does TF-IDF work and what are its advantages compared to

"Bag of Words"?
16) What is GloVe and what is the concept of embeddings in the context

of language models?
17) What are the advantages of Word2Vec compared to GloVe?
18) What are transforming models and how are they used in solving NLP

problems?
19) How does BERT work and how does it differ from other models for

text analysis?
20) What approaches are used for feature engineering in the tasks of clas-

sification of natural language texts?
21) What are chatbots and how are they used in conjunction with large

language models to improve communication with users?
22) What are the stages of exploratory analysis of time series data?
23) What techniques and libraries do you know for automatic detection of

anomalies in time series?
24) What is stationarity in the context of time series analysis and why is it

important?
25) How is seasonality determined in time series?
26) What is the purpose of the TSFresh library for time series forecasting?
27) What neural network models are used to predict time series?
28) What are the main parameters of the ARIMA model and how are they

used for time series forecasting?
29) What are the main ways to identify an ARIMA model in Python?
30) What are the main components and types of the Prophet model do you

know?

177

6 INTERNET OF THINGS

6.1 Basic concepts and concepts of the Internet of Things. Overview of
LPWAN IoT technologies

6.1.1 Basic concepts and concepts of the Internet of Things

The "Internet of Things" (IoT) is a concept that describes a network of

physical objects ("things") that have the ability to automatically collect and ex-
change data with each other, other networks, and the Internet.

IoT systems collect information from various types of sensors, using spe-
cial IoT stations and routers. As a rule, information is stored in the cloud, where
it is processed or transmitted to other networks or data warehouses (Fig. 6.1).

Figure 6.1 – IoT platform [65]

IIoT (Industrial Internet of Things) is the extension of the Internet of
Things (IoT) technology into industrial sectors and applications (manufacturing,
energy, transportation, healthcare, etc.). IoT involves connecting industrial
equipment, machinery, sensors, and devices to the internet to collect and ex-
change data, monitor operations, and enable automation.

Artificial Intelligence of Things (AIoT) (AI + IoT) – artificial intelligence
of things, which means the application of intelligent technologies to the pro-
cessing of information collected using IoT systems to solve tasks of analysis,
optimization and management processes and these things in real time. AIoT is
now one of the main areas of IoT development, so a separate section 6.3 is de-
voted to it.

178

The concept of IoT is often associated with the term "Digital Twin" (DT),
which is a virtual representation of a physical object, process or system in a digi-
tal environment. Unlike a model, the definition of which has a similar meaning,
a digital twin contains a large amount of information about objects, which is col-
lected in real time. But the digital twin can also be supplemented by mathemati-
cal and information models that are identified and updated based on the collect-
ed data. Generally, DT are created for complex production facilities, such as in-
dustrial production, grain elevators, bridges, etc.

The material in this section is based on the article [66].
Design and development of an information system based on IoT technol-

ogy is the process of creating and consolidating software and hardware compo-
nents that allow you to automatically collect, process and analyze data on physi-
cal indicators from various sources of information, primarily from sensors.

When building a system, it is necessary to take into account several im-
portant aspects, in particular:

- data transmission technology;
- data storage and processing technology;
- data security;
- standardization and interoperability.

It is important to choose:
- network technology;
- IoT platforms.

The main stages of designing and developing an information system based

on IoT technology are as follows:
- requirements analysis and system specification;
- system architecture design;
- software selection and development;
- selection and development of the hardware component;
- integration and installation;
- testing, testing.

There are different types of wireless access media (Fig. 6.2).

https://sait.vntu.edu.ua/uk/nauka/prohrama-yes-horyzont/
https://www.sciencedirect.com/science/article/pii/S092658052300095X?ref=pdf_download&fr=RR-2&rr=87b2146c8f4e1c2a

179

Figure 6.2 – Different types of wireless access media [65]

The main type of systems that are developed using the IoT concept are

systems that are focused on collecting data from various IoT sensors, which can
be located far from the network infrastructure, since systems in the city can be
implemented on the basis of wired or WiFi communication. Such a system is
called a wireless network with low data transmission power over long distances
Low-power Wide-area Network (LPWAN) (see Fig. 6.2). Its advantages are
long data transmission range, low power consumption, good signal quality, low
costs for installation and operation of the network. LPWAN can use various
modern communication protocols, information systems, and technologies. The
most popular in the EU are LoRaWAN, Sigfox, NB-IoT.

6.1.2 LPWAN IoT technologies: LoRaWAN, Sigfox, NB-IoT
Let's consider the technical aspects of LoRaWAN, Sigfox, NB-IoT archi-

tecture.
LoRaWAN uses low-frequency LoRa technology for a large coverage ar-

ea without large-scale infrastructure. As you know, LoRa (Long Range) is a pa-
tented technology for modulating a low-power data transmission network with a
speed of 0.3-50 kb/s and a range of 1 to 15 km in the frequency range that re-
quires licensing.

Sigfox is a low-power wireless network that uses the ISM standard. As
you know, the ISM standard is a set of rules that specify the use of certain fre-
quencies of the radio frequency spectrum for industrial, scientific, and medical
(ISM) devices. These devices can use these frequencies without obtaining a li-
cense. Sigfox uses low-frequency "Ultra Narrow Band" (UNB) technology for
great coverage and energy efficiency. The Sigfox protocol operates in "Half Du-
plex" mode, where the end device sends short messages to the base station with-

180

out acknowledging the transmission. This ensures energy-efficient operation, but
limits the volume and frequency of transmission.

NB-IoT stands for "Narrow band Internet of Things" – this is a standard
designed specifically for cellular network devices and services, allowing IoT
systems to be formed using these networks. That is, LoRaWAN and Sigfox use
their own station systems, while NB-IoT operates over cellular networks. At the
same time, LoRaWAN requires frequencies to be licensed, while Sigfox and
NB-IoT do not.

The specifics of LPWAN network technologies are shown in Table 6.1.

Table 6.1 The specifics of LPWAN network technologies

Indexes Technologies
LoRaWAN Sigfox NB-IoT

Operating fre-
quency

433, 868, 780, 915
MHz 865 – 924 MHz 700 – 900 MHz

Capacity 7.8 – 500 kHz 100 Hz 180 kHz
Maximum pack-

age size

up to 255 bytes 12 bytes up to 160 bytes

Maximum data
transfer speed

Up to 50 kbit/s
(«Class A»),

up to 1 Mbit/s
(«Class C»)

up to 100 bps up to 250 kbit/p/s

Range of base sta-
tion/gateway
(open space)

18 km 50 km (up to 100
km) 100 km

Range of base sta-
tion/gateway

(dense construc-
tion)

5 km 10 km 10-15 km

Network topology mesh topology,
star star star

Encryption AES-128 AES-128 3GPP
 128-256 bit

Transmission
power 14 dBm, 27 dBm 14 dBm, 27 dBm 20 – 23 dBm

Energy consump-
tion

from several µW
to several mW

from several µW
to several mW

from several mW
to several tens of

mW

181

6.2 Architecture of IoT systems. Types of its typical components.
Optimization of the architecture of IoT systems

6.2.1 Architecture of IoT systems. Types of its typical components
Let's consider the architecture and components of networks built on the

basis of LoRaWAN, Sigfox, NB-IoT technologies. All of them can be unified
into a three-level architecture that includes devices/nodes, gateways/base sta-
tions, and a client-server part.

The basic architecture of a LoRaWAN network consists of three layers:
nodes, gateways, and network servers (Fig. 6.3).

Figure 6.3 – LoRaWAN Network Architecture [66]

The Sigfox network consists of three layers: nodes, base stations, and ac-

counting servers. Interaction in the Sigfox network takes place in only one direc-
tion (star type): from the node to the base station (Fig. 6.4).

Figure 6.4 – Sigfox Network Architecture [66]

182

The basic architecture of the NB-IoT network also consists of three lay-
ers: devices, base stations (these often include another layer – the core of the
network and the server part (Fig. 6.5).

Figure 6.5 – NB-IoT Network Architecture [66]

6.2.2 Choosing an IoT platform for data collection, storage and

analysis
IoT platforms provide tools for collecting, storing, processing, and analyz-

ing data from connected devices, as well as for improving security and efficient
management of the IoT network. The architecture of a typical IoT platform is
shown in Figure 6.6:

Figure 6.6 – IoT System Architecture [66]

The main components of the architecture are the following [66]:
1. Connected devices (IoT sensors) via data transmission standards (Sig-

fox, LoRaWAN, NB-IoT, etc.).
2. LPWAN Backend, which is responsible for maintaining and managing

networks.
3. IoT module, which is designed to collect data from IoT devices.

183

4. Functional module, which is responsible for processing, analyzing and
transmitting data.

5. The Decoding module is used to decrypt and interpret the data received
from connected devices. IoT devices can use various data transfer formats, such
as binary codes, JSON, or XML.

6. A database management system (Database) is used to store and manage
a large amount of received data.

7. The REST API provides an application programming interface for ex-
ternal devices or systems to communicate and interact with the IoT platform.

8. Data visualization is responsible for displaying the data collected
through the API. Visualization can include the creation of graphs, charts, maps,
and other graphical representations of data for easy perception and analysis.

The most popular IoT platforms nowadays are:
- AWS IoT;
- Microsoft Azure IoT;
- Google Cloud IoT;
- ThingSpeak.
To create an information system based on the Internet of Things, first of

all, it is necessary to determine the architecture of such a system. Architecture
development consists of the following stages [66]:

- definition of functional requirements;
- selection of IoT devices, including sensors;
- selection of IoT communication technologies;
- choice of IoT platform;
- creation of a visualization system.

6.2.3 Optimization of the architecture of IoT systems
When designing a real IoT system, it is important to analyze the typical

characteristics of each IoT technology and determine the optimal one in accord-
ance with its requirements. Let's compare the characteristics of technologies ac-
cording to the following criteria [66]:

 – coverage range;
 – frequency range;
 – data transfer rate;
 – cost of implementation;
 – energy efficiency;
 – reliability;
 – speed of design;
 – data confidentiality and security.

As an integral criterion, the classical criterion is chosen, where is
the weight of the -th criterion, which is determined by experts, depending on
the conditions of the problem:

 . (6.1)

184

The result of the multi-criteria analysis of expert assessments of the pa-
rameters of network technologies according to the above criteria is presented in
Table 6.2.

Table 6.2. The result of the multi-criteria analysis of expert assess-

ments of the parameters of network technologies

Criteria X1 X2 X3 X4 X5 X6 X7 X8 Jx Weights 0,2 0,1 0,1 0,15 0,15 0,1 0,15 0,05

LoRa-
WAN

1 –
from
2 up
to 15
km

1 – three
ranges
(433/868/
915 MHz)

0,8 –
1,2
kbit/s

0,8 0,8 0,9 0,8 0,8 0,87

Sigfox

0,8 –
from
2 up
to 10
km

0,9 – two
ranges

0,5 –
100
bit/s

1 1 1 1 0,8 0,89

NB-IoT
0,8 –
10
km

0,9 – two
ranges

1 –
250
kbit/s

0.6 0.6 0,9 0,7 1 0,77

The task of choosing the optimal LPWAN technology can be as follows:

minimize the cost of implementation while satisfying the following constraints
[66]:

− The coverage range must be not less than the specified value;
− The frequency range must correspond to the specified range from

to ;
− The data transfer rate must be not less than the specified value ;
− The cost of implementation should be as low as possible;
− Energy efficiency must not be less than the specified value;
− Reliability must be not less than the specified value ;
− The design speed must be not less than the specified value ;
− The confidentiality and security of data must be at least the specified

value .
The task can be solved as a linear programming problem, since all optimi-

zation criteria are linear. The optimal technology is the one for which criterion
(6.1) will take the lowest value [66]:

, (6.2)

185

where is the value of the criteria for each of the IoT technol-
ogies, and X is their vector representation, A is the matrix of constraint coeffi-
cients on the criteria, B is the vector of constraints on the criteria.

To solve the taks, you can use various methods of linear programming
(simplex method, inner point method, etc.). Let's use the PuLP library for Py-
thon to determine which of the technologies is the best choice when developing
an architecture, taking into account energy efficiency, design speed and cost.

In Python, the solution of this problem was automated in the notebook
"Selection of IoT technology" [67]. Input data is presented in the form of Table
6.2 (there may be a smaller number of criteria, i.e. columns). All values should
be given as numbers so that they can be matched to each other. In a separate ta-
ble, it is necessary to keep the weights of the criteria that are determined in ac-
cordance with the technical requirements for the system (Table 6.3). And in the
other table, specify only the numerical values of the criteria (Table 6.4).

Table 6.3. Weights of the criteria

Architectures X1 X2 X3 X4 X5 X6 X7 X8

Weights w 0,2 0,1 0,1 0,15 0,15 0,1 0,15 0,05

Table 6.4. Values of the criteria

Architec-
tures X1 X2 X3 Indi-

cators
Tech-
nology X6

Lo-
Ra-

WAN
Sigfox NB-IoT

Operating
Frequency

433,
868,

780, 915
MHz

865 – 924
MHz

700 – 900
MHz

Band
width

7.8 –
500
kHz

100 Hz 180
kHz

Maxi-
mum
Pac-
kage
Size

up to
255

bytes

12 bytes
up to
160

bytes

Maximum
data trans-
fer speed

up to 50
kbit/s

("Class A"),
up to 1 Mbps
("Class C")

up to
100
bps

up to
250
kbps

Base
Sta-
tion/
Gate-
way

Range
(Open
Area)

18 km

50 km
(up to
100
km)

100 km

Base Sta-
tion/ Gate-
way Range

(Dense
Build)

5 km 10 km 10-15 km

Net-
work
To-

polo-
gy

Mesh
Topo-
logy,
Star

star star Encryp-
tion

AES-
128

The Jx values obtained in the last column indicate that Sigfox is the opti-
mal technology for the Internet of Things-based physical parameters monitoring
information system if a reliable, energy-efficient, relatively low-cost technology
is required. If there is a need to increase the coverage range or increase the level

https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology

186

of privacy, then you need to change the parameters of Table 6.3 and re-solve the
problem according to Table 6.4.

Other network technology parameters can be optimized in the same way.

6.2.4 The example of creating an IoT system
The article [66] provides an example of solving such a problem. The re-

sult of the information system for monitoring physical indicators based on the
Internet of Things with the optimal architecture, created with the participation of
one of the authors of this manual, is also described (Fig. 6.7).

Figure 6.7 – Optimal architecture of the information system for monitoring

physical indicators based on the Internet of Things, selected in the article [66]

As you can see in Figure 6.6, the best choice is to use the ThingSpeak IoT
platform for data storage and analysis. The ThingSpeak server collects data from
the Sigfox Backend using API queries and stores it in a database. The obtained
data can be displayed using the web interface of ThingSpeak.

The article [66] describes an example of an IoT system implemented in
practice with the architecture from Fig. 6.7. The device was implemented on the
basis of the Arduino Mini microcontroller, SFM10R1 module using a tempera-
ture sensor SD18B20 and a Sigfox station (SMBS-T4), which is on the balance
sheet of the Department of System Analysis and Information Technologies of
the Faculty of Intelligent Information Technologies and Automation of VNTU.
The block diagram of the hardware of the information system is shown in Figure
6.8:

https://sait.vntu.edu.ua/en/

187

Power unit Sigfox
moduleMCU

Sensor

OLED
Display

Figure 6.8 – Block diagram of the hardware part of the information system [66]

The microprocessor device generates commands to control the Sigfox

SFM10R1 module via the RS-232 protocol. The temperature value over the I2C
bus is read by the microcontroller and transmitted in the body of the AT com-
mand to send the data packet to the Sigfox network (AT$SF). When the trans-
mitter receives this command, it generates a response about its successful execu-
tion.

Figure 6.9 shows an example of visualization of the data received from
the created IoT system.

Figure 6.9 – Visualization of data obtained from the Sigfox temperature moni-
toring information system based on IoT technology, developed with the partici-

pation of the author of the manual [66]

188

6.3 Artificial Intelligence of Things (AIoT)

One of the most promising areas for the development of modern software

and hardware technologies in the development of IIoT is the transition to AIoT,
which not only collects and processes information, but also automatically makes
decisions and implements them. Sometimes, IoT systems are also referred to as
AIoT systems, which only process the information collected by IoT systems us-
ing AI subsystems and technologies. Such AIoT are of a recommendatory na-
ture, for example, in a convenient form, they provide the process operator with a
set of options for decisions that can be made and what consequences and bene-
fits each of them will have. During 2022-2023, one of the co-authors of this
manual (Vitalii Mokin) participated in the development of such a system as the
scientific supervisor of the Vinnytsia National Technical University
"Development of Information Technologies for Grain Elevator Optimization Us-
ing Neural Network Models and Reinforcement Learning Methods" together
with INNOVINNPROM LLC, which implemented the project "Asset Perfor-
mance Management System for grain processing industry SAKURA-APM PaaS
SAKURA-IIoT based" (Fig. 6.10). This project has received funding from the
European Union’s Horizon 2020 research and innovation programme within the
framework of the BOWI Project funded under grant agreement No 873155. The
results of this project are described in more detail in YouTube video and in the
article [68].

Figure 6.10 – AIoT in the project «Asset Performance Management System for
grain processing industry SAKURA-APM PaaS SAKURA-IIoT based» (from

YouTube video)

But more effective are AIoT subsystems, which also contain subsystems
for automatic control of these production systems using another IoT subsystem
(Fig. 6.11).

https://sait.vntu.edu.ua/uk/nauka/prohrama-yes-horyzont/
https://sait.vntu.edu.ua/uk/nauka/prohrama-yes-horyzont/
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://www.youtube.com/watch?v=znz_Dq-T_ZE
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://www.youtube.com/watch?v=znz_Dq-T_ZE

189

Figure 6.11 – Generalized architecture of the AIoT system

For example, Tesla and other vehicles with autopilot are classic AIoT

with IoT and for collecting information, AI for processing it, and with IoT for
applying the developed optimal solutions through the means of controlling this
transport.

The article [65] provides a good and up-to-date overview of modern ar-
chitectural, technological, software and hardware solutions used in AIoT. The
basic idea is that the architecture from Fig. 6.11 should be able to work autono-
mously without copying data to the cloud (Fig. 6.12).

Figure 6.12 – Basic AIoT platform [65]

As can be seen in Fig. 6.12 The system consists of AIoT subsystems that

independently collect information from sensors, process it, make decisions and
transmit it directly to devices that execute these decisions. In addition, these
subsystems exchange information with each other and with the Internet. Users
have access to data via the Internet and it is possible to exchange data with the
cloud. This architecture has the following main advantages:

190

- due to the autonomy of AIoT subsystems, the time for the implementa-
tion of optimal decisions is significantly reduced;

- due to data exchange with the Internet and the cloud, it is possible to
store all the collected information and improve decision-making algorithms;

- due to the exchange of information between AIoT subsystems through
IoT protocols without copying to the cloud, it is possible to speed up this pro-
cess.

Of course, the advantages of architecture in Fig. 6.12 are also its disad-
vantages:

- errors or lack of information in the implementation of automatically
made decisions, in the absence of human control, can lead to irreparable errors;

- the implementation of such AIoT subsystems requires very energy-
efficient AI solutions, and cost-effectiveness, as a rule, means simplification and
some opportunities;

- delays in the Internet network when transferring data to the cloud can
lead to the fact that not all information will have time to be transmitted or
transmitted with a significant delay, which can lead to the fact that external con-
trol may not be effective enough.

Fig. 6.13 shows an example of a hardware implementation of an AIoT
subsystem for an intelligent irrigation system.

Figure 6.13 – Basic hardware architecture of AIoT/IIoT/IoT devices

for a smart irrigation application [65]

Without the AIoT system, it would be impossible to study, for example,
Mars. After all, the signal from the rover takes about 12.5 minutes to reach
Earth. And during this time, he has to move somehow, perform some research,

191

maneuvers, go somewhere, adapt to the terrain. Therefore, its AIoT subsystem
itself makes decisions and immediately implements them, and control from the
control center from Earth can only make certain adjustments with a delay of
12.5 minutes. Under terrestrial conditions, the delay is usually much smaller, but
for some processes, a delay of even a couple of seconds is critical.

It is for the development of such systems that it is important to create both
accurate and energy-efficient models and technologies of machine learning and
data analysis, as well as fast and effective algorithms for their adjustment, taking
into account new data.

The most popular way to create energy-efficient machine learning models
to solve data analysis problems for AI systems is to use the TinyML (Tiny Ma-
chine Learning) concept to transform intelligent models into more energy-
efficient ones optimized specifically for AI subsystems. For example, such a
transformation is provided by the TensorFlow Lite framework (Fig. 6.14).

Figure 6.14 – TensorFlow framework for microcontrollers

(TinyML concept) [65]

Such a transformation can also be done using the Kaggle platform. First,

a regular model is built and trained using the framework TensorFlow. And then
it is transformed into a format optimized for IoT systems using the Ti-
nyMLGen library (tinymlgen). And it is still preserved. This is illustrated by
the author's notebook "MNIST : TF Learning and TinyML Transformation" on
the example of the task of recognizing Arabic numerals from the MNIST da-
taset (Fig. 6.15).

https://github.com/eloquentarduino/tinymlgen
https://www.kaggle.com/code/vbmokin/mnist-tf-learning-and-tinyml-transformation

192

Figure 6.15 – An example of transforming and saving an intelligent model built

to recognize Arabic numerals from the MNIST dataset using the TensorFlow
framework and the TinyMLGen library

Possible topics for practical and laboratory tasks

Topic No. 1. "Selection of the optimal LPWAN network technology
for the implementation of an information and measurement system based
on the Internet of Things".

The purpose of the lesson is a comparative analysis of LPWAN network
technologies for the implementation of an information and measurement system
based on the Internet of Things and mastering the possibilities for their optimal
selection using the method of linear optimization and the notebook for its auto-
mation in Python in Kaggle.

Lesson plan:
5. According to the option provided by the instructor (see below), select

the importance of criteria w in Table 5.3.
6. Type table 5.3 (MS Excel, Google.Table, etc.) and save it in CSV for-

mat. Download to Kaggle as a private dataset.
7. Copy the notebook "Selection of IoT technology" [67] to your Kaggle

profile and pull the dataset from step 2 into it as a data source.

https://www.kaggle.com/code/vbmokin/mnist-tf-learning-and-tinyml-transformation
https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology

193

8. In cell No. 3 of the notebook with the selection of the table with
weights, replace the path and name with the path and name to your table in the
private dataset.

9. Run the notebook and analyze the result of its work.
10. Give a screenshot of the last cells with the results of the work (Fig.

6.16): the input table (p. 2) and the conclusion about which architecture from
Table 6.4 is optimal.

11. If you wish, you can repeat the operations of pp. 1-5 to select optimal
solutions at other stages of IoT system design (IoT platform, etc.), according to
the example in the article [66].

12. The report must contain the full name, variant number and a screen-
shot from p. 6 in any form (file in docx or pdf). Send to the lecturer by mail.

Figure 6.16 – An example of the notebook "Selection of IoT technology" [67]
with default data, which should be given in the report

Variants of tasks (hypothetical examples):
Option 1. Information and measuring system for monitoring the state of

the reservoir.
Requirements:
- low-dynamic signal from sensors (for example, the content of heavy

metals in the water of the reservoir);
- the distance from the sensors to the station is no more than 10 km;
- the territory outside the city, without buildings and, for the most part, flat

(the station is installed on a hill near the reservoir);
- relatively low cost of system implementation;
- the energy efficiency of the system is quite high.

https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology

194

Option 2. Tracking the movement of freight transport.
Requirements:
- strongly dynamic signal from moving trucks;
- the distance from the sensors to the station is from 2 to 15 km;
- data transfer rate 1.2 kbit/s;
- relatively high reliability of the system and speed of its design are re-

quired.

Option 3. Remote monitoring and management of water supply in rural

areas.
In rural areas, there are often problems with the reliability of the commu-

nication network due to remoteness and low population density. However, a re-
liable and stable communication network is necessary for effective monitoring
and management of water supply systems.

Requirements:
- dynamic signal from sensors (water level in tanks, pressure in the sys-

tem);
- the distance from the sensors to the station is up to 10 km;
- data transfer rate up to 250 kbit/s;
- the cost of implementation and energy efficiency are not key parameters;
- data privacy and security are an essential component of the system.

Option 4. Tracking the movement of goods in railway cars.
Requirements:
- low-variable signal (in fact, only a certain registration code of the cargo

is transmitted);
- the signal should be triggered 15 km before the railway station;
- relatively low cost of system implementation;
- the energy efficiency of the system is quite high;
- high speed of its design.

Test questions
1) What is IoT?
2) What is AIoT?
3) What are the important aspects to consider when building an IoT sys-

tem?
4) What stages of designing and developing an information system based

on IoT technology do you know?
5) What is LPWAN?
6) What types of modern LPWANs do you know? Describe their main

types.

195

7) What are the elements of the architecture of the main types of modern
IoT LPWAN networks?

8) What are the elements of the IoT LPWAN architecture?
9) What modern IoT platforms do you know?
10) What are the stages of IoT system architecture design?
11) What criteria do you know for choosing a network technology when

designing an IoT system?
12) What are the typical constraints for choosing a network technology

when designing an IoT system?
13) Which method and Python of the optimization library can be used to

select IoT network technology?
14) Which criteria are more important for each type of IoT technology?

Which ones do they maximize and which ones do they minimize, compared to
others?

15) What are the advantages and disadvantages of IoT system architecture
with autonomous AIoT subsystems?

16) What concept can be used to transform an intelligent model from the
TensorFlow Lite framework into a more cost-effective, IoT-optimize done?

196

REFERENCES

1. Data Science: Machine Learning and Data Mining: electronic text-

book for combined (local and network) use [Electronic resource] / V. B. Mokin,
M. V. Dratovanyi. – Vinnytsia: VNTU, 2024. – 258 p.

2. V. B. Mokin, A. V. Losenko, and M. V. Dratovanyi, “Intellectual
Technology of Analysis and Price Forecasting of Used Cars”, Visnyk VPI, no.
6, pp. 62–72, Dec. 2019. https://doi.org/10.31649/1997-9266-2019-147-6-62-72.

3. Dratovanyi M. and Mokin V., “Intelligent Method with the Rein-
forcement of the Synthesis of Optimal Pipeline of the Data Pre-Processing Op-
erations in the Machine Learning Problems”, Scientific Works of Vinnytsia Na-
tional Technical University, no. 4, Jun. 2023. https://doi.org/10.31649/2307-
5392-2022-4-15-24

4. Vitalii Mokin. Kaggle Notebook "50 Tips: Data Science (tabular data)
- beginner v2" : website, 2024. URL:
https://www.kaggle.com/code/vbmokin/50-tips-data-science-tabular-data-
beginner-v2

5. Vitalii Mokin, Kaggle Notebook "50 Advanced Tips: Data Science
(tabular data) v2": website, 2024. URL:
https://www.kaggle.com/code/vbmokin/50-advanced-tips-data-science-tabular-
data-v2

6. Bisikalo, O. V., Sevastyanov, V. M., and Bohach, I. V. Laboratory
Practicum on the Discipline "Computer Linguistics" for Students of the Special-
ty 126 "Information Systems and Technologies": Electronic Laboratory Practi-
cum of Combined (Local and Network) use. Vinnytsia: VNTU, 2022. 102 p.

7. Oleshchenko, L. M. Machine Learning: Computer Practicum on the
Discipline "Machine Learning". Guide for students specialty 121 "Software En-
gineering" (educational program "Software Engineering of Multimedia and In-
formation Retrieval Systems"). Electronic text data. Kyiv : KPI them. Igor Si-
korsky, 2022. 92 p.

8. Machine Learning: A Textbook Intended for Students Studying at the
First (Bachelor's) Level of Higher Education in the Specialties of the Field of
Knowledge 12 "Information Technologies" / Basiuk T. M., Lytvyn V. V.,
Zakharia L. M., Kunanets N. E., Lviv: Publishing House "Novyi Svit - 2000",
2019. 335 p.

9. David Mark Albert. Kaggle Notebook «Santander-eda-to-model-
comparison»: website, 2019. URL:
https://www.kaggle.com/davidmarkalbert/santander-eda-to-model-comparison

10. Gabriel Preda. Kaggle Notebook "Santander EDA and Prediction":
website, 2019. URL: https://www.kaggle.com/gpreda/santander-eda-and-
prediction

11. Vitalii Mokin, Kaggle Notebook «Crypto - BTC : Advanced Analysis
& Forecasting» : website, 2022. URL:

https://doi.org/10.31649/1997-9266-2019-147-6-62-72
https://doi.org/10.31649/2307-5392-2022-4-15-24
https://doi.org/10.31649/2307-5392-2022-4-15-24
https://www.kaggle.com/code/vbmokin/50-tips-data-science-tabular-data-beginner-v2
https://www.kaggle.com/code/vbmokin/50-tips-data-science-tabular-data-beginner-v2
https://www.kaggle.com/code/vbmokin/50-advanced-tips-data-science-tabular-data-v2
https://www.kaggle.com/code/vbmokin/50-advanced-tips-data-science-tabular-data-v2
https://www.kaggle.com/davidmarkalbert/santander-eda-to-model-comparison
https://www.kaggle.com/gpreda/santander-eda-and-prediction
https://www.kaggle.com/gpreda/santander-eda-and-prediction

197

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-
forecasting

12. Victoria V. Rodinkova, Serhii D. Yuriev, Mariia V. Kryvopustova,
Vitalii B. Mokin, Yevhenii M. Kryzhanovskyi. Molecular Profile Sensitization
to House Dust Mites as an Important Aspect for Predicting the Efficiency of Al-
lergen Immunotherapy. Frontiers in Immunology, Mar 2022. -
https://doi.org/10.3389/fimmu.2022.848616

13. V. Rodinkova, O. Kaminska, S. Yuriev, O. Sharikadze, V. Mokin, L.
DuBuske, Bayesian Network Analysis Indicates a High Probability of Simulta-
neous Sensitization to Major Grass Allergens, Annals of Allergy, Asthma &
Immunology, Volume 129, Issue 5, Supplement, 2022, Page S23, ISSN 1081-
1206, https://doi.org/10.1016/j.anai.2022.08.569

14. Yuriev, S., Rodinkova, V., Mokin, V., Varchuk, I., et al. Molecular
sensitization pattern to house dust mites is formed from the first years of life and
includes group 1, 2, Der p 23, Der p 5, Der p 7 and Der p 21 allergens. Clin Mol
Allergy, 21, 1 (2023). https://doi.org/10.1186/s12948-022-00182-z.

15. Rodinkova V., Yuriev S., Mokin V., Sharikadze O., Kryzhanovskyi
Y., Kremenska L., Kaminska O., Kurchenko A. Sensitization patterns to Poace-
ae pollen indicates a hierarchy in allergens and a lead of tropical grasses. Clini-
cal and Translational Allergy. 2023. № 13(8). e12287.
https://doi.org/10.1002/clt2.12287

16. Rodinkova V., Yuriev S., Mokin V., etc. Bayesian analysis suggests
independent development of sensitization to different fungal allergens, 2024,
World Allergy Organization Journal, 17, 5,100908,
https://doi.org/10.1016/j.waojou.2024.100908.

17. Vepa, A., Saleem, A., Rakhshan, K., Daneshkhah, A., Sedighi, T.,
Shohaimi, S., ... & Chakrabarti, P. (2021). Using machine learning algorithms to
develop a clinical decision-making tool for COVID-19 in patients. International
journal of environmental research and public health, 18(12), 6228.
https://doi.org/10.3390/ijerph18126228.

18. Vitalii Mokin, Kaggle Notebook "Heart Disease - Automatic Ad-
vEDA & FE & 20 models" : website, 2021. URL:
https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-
models/notebook.

19. Vitalii Mokin, Kaggle Notebook «Tutorial : Classification models» :
website, 2024. URL: https://www.kaggle.com/code/vbmokin/tutorial-
classification-models

20. Vitalii Mokin, Kaggle Notebook "Tutorial : Ensembles of classifica-
tion models": website, 2024. URL:
https://www.kaggle.com/code/vbmokin/tutorial-ensembles-of-classification-
models

21. Vitaliy B. Mokin. Development of the Geoinformation System of the
State Ecological Monitoring // NATO Advanced Research Workshop on “Fuzz-
iness and Uncertainty in GIS for Environmental Security and Protection". —

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-forecasting
https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-forecasting
https://doi.org/10.3389/fimmu.2022.848616
https://doi.org/10.1016/j.anai.2022.08.569
https://doi.org/10.1186/s12948-022-00182-z
https://doi.org/10.1002/clt2.12287
https://doi.org/10.1016/j.waojou.2024.100908
https://doi.org/10.3390/ijerph18126228
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models
https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models/notebook
https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models/notebook
https://www.kaggle.com/code/vbmokin/tutorial-classification-models
https://www.kaggle.com/code/vbmokin/tutorial-classification-models
https://www.kaggle.com/code/vbmokin/tutorial-ensembles-of-classification-models
https://www.kaggle.com/code/vbmokin/tutorial-ensembles-of-classification-models

198

NATO Security through Science Series. Geographic Uncertainty in Environ-
mental Security. Springer Netherlands, 2007. — P. 153-165.
https://doi.org/10.1007/978-1-4020-6438-8_9.

22. Dniester River Basin : Environmental Atlas / O. Lysyk, V. Mokin, V.
Bujac, Gh. Sirodoev etc. // [Zoї Environment network (Switzerland) ;
UNEP/GRID-Arendal (Norway) ; The Republic of Moldova, Agency "Apele
Moldovei" ; Ukraine, State Agency of Water Resources of Ukraine]. – 2012. –
45 p. – ISBN 978-2-940490-12-7. – https://doi.org/10.13140/RG.2.1.1835.0569.
– was supported by governments of Finland, Sweden, Norway and was prepared
on behalf of organizations participating in the project “Transboundary coopera-
tion and sustainable management in the Dniester River basin: Phase III – Im-
plementation of the Action Programme»implemented in the framework of Envi-
ronment and Security Initiative – ENVSEC (ENVSEC comprises the Organiza-
tion for Security and Cooperation in Europe (OSCE), Economic Commission for
Europe (UNECE), UNEP, UNDP, NATO, Regional Environmental Centre for
Central and Eastern Europe).

23. Mokin V. B. Method For Determining And Optimization Of Observa-
bility Of Multivariable Spatially Distributed Systems Using Geoinformation Pa-
rameter Space / V. B. Mokin, I. V. Varchuk // Scientific Bulletin of National
Mining University. — 2015. — Issue 5. — Pages 105-111.

24. Control and minimization of allergenic plants impact on bronchial
asthma morbidity, based on spatial-temporal data model / Tatyana Y.
Vuzh ; Vitaliy B. Mokin ; Waldemar Wójcik; Baglan Imanbek // Proc.
SPIE 9816, Optical Fibers and Their Applications, 2015, Volume 98161M (De-
cember 18, 2015); doi:10.1117/12.2229083.

25. Optimization of Hydrographic and Water-management Regionaliza-
tion of Ukraine according to World Approaches and Principles of the EU Water
Framework Directive / V. V. Grebin', Vitaliy B. Mokin, Ye. M. Kryzhanivskiy,
S. A. Afanasyev. – Hydrobiological Journal, 2016, Volume 52, Issue 5. – pages
81-92.–DOI:10.1615/HydrobJ.v52.i5.90.

26. Information measuring systems with mobile devices for identification
of air pollution parameters caused by transport / Vitalii B. Mokin; Georgii V.
Goriachev; Dmytro Y. Dziuniak; Kostiantyn O. Bondalietov; Serhii O. Zhukov;
Mariusz Duk; Saltanat Sailarbek // Proc. SPIE 10031, Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Experiments,
2016, 1003128 (September 28, 2016), 8 pages; doi:10.1117/12.2249202.

27. Vitalii B. Mokin. The Decision Support System for the Classification
of Allergenic Pollen Types Based on Fuzzy Expert Data of Pollen Features on
the Microscope Images / Vitalii B. Mokin, Oleksii M. Kozachko, Victoria V.
Rodinkova, Olena O. Palamarchuk, Tetyana Y. Vuzh // Conference Proceedings,
IEEE 2017, first Ukraine conference on electrical and computer engineering
(UKRCON), May 29 – June 2, 2017 Kyiv. – P. 850-855. – doi
10.1109/UKRCON.2017.8100368.

https://doi.org/10.1007/978-1-4020-6438-8_9
https://doi.org/10.13140/RG.2.1.1835.0569
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2229083&Name=Tatyana+Y.+Vuzh
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2229083&Name=Tatyana+Y.+Vuzh
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2229083&Name=Vitaliy+B.+Mokin
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2229083&Name=Waldemar+W%c3%b3jcik
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2229083&Name=Baglan+Imanbek
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Vitalii+B.+Mokin
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Georgii+V.+Goriachev
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Georgii+V.+Goriachev
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Dmytro+Y.+Dziuniak
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Konstantin+O.+Bondaletov
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Serhii+O.+Zhukov
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Mariusz+Duk
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Mariusz+Duk
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2249202&Name=Saltanat+Sailarbek

199

28. Viktoriya Rodinkova. Environmental Factors Which Increase Alter-
naria spores in Central Ukraine / V. Rodinkova, V. Mokin, O. Bilous, Lawrence
Dubuske, M. Dratovanyj // Journal of Allergy and Clinical Immunology. – Else-
vier Science Ltd., 2018. – V. 141. – # 2. – p. AB30. - DOI:
10.1016/j.jaci.2017.12.096.

29. Rodinkova V. Main weather factors, which impact Cladosporium
spore concentration in Ukraine / V. Rodinkova, V. Mokin, L. Kremenska, M.
Dratovanyj // ICA 2018, 11th International Congress on Aerobiology 3-7 Sep-
tember 2018, Parma, Italy. – P. 142.

30. Mokin V. B., Horash М. А., Kryzhanovskyi Y. M., Vuzh T. E., “In-
formation Intelligent Technology of the Automatic Georeferencing of the Eco-
logical Text Natural-Language Information”, Scientific Works of Vinnytsia Na-
tional Technical University, no. 4, Jun. 2020. https://doi.org/10.31649/2307-
5392-2020-4-32-41

31. V. B. Mokin, O. V. Kovalchuk and N. O. Muzyka, "Intelligent Tech-
nology for Predicting the Risk of Patient's Death from Coronavirus Based on
PRINCIPLE-Methodology for Selecting Indicators Collected from Medical De-
vices," 2022 IEEE 41st International Conference on Electronics and Nanotech-
nology (ELNANO), 2022, pp. 451-455,
https://ieeexplore.ieee.org/document/9927026.

32. Bondalietov, K., Mokin, V. (2023). Notation System for Comparing
and Synthesis of Intelligent Key Phrase Extraction Methods for Ontological
Models in Information Systems. In: Dovgyi, S., Trofymchuk, O., Ustimenko, V.,
Globa, L. (eds) Information and Communication Technologies and Sustainable
Development. ICT&SD 2022. Lecture Notes in Networks and Systems, vol 809.
Springer, Cham. https://doi.org/10.1007/978-3-031-46880-3_11

33. Tummon, F., Bruffaerts, N., Celenk, S., Mokin, V. et al. Towards
standardisation of automatic pollen and fungal spore monitoring: best practises
and guidelines, Aerobiologia, Volume 40, Issue 1, Pages 39-55, March 2024,
https://doi.org/10.1007/s10453-022-09755-6.

34. O. V. Komenchuk, V. B. Mokin, Y. M. Kryzhanovsky, and V. O.
Budiak, “Intelligent Technology of Buildings Plan Construction, Based on Aeri-
al Photography of their Roofs”, Visnyk VPI, no. 1, pp. 101–109, Feb. 2024.
https://doi.org/10.31649/1997-9266-2024-172-1-101-109.

35. V. B. Mokin, K. O. Bondalietov, Y. M. Kryzhanovskyi, and V. O.
Karavaiev1, “Method of Augmentation of Texts About the State of Water Bod-
ies on the Base of Intellectual Referencing to Multi-Related Geoinformation
Systems of Named Entities”, Visnyk VPI, no. 3, pp. 55–65, Jun. 2023.
https://doi.org/10.31649/1997-9266-2023-168-3-55-65

36. V. B. Mokin, S. O. Zhukov, L. M. Kupershtein, and Slobodianiuk О.
V., “Information Technology for the Cryptocurrency Rate Forecasting on the
Basics of Complex Feature Engineering”, Visnyk VPI, no. 2, pp. 81–93, Apr.
2022. https://doi.org/10.31649/1997-9266-2022-161-2-81-93

https://doi.org/10.31649/2307-5392-2020-4-32-41
https://doi.org/10.31649/2307-5392-2020-4-32-41
https://ieeexplore.ieee.org/document/9927026
https://doi.org/10.1007/s10453-022-09755-6
https://doi.org/10.31649/1997-9266-2024-172-1-101-109
https://doi.org/10.31649/1997-9266-2023-168-3-55-65
https://doi.org/10.31649/1997-9266-2022-161-2-81-93

200

37. V. B. Mokin, O. V. Slobodianiuk, O. M. Davydiuk, and D. O.
Shmundiak, “Information Technology for Finding Possible Sources of Increased
River Pollution Using the Prophet Model”, Visnyk VPI, no. 4, pp. 15–24, Sep.
2020. https://doi.org/10.31649/1997-9266-2020-151-4-15-24

38. V. B. Mokin and B. S. Biletskyi, “Intellectual Technology of Making
Quality Posters”, Visnyk VPI, no. 6, pp. 73–82, Dec. 2019.
https://doi.org/10.31649/1997-9266-2019-147-6-73-82

39. Mokin, V. B., Groozman, D. M., Dovgopolyuk, S. O., and Lototsky,
A. O. System Analysis of the Size of a Fragment of Images of Aerial Photog-
raphy of Agricultural Lands to Search for Anomalies in them by Machine Learn-
ing Methods. Visnyk VPI. 2019. № 3. P. 75-85. https://doi.org/10.31649/1997-
9266-2019-144-3-75-85

40. Kaggle Notebook «Convolutional Neural Network (CNN) Tutorial» :
website, 2020. URL: https://www.kaggle.com/code/kanncaa1/convolutional-
neural-network-cnn-tutorial/notebook

41. Rafet Can Kandar. Kaggle Notebook «Convolutional Neural Network
(CNN) Tutorial» : website, 2021. URL:
https://www.kaggle.com/code/rafetcan/convolutional-neural-network-cnn-
tutorial/notebook

42. Arnab Mukherjee. YOLO: Algorithm for Object Detection Explained
: website, 2023. URL: https://www.linkedin.com/pulse/yolo-algorithm-object-
detection-explained-arnab-mukherjee/

43. Gaudenz Boesch. A Guide to YOLO v8 in 2024: website, 2023. URL:
https://viso.ai/deep-learning/yolov8-guide/

44. Sovit Rath. YOLO v8 : Comprehensive Guide to State Of The Art Ob-
ject Detection: website, 2023. URL: https://learnopencv.com/ultralytics-yolov8/

45. Ya. O. Isaienkov, O. B. Mokin. "Analysis of Generative Deep Learn-
ing Models and Features of Their Implementation on the Example of WGAN"
Isaenkov Y. O., Mokin O. B., Visnyk VPI. 2022. Issue. 1, pp. 82–94.
https://doi.org/10.31649/1997-9266-2022-160-1-82-94

46. L. R. Kulyk and O. B. Mokin, “Methods for Ensuring Consistent Gen-
eration in Diffusion Models”, Visnyk VPI, no. 4, pp. 75–85, Aug. 2024.
https://doi.org/10.31649/1997-9266-2024-175-4-75-85.

47. Talakh, M. V., and Dvořák, V. V. Intellectual data analysis. Part 1.
Chernivtsi: Tekhnodruk, 2022. 367 p.

48. Mayank Tripathi. How to process textual data using TF-IDF in Py-
thon: website, 2018. URL: https://www.freecodecamp.org/news/how-to-process-
textual-data-using-tf-idf-in-python-cd2bbc0a94a3/

49. Vitalii Mokin, Kaggle Notebook «NLP - EDA, Bag of Words, TF
IDF, GloVe, BERT» : website, 2021. URL:
https://www.kaggle.com/code/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert

https://doi.org/10.31649/1997-9266-2020-151-4-15-24
https://doi.org/10.31649/1997-9266-2019-147-6-73-82
https://doi.org/10.31649/1997-9266-2019-144-3-75-85
https://doi.org/10.31649/1997-9266-2019-144-3-75-85
https://www.kaggle.com/code/kanncaa1/convolutional-neural-network-cnn-tutorial/notebook
https://www.kaggle.com/code/kanncaa1/convolutional-neural-network-cnn-tutorial/notebook
https://www.kaggle.com/code/rafetcan/convolutional-neural-network-cnn-tutorial/notebook
https://www.kaggle.com/code/rafetcan/convolutional-neural-network-cnn-tutorial/notebook
https://www.linkedin.com/pulse/yolo-algorithm-object-detection-explained-arnab-mukherjee/
https://www.linkedin.com/pulse/yolo-algorithm-object-detection-explained-arnab-mukherjee/
https://viso.ai/deep-learning/yolov8-guide/
https://learnopencv.com/ultralytics-yolov8/
https://doi.org/10.31649/1997-9266-2022-160-1-82-94
https://doi.org/10.31649/1997-9266-2024-175-4-75-85
https://www.freecodecamp.org/news/how-to-process-textual-data-using-tf-idf-in-python-cd2bbc0a94a3/
https://www.freecodecamp.org/news/how-to-process-textual-data-using-tf-idf-in-python-cd2bbc0a94a3/
https://www.kaggle.com/code/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert

201

50. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient esti-
mation of word representations invector space. arXivpreprint arXiv:1301.3781.
https://doi.org/10.48550/arXiv.1301.3781

51. Vitalii Mokin, Kaggle Notebook «NLP for WR: Summarizing using
BERT, GPT2, XLNET» : website, 2022. URL:
https://www.kaggle.com/code/vbmokin/nlp-for-wr-summarizing-using-bert-
gpt2-xlnet/notebook

52. Glossary of LLM Terms. URL: https://vectara.com/glossary-of-llm-
terms/

53. V. B. Mokin, B. Y. Varer, and S. M. Levitskyi, “Intelligent Technolo-
gy for Detecting Text-Based Deepfakes Using Large Language Models”, Visnyk
VPI, no. 1, pp. 110–120, Feb. 2024. https://doi.org/10.31649/1997-9266-2024-
172-1-110-120

54. Prophet documentation, the chapter "Diagnostics". URL:
https://facebook.github.io/prophet/docs/diagnostics.html

55. Shmundiak, D. O., Izhakovska, N. S., Lytvynenko, D. O., and Sudets,
A. O. Analysis of the possibilities of Python libraries for detecting anomalous
data in the problem of forecasting the state of atmospheric air: materials of the
LII Scientific and Technical Conference of the Faculty of Intelligent Information
Technologies and Automation of Vinnytsia National Technical University. Elec-
tron. text. data. 2023. Access Mode :
https://conferences.vntu.edu.ua/index.php/all-fksa/all-fksa-
2023/paper/view/18957/15722

56. Vitalii Mokin, Kaggle Notebook "Crypto - BTC : Advanced EDA" :
website, 2022. URL: https://www.kaggle.com/code/vbmokin/crypto-btc-
advanced-eda/notebook

57. Wikipedia «Cryptocurrency bubble». URL:
https://en.wikipedia.org/wiki/Cryptocurrency_bubble

58. V. B. Mokin, A. V. Losenko, A. R. Yasсholt. "Information Technolo-
gy Analysis and Predicting a Multiwave Number of New COVID-19 Disease
Based on Prophet Model", Visnyk VPI. 2020. Issue. 6, pp. 65–75.
https://doi.org/10.31649/1997-9266-2020-153-6-65-75

59. Vitalii Mokin, Kaggle Notebook «Crypto - BTC : Analysis & Fore-
casting» : website, 2023. URL: https://www.kaggle.com/code/vbmokin/crypto-
btc-analysis-forecasting

60. Mokin, B. I., Mokin, O. B., and Mokin, V. B. Metodologiya ta organi-
zatsiia naukovyi doslidzhennia. Guide. 3rd, changes and additional. [Electronic
resource]. Vinnytsia: VNTU, 2023. – 230 p.

61. Functional analysis in information technologies: textbook / B. I.
Mokin, V. B. Mokin, O. B. Mokin, Vinnytsia: VNTU, 2024, 130 p.

https://doi.org/10.48550/arXiv.1301.3781
https://www.kaggle.com/code/vbmokin/nlp-for-wr-summarizing-using-bert-gpt2-xlnet/notebook
https://www.kaggle.com/code/vbmokin/nlp-for-wr-summarizing-using-bert-gpt2-xlnet/notebook
https://vectara.com/glossary-of-llm-terms/
https://vectara.com/glossary-of-llm-terms/
https://doi.org/10.31649/1997-9266-2024-172-1-110-120
https://doi.org/10.31649/1997-9266-2024-172-1-110-120
https://facebook.github.io/prophet/docs/diagnostics.html
https://conferences.vntu.edu.ua/index.php/all-fksa/all-fksa-2023/paper/view/18957/15722
https://conferences.vntu.edu.ua/index.php/all-fksa/all-fksa-2023/paper/view/18957/15722
https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-eda/notebook
https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-eda/notebook
https://en.wikipedia.org/wiki/Cryptocurrency_bubble
https://doi.org/10.31649/1997-9266-2020-153-6-65-75
https://www.kaggle.com/code/vbmokin/crypto-btc-analysis-forecasting
https://www.kaggle.com/code/vbmokin/crypto-btc-analysis-forecasting

202

62. Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American
Statistician, 72(1), 37-45. http://dx.doi.org/10.7287/peerj.preprints.3190v2

63. D. O. Shmundiak and V. B. Mokin, “Method of Harmonics Parame-
ters Identification and Anomalies of a Periodic Time Series Based on Adaptive
Decomposition”, Visnyk VPI, no. 6, pp. 46–56, Dec. 2023.
https://doi.org/10.31649/1997-9266-2023-171-6-46-56.

64. V. B. Mokin, A. V. Losenko, A. R. Yasсholt. "Informational Technol-
ogy of Analysis and Forecasting of Number of New Cases of Coronavirus
SARS-Cov-2 in Ukraine Based on the Prophet Model". Bulletin of Vinnytsia
Polytechnic Institute. 2020. № 5. Pp. 71–83. https://doi.org/10.31649/1997-
9266-2020-152-5-71-83.

65. Hou, K.M.; Diao, X.; Shi, H.; Ding, H.; Zhou, H.; de Vaulx, C. Trends
and Challenges in AIoT/IIoT/IoT Implementation. Sensors 2023, 23, 5074,
https://doi.org/10.3390/s23115074.

66. Goncharenko, D. V., Mokin, V. B., and Protsenko, D. P., Building an
Information System for Monitoring Physical Indicators Based on Internet of
Things Technology, Information Technologies and Computer Engineering, Is-
sue. 57, iss. 2, pp. 99–108, Sep 2023. http://dx.doi.org/10.31649/1999-9941-
2023-57-2-99-108.

67. Honcharenko D. Selection of IoT Technology [Electronic resource] /
Dmytro Honcharenko – Mode of access to the resource:
https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology.

68. Development of Intelligent Technologies for Energy-Saving Optimi-
zation of Grain Elevator Operation Using Neural Network Models and Rein-
forcement Learning Methods // Scientific progress: innovations, achievements
and prospects. Proceedings of the 5th International scientific and practical con-
ference. MDPC Publishing. Munich, Germany. 2023. Pp. 138-144.

69. Kononova, K. Y. Machine Learning: Methods and Models: Textbook
for Bachelors, Masters and Doctors of Philosophy Specialty 051 "Economics".
Kharkiv: V. N. Karazin Kharkiv National University, 2020. 301 p.

70. Shtovba S. D., Kozachko O. M. Machine learning: starter course : e-
learning manual. Vinnytsia: VNTU, 2020. 81 p.

71. Gorokhovatsky, V. O., and Tvoroshenko, I. S. "Metody intellektnoho
analizy ta obroblennia danyh" [Methods of intellectual analysis and data pro-
cessing]. Guide. Kharkiv: KNURE, 2021. 92 p. Access Mode:
https://openarchive.nure.ua/server/api/core/bitstreams/2e55d639-52fd-48d9-
b7b7-14989f49f291/content

72. Savchenko, A. S., and Sinelnikov, O. O. "Metody ta sistemi instyv-
nosti instantnosti" [Methods and systems of artificial intelligence]. manual. Ky-
iv: NAU, 2017. 176 p. Access Mode:
https://pdf.lib.vntu.edu.ua/books/2020/Savchenko_2017_176.pdf

http://dx.doi.org/10.7287/peerj.preprints.3190v2
https://doi.org/10.31649/1997-9266-2023-171-6-46-56
https://doi.org/10.31649/1997-9266-2020-152-5-71-83
https://doi.org/10.31649/1997-9266-2020-152-5-71-83
https://doi.org/10.3390/s23115074
http://dx.doi.org/10.31649/1999-9941-2023-57-2-99-108
http://dx.doi.org/10.31649/1999-9941-2023-57-2-99-108
https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology
https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://openarchive.nure.ua/server/api/core/bitstreams/2e55d639-52fd-48d9-b7b7-14989f49f291/content
https://openarchive.nure.ua/server/api/core/bitstreams/2e55d639-52fd-48d9-b7b7-14989f49f291/content
https://pdf.lib.vntu.edu.ua/books/2020/Savchenko_2017_176.pdf

203

73. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why
should i trust you?" Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery
and data analysis (pp. 1135-1144).

74. Josua Naiborhu. How to Interpret Black Box Models using LIME
(Local Interpretable Model-Agnostic Explanations) : website, 2022. URL:
https://www.freecodecamp.org/news/interpret-black-box-model-using-lime/

https://www.freecodecamp.org/news/interpret-black-box-model-using-lime/

204

APPENDIX A
PYTHON BASICS: SYNTAX, DATA TYPES, BASIC COMMANDS AND

BASIC LIBRARIES

We recommend that you familiarize yourself with the following Python
infographic:

Fig. A.1 – Python syntax. Part I

205

Fig. A.2 – Python syntax. Part II

Also, you should familiarize yourself with open materials about Python at

documentation.

To write high-quality and readable programs, we recommend that you fa-

miliarize yourself with «PEP 8» – this is a document that defines the standards

https://docs.python.org/3/tutorial/index.html
https://peps.python.org/pep-0008/

206

for code design for the Python programming language ("PEP" – "Python En-
hancement Proposal"): recommendations and rules for formatting code, variable
names, placement of parentheses, indentation, etc.

An infographics about date and time operations is useful.

NumPy – is a fundamental package for scientific computing in Python.

Operations with arrays and matrices are supported, including linear algebra op-
erations, various mathematical and logical functions, sorting, selection, in-
put/output, basic statistical operations, etc.

It is useful to study the following infographics of basic data operations in
NumPy, Pandas, etc. libraries.:

Fig. A.3 – Basic Python commands for importing data

https://takeuforward.org/python/python-datetime/

207

Fig. A.4 – The NumPy library

See more details about NumPy in textbooks:
- Tutorial;
- QuickStart;
- 100 numpy exercises.

Pandas – is the main basic high-speed Python library for working with

tabular data in the form of dataframes.
Most Python data analysis libraries work with information in either

NumPy or Pandas data format. For more details about operations in Pandas, see
in infographics:

https://numpy.org/doc/stable/user/tutorials_index.html
https://numpy.org/doc/stable/user/quickstart.html
https://github.com/rougier/numpy-100

208

Fig. A.5 – Pandas library

Important Pandas dataframe operations are as follows 3:
- concat – joining along one of the axes (column or row, i.e. joining verti-

cally or horizontally)
- join – joining on the left, right or other;
- merge – mergering according to various options.
For more details about these operations, see in documentation Pandas (it

is useful to review this entire documentation file at least once).

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

209

APPENDIX B
BUILDING YOUR OWN DATASET IN THE KAGGLE ENVIRONMENT

To create your own datasets in the Kaggle environment, it is recommend-

ed to use the following algorithm:
1. Create a data table in an editor that can save files in csv format (for

example, MS Excel, Google.Table, Calc Apache OpenOffice or LibreOffice,
Spreadsheets WPS Office, etc.) and enter all the necessary data into it and per-
form formatting cleaning and data refactoring, to prepare for a convenient ap-
pearance for automatic processing:

- each table is on a separate sheet;
- do not merge cells;
- name all columns with words with small letters or numbers, try to avoid

special characters;
- if there is more than one word in the name, then combine them with the

symbol "_" and not with spaces): «body_temperature»;
- dates should be optimally submitted in the format "Short date format"

(for example: 04.01.24), avoid the date option where zeros are omitted in the
necessary digits "4.1.24", because there are no ready-made functions for them in
Python and a new special function must be developed, instead editors like MS
Excel have handy features that make it easy to convert 4.1.24 to 04.01.24.

2. Save each table in a separate csv file (remember that each sheet of the
table is saved in a separate csv file);

3. Determine the character encoding or change it to a known one. Open
the created csv-file in the "SublimeText" editor or similar. Make sure that all
characters are read correctly, or re-encode them by clicking "File/Reopen with
Encoding" in the menu and selecting the required encoding from the list, and
then – save the file. Usually, choose UTF-8 or others. Then, in the case of read-
ing the data in Kaggle, it will be known exactly which encoding to specify (see
the example in tip "Tip2.3" in [4]). There are still services that allow you to
identify text encoding, for example, the Python library chardet. In the case of
working with datasets, it is important to know the encoding exactly to guarantee
its correct reading, otherwise information may be lost or it may not be read at
all.

4. Create a new dataset in Kaggle Dataset: click on the "New Dataset"
button and drag the file created in point 2 into a new window.

5. Assign the main name to the dataset. It will appear later in the web
link at the end of the address (letters through a hyphen and then it cannot be
changed!), an additional clarifying name and describe the dataset, following fur-
ther instructions and templates (see examples
https://www.kaggle.com/vbmokin/datasets).

Regarding Kaggle, it is important to know that it uses a built-in plagiarism
checker and does not allow you to save a dataset that is already in the system!

https://github.com/chardet/chardet
https://www.kaggle.com/vbmokin/datasets

210

Therefore, if you intend to create your own dataset, it must be truly original or at
least contain some processing of the existing one so that there is no overlap in
the data.

We systematize the dataset construction operations in Kaggle in the form
of infographics in the S(I) coordinate system (Fig. B.1).

Figure B.1 – Infographics of dataset construction operations in Kaggle

It is important to make the most of open data. It is also useful because it is
then easier to publish the results (with reference to the original sources of in-
formation).

211

APPENDIX C
EXAMPLES OF SETTING PROBLEMS FROM MACHINE LEARNING

AND INTELLIGENT DATA ANALYSIS

We will give examples of setting tasks from machine learning and intelli-
gent data analysis using the example of real tasks, as well as using the example
of Kaggle datasets and Kaggle competitions.

1. Retail Sales Forecasting: Based on historical sales data, weather, hol-
idays and other factors, a model is created to forecast future store sales. The re-
sults of such a model can help managers make decisions about inventory, mar-
keting campaigns, etc.

2. Text classification: The task is to recognize the category of the text.
For example, classifying e-mails as "spam" and "not spam", or analyzing senti-
ment in comments on social networks.

3. Medical Data Anomaly Detection: Using machine learning algo-
rithms, medical data is analyzed to detect abnormalities or potential diseases at
an early stage. This can be useful for diagnosing various diseases, such as cancer
or heart disease.

4. Recommender systems: The challenge is to develop systems that
recommend products, services or content to users based on their previous inter-
actions. For example, movie recommendations based on a user's viewing histo-
ry.

5. Image recognition: The goal is to recognize objects or patterns in im-
ages. This can be used to automatically recognize license plates in photographs
or to analyze medical images to detect pathologies.

In addition, the Kaggle platform provides access to a variety of datasets

and organizes competitions that can serve as examples of real-world machine
learning tasks:

1) Titanic: Machine Learning from Disaster.
2) House Prices: Advanced Regression Techniques.
3) Sentiment Analysis on Movie Reviews.
4) COVID-19 Open Research Dataset Challenge (CORD-19).
5) GoDaddy Data Challenge.
6) Data Science for Good: City of Los Angeles.

https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/competitions/godaddy-microbusiness-density-forecasting/overview
https://www.kaggle.com/c/data-science-for-good-city-of-los-angeles

212

APPENDIX D
IT INFRASTRUCTURE OF MACHINE LEARNING AND

INTELLIGENT DATA ANALYSIS

Various IT infrastructures with the following components are used to im-
plement machine learning and IDA solutions:

- programming languages: the availability of libraries and frameworks that
can be used to solve machine learning problems depends on the choice of pro-
gramming language;

- environments, web platforms (or cloud platforms) and services: se-
environments for developing and deploying machine learning models that pro-
vide access to computing resources and data;

- IDE (Integrated Development Environment) helps developers conven-
iently write and save code and debug machine learning models (usually inte-
grates with GitHub to save and control program versions);

- databases and their management systems: used to store and structure da-
ta and files, as well as process and cache data requests according to specified
criteria;

- frameworks, packages and libraries – provide access to functions, clas-
ses, methods that can be used to solve machine learning problems.

The choice of infrastructure components for solving machine learning
problems depends on many criteria:

- customer requirements – sometimes the use of cloud resources is prohib-
ited or, on the contrary, it is prohibited to store copies of data on a local comput-
er;

- application conditions – sometimes, a machine learning model is re-
quired as part of an already deployed system, such as an IoT system or web ser-
vice, and must be run as a separate module or in a separate container;

- available finances – for example, working with Amazon services re-
quires considerable funds;

- knowledge and skills of programmers, including the date of engineers
and data scientists – to ensure quality implementation, experienced personnel
are needed, although, for a task with significant funding, suitable employees can
be hired separately.

There may be other criteria, including requirements or restrictions.
The most popular programming language for machine learning and data

analysis today is Python because it is easy to learn and use, has a large and ac-
tive developer community, and offers a wide variety of machine learning librar-
ies and frameworks.

In the past, solving problems of machine learning, artificial intelligence
and intelligent data analysis were traditionally carried out in the languages
Prolog, R, in the MATLAB package, etc. [69-72], but nowadays, especially in
IT companies that are involved in the creation of programs and ready-to-

213

implement solutions, only Python is popular. R used to be a popular language
for statistical machine learning because it offers powerful functions for data
analysis and visualization. The majority of solution developers have already re-
oriented themselves to Python, R, Prolog, MATLAB, etc. By the way, the au-
thors of this manual used to program in R, as well as in MATLAB.

There are a number of cloud platforms and services that can be used to

develop and deploy machine learning models. Some popular environments in-
clude:

- Amazon Web Services (AWS) – Provides a wide range of services for
machine learning, including Amazon SageMaker, Amazon Lex, etc;

- Microsoft Azure Machine Learning is a machine learning platform that
offers services such as model training, model deployment, and model manage-
ment;

- Google Cloud AI Platform is a machine learning platform that offers
services such as model training, model deployment, and model management;

- Colaboratory (or Google Colab) is a free environment for developing
and deploying machine learning models in Python, which is available in the
browser, and there are also free options for accessing computing capabilities us-
ing GPUs (although these capabilities are much greater on paid terms);

- Kaggle is a web-based platform for data scientists that offers competi-
tions, a free code editor and computing power, and a forum to discuss problems.

The most popular IDE for machine learning in Python:
- PyCharm is an IDE developed by JetBrains and is free for higher educa-

tion students;
- Visual Studio is a powerful but complex integrated development envi-

ronment (IDE) from Microsoft;
- Anaconda (Fig. D.1) is a free Python distribution that includes many

popular packages for scientific computing and machine learning, such as
NumPy, pandas, Scikit-learn, TensorFlow, and PyTorch;

- Visual Studio Code (VS Code) – is a lightweight code editor from Mi-
crosoft;

- Jupyter Notebook – it is a popular environment for executing code in the
browser.

214

Figure D.1 – IDE Anaconda navigator interface

This manual is focused on the use of Jupyter Notebook (JN) (Fig. D.2,

D.3), as the most universal environment. The authors, from their own experi-
ence, know that its code in .ipynb format can be edited in Jupyter Notebook An-
aconda, Kaggle Editor, Amazon SageMaker, and Google Colab.

Figure D.2 – Interface Jupyter Notebook in IDE Anaconda

215

Figure D.3 – Basic elements of the Jupyter Notebook interface

Both well-structured databases (for example, relational or hierarchical)

and unstructured ones that simply contain csv files, images, video or audio files
can be used to store information in machine learning tasks. The second type is
more common.

Nowadays, cloud unstructured databases have gained more popularity:
- Amazon S3 (abbreviation of "Simple Storage Service");
- Microsoft Azure Blob Storage (Microsoft);
- Google Cloud Storage;
- IBM Cloud Object Storage etc.
It is important to note that such databases use add-ons that structure the

data and make SQL queries to them possible. For example, in AWS, Amazon
Athena is used for this.

For local solutions, relational databases and the SQL language for work-
ing with them have become more popular.

There are a number of basic frameworks and libraries that can be used for
machine learning:

- Scikit-learn – is a machine learning library that offers a wide variety of
machine learning algorithms including classification, regression, clustering, di-
mensionality reduction and many others, will be covered in more detail in all
subsequent chapters of the textbook;

216

- NumPy – is a library for scientific computing that provides access to
high-performance computing, work with arrays, matrices, often used for data
processing and preparation;

- Pandas – is a data analysis library that provides high-speed operations
for processing structured data, such as dataframes (a table) and series (individual
columns of a table);

- Matplotlib – is a data visualization library that provides graphs and
charts;

- TensorFlow (TF) (integrated with Keras) – is a Google framework for
machine learning, which specializes in deep learning;

- PyTorch – is Facebook's machine learning framework that also special-
izes in deep learning (competing with TF).

Other libraries, as well as packages (collections of interconnected mod-
ules), as a rule, use the functions, methods and classes of these basic libraries
and frameworks, for example, the following are popular:

- seaborn – a data visualization library based on Matplotlib with quality
infographics;

- plotly – library for interactive data visualization just in the browser;
- xgboost, lightgbm – libraries of high-performance boosting models;
- spaCy, NLTK – a library for natural language processing (NLP);
- opencv – a computer vision library used for image and video processing.
The notebooks mentioned in the author's reference notebook "Data Sci-

ence for tabular data: Advanced Techniques" describe many examples of solving
machine learning problems using the Python libraries and frameworks men-
tioned above.

217

APPENDIX E
LIBRARIES AND METHODS FOR AUTOMATIC EDA:

PANDASPROFILING, AUTOVIZ, SWEETVIZ

Specialized Python libraries and methods that allow you to perform auto-

matic EDA [56]:

1. PandasProfiling (PP) – everything is done by a single ProfileReport

command.
The main principle of PandasProfiling is to output statistics and various

information for each variable separately. It is also possible to analyze the rela-
tionship between arbitrary pairs of features on an interactive graph. It is valuable
that at the beginning of the report general conclusions about the variables are
given and different textual information is given in different colors: which fea-
tures are highly correlated, which contain very few or very many unique values,
which contain many missing values, etc. (Fig. E.1).

Figure E.1 – PandasProfiling statistical findings on features of the Titanic pas-

senger competition training dataset from the author's notebook

https://www.kaggle.com/code/vbmokin/automatic-eda-with-pandas-profiling

218

2. AutoViz – automatically determines the graph type for each variable,
depending on its characteristics. For example, numeric variables can be dis-
played as histograms, scatter plots, or line graphs, while categorical variables
can be displayed as pie charts or bar graphs—trying to provide useful visualiza-
tions for each type of data. Can perform grouped analyses, for example, consid-
ering dependencies between variables or the distribution of variable values by a
certain category. Can generate interactive graphs (Fig. E.2).

Figure E.2 – Comparison of datasets with the exchange rate of cryptocurrency

for different dates corresponding to 2 classes: «0» – from 10.10.2021 to
06.04.2022, «1» – from 07.04.2022 to 03.10.2022 [56, section 6.3]

3. SweetViz – automatically constructs histograms for all numeric and
categorical variables. It is possible to analyze the relationship between numeri-
cal and categorical features by building graphs of relativity. SweetViz provides
convenient interfaces for comparing two different datasets, for example, training
and testing, or for data collected at different times (Fig. E.3).

219

Figure E.3 – Comparison of datasets with the exchange rate of cryptocurrency
for different dates corresponding to 2 classes: «Dataframe» – from 10.10.2021

to 06.04.2022, «Compared» – from 07.04.2022 to 03.10.2022
[56, section 6.2]

220

APPENDIX F
LIBRARIES SHAP, LIME FOR THE MODEL INTERPRETATION

SHAP ("SHapley Additive explanations") is a game-theoretic approach to

explaining the predictions of any machine learning model using classical Shap-
ley values from game theory. Shapley values determine how much a change in
each feature affects the model's prediction, i.e. increases or decreases its value.

What is particularly valuable is that SHAP takes into account all possible
subsets of features and allows consideration of interactions between them. This
allows you to create interpretations that reflect not only the importance of indi-
vidual features, but also their mutual influence. That is, it allows you to under-
stand the cause-and-effect relationships and the contribution of each feature to
the prognosis.

Such diagrams are effective and popular SHAP:

1. Summary Plot – a diagram that shows the contribution of each feature

to each specific forecast (Fig. F.1).

 a) b)

Figure F.1 – Summary Plot SHAP chart for Bitcoin exchange rate:
a) with the parameter plot_type = "bar", b) with the parameter

plot_type = "dot" [56]

2. Force Plot – a graph that displays the size and sign of the contribution
of each feature for a specific forecast, taking into account the base forecast for
the entire sample (Fig. F.2). Features that affect the increase of the target are
displayed in red, and those that affect the decrease in blue. It is interesting that

https://github.com/shap/shap

221

such a graph can be built both for each prediction separately (Fig. F.2a) and for
all values together, then it will have the form of an interactive graph, where you
can choose different features (in the drop-down windows on the top and left)
and ranges (mouse on the graph) and more carefully study the regularities (Fig.
F.2b).

a)

b)

Figure F.2 – Force Plot SHAP charts for the increase in the number of corona-
virus patients in Ukraine: a) for one date, October 20, 2020;

b) compilative interactive diagram based on the Tree Explainer method for a
wider set of features for April-October 2020 (from the author's notebook)

Diagram F.2a shows that, according to Google trends, the negative red

value of mobility_residential and the positive blue value of mobili-
ty_retail_and_recreation reduce the number of new coronavirus patients. Other
indicators are shown in red and are positive, so their increase contributes to the
increase in the number of new patients: mobility_grocery_and_pharmacy, num-
ber of tests, mobility_parks, etc. And on the diagram F.2b it can be seen that the
regularities underwent significant changes during the entire range of observa-
tions, therefore, for forecasting in the medium and long term, these features can,
rather, reduce the accuracy of forecasting.

3. Dependency Plot – a scatter diagram that shows how a change in the
value of a specific feature affects the contribution of this feature to the forecast
(Fig.. 3.6).

https://www.kaggle.com/code/vbmokin/covid-19-in-ukraine-explanation-of-patterns

222

Figure F.3 – A Dependency Plot SHAP diagram that illustrates the logarithm of
the odds of earning more than $50,000 a year, depending on the person's

age and education

In fig. F.3 shows that the logarithm of the chances of earning more than

50,000 dollars per year increases significantly between the ages of 20 and 40,
reaching the highest values, with the highest possible level of education, some-
where from 38 to 60, and the maximum – from 45 to, approximately, 53 years.

4. Waterfall Plot: A plot that illustrates the way the model arrives at a par-
ticular prediction, showing the contribution of each feature at each step as a wa-
terfall of increments with different sign and color. The bottom of the waterfall
diagram begins as the expected value of the model output given the input feature
values plotted in gray numbers, and then each line in the diagram shows how the
positive (red) or negative (blue) contribution of each feature moves the value
from the expected model output to that prediction (Fig. F.4).

https://shap-lrjball.readthedocs.io/en/latest/example_notebooks/plots/dependence_plot.html

223

Figure F.4 – A Dependency Plot SHAP diagram that illustrates the nature and
strength of the influence of certain features of the signs on the logarithm of the

chances of earning more than 50 thousand dollars per year

In fig. F.4 shows that (see the description of parameter values in the "US

Adult Income Dataset" dataset, for example, in the repository or elsewhere): the
lack of capital growth had the greatest impact on the decrease in income; that
this African American (Sex=1, Race=4) has never worked (Workclass); that he
is ready to work only on manual work related to repairs (Occupation=1); that he
is single (MaritalStatus = 4). Some growth is due to an age close to the opti-
mum, when, on average, people earn the most (38-60 years), that he is male
(Sex=1), that he has an education, albeit a small one (Education_Num=13: only
5-6th grades).

See other examples and their description in more detail: Data Science for
tabular data: Advanced Techniques, Crypto - BTC : Analysis & Forecasting
(sections 3.4), or in paper or in documentation.

The main drawback of the SHAP library is that it requires a lot of compu-
tation when analyzing large and complex neural network models or ensembles.
Therefore, the LIME library is often used, which uses a number of simplifica-
tions and therefore requires less computational costs.

https://shap-lrjball.readthedocs.io/en/latest/example_notebooks/plots/dependence_plot.html
https://www.kaggle.com/code/vbmokin/data-science-for-tabular-data-advanced-techniques
https://www.kaggle.com/code/vbmokin/data-science-for-tabular-data-advanced-techniques
https://www.kaggle.com/code/vbmokin/crypto-btc-analysis-forecasting
https://www.freecodecamp.org/news/interpret-black-box-model-using-lime/
https://shap-lrjball.readthedocs.io/en/latest/

224

The basic principle of the LIME library is that any complex model is more
easily approximated in the neighborhood of a particular example of data. The
model is presented as a "black box". And its behavior at a given point is approx-
imated by a linear model, and it is based on it that the explanation of the entire
model as a whole is formed. In fig. F.5 gives an example that illustrates this
principle.

Figure F.5 – Illustration of the working principle of the method LIME [73]

The model-based function being explained is shown in blue and pink. It is

obvious that it is non-linear. The large red cross is an example of the data at
point X0. We take other data values in a certain neighborhood near X0, taking
into account the degree of proximity to X0 in relation to the weight of these da-
ta. A collection of points (crosses) is formed, which is further approximated by a
straight line (dotted line in Fig. F.5). This line allows us to characterize a certain
section of regularities, but these are rather local rather than global regularities.
This is the main drawback of the methods of this library – that it describes local
regularities, not global ones [74].

Fig. F.6 and F.7 presents examples from the notebook as for the interpre-
tation of the predictions made by the model for the passengers of the Titanic,
whether they will survive or not according to the data of the well-known compe-
tition in Kaggle.

https://www.kaggle.com/code/vikumsw/explaining-random-forest-model-with-lime
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic

225

Figure F.6 – The example of predicting whether a Titanic passenger with a
cheap 3rd class ticket who boarded at the last port – in Queenstown (Queens-

town – "Q") will survive the disaster

As can be seen in fig. F.6, a passenger on the Titanic with a cheap 3rd

class ticket, who disembarked at the last port – Queenstown, will die with a
probability of 0.86. The fact that he was traveling in the hold with other 3rd
class passengers and was a male left him virtually no chance of survival. In ad-
dition, as history knows, those who boarded at the last port (in Queenstown)
took the least comfortable seats (far from the gangway from which the clean air
came) that were still available. Although, the fact that he is young (Age=21) and
that he has no brothers, sisters, or wife (SibSp=0) to worry about gives him
some chances.

https://www.kaggle.com/code/vikumsw/explaining-random-forest-model-with-lime

226

Figure F.7 – The example of predicting whether a Titanic passenger who has an
expensive 1st class ticket will survive the disaster

And as can be seen from fig. F.7, the Titanic passenger has every chance

to be saved. This is mostly facilitated by her female gender and an expensive 1st
class ticket. It doesn't really matter in which port she sat down, since the 1st
class passengers occupied separate beautiful cabins. It is somewhat surprising
that her chances of survival are increased by the absence of brothers, sisters or a
husband, because husbands and brothers saved women and sisters, respectively,
in the first place. And it is also surprising that her chances of dying are affected
by her young age (Age=24) and absence of parents (Parch=0). After all, the
crew or other men would save such a young lady, and she would not have to
take care of her parents. Obviously, these somewhat strange results demonstrate
that, globally, the conclusions of the LIME library may not be entirely adequate.
Specifically, such a woman in the training dataset would have a chance to die if
she slept soundly or saved one of the children of her familiar family, that is, be-
cause of some features that are missing in this dataset. This is an example of the
fact that it is difficult to draw global conclusions from one piece of data that
may have signs of an anomaly.

https://www.kaggle.com/code/vikumsw/explaining-random-forest-model-with-lime

227

APPENDIX G
NEURAL NETWORK ARCHITECTURES

In 2016, the Isaac Asimov Institute (USA) published an infographics of

the main architectures of modern neural networks at that time (Fig. G.1).

Figure G.1 – Neural network architectures as of 2016

https://www.asimovinstitute.org/neural-network-zoo/

228

More modern neural network architectures are the following (the number
usually means the number of hidden layers):

- ResNet (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152,
ResNeXt, WideResNet architectures are popular);

- EfficientNet (EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, Effi-
cientNet-B3, EfficientNet-B4, EfficientNet-B5, EfficientNet-B6, EfficientNet-
B7) and others.

Educational electronic publication

Vitalii B. Mokin
Mykola G. Pradivliannyi

MACHINE LEARNING,
INTELLIGENT DATA ANALYSIS AND

ARTIFICIAL INTELLIGENCE OF THINGS

Textbook

The manuscript was designed by V. Mokin

Editor: M. Pradivliannyi

The original layout was made by V. Mokin

Signed for publication December 12,2024.
Typeface Times New Roman. Deputy No P2024-080.

Publisher and manufacturer
Vinnytsia National Technical University,

Editorial and Publishing Department.
VNTU, GNK, room 114.

95 Khmelnytskyi highway,
Vinnytsia, 21021.

press.vntu.edu.ua;
Email: irvc.vntu@gmail.com

Certificate of the subject of publishing series DK
No 3516 dated 01.07.2009.

mailto:irvc.vntu@gmail.com

Електронне навчальне видання

Мокін Віталій Борисович
Прадівлянний Микола Григорович

МАШИННЕ НАВЧАННЯ,
ІНТЕЛЕКТУАЛЬНИЙ АНАЛІЗ ДАНИХ ТА

ШТУЧНИЙ ІНТЕЛЕКТ РЕЧЕЙ
Навчальний посібник (англійською мовою)

Рукопис підготував В. Мокін
Редактор: М. Прадівлянний
Оригінал-макет виготовив В. Мокін

Підписано до видання 18.12.2024 р.
Гарнітура Times New Roman. Зам. № P2024-080

Видавець та виготівник
Вінницький національний технічний університет,

Редакційно-видавничий відділ.ВНТУ, ГНК, кімн. 114.
95 Хмельницьке шосе, Вінниця, 21021.

press.vntu.edu.ua; email: irvc.vntu@gmail.com
Свідоцтво суб’єкта видавничої справи серія ДК № 3516 від 01.07.2009 р.

__

Мокін, Віталій
Машинне навчання, інтелектуальний аналіз даних та штучний інте-

лект речей : навчальний посібник [Електронний ресурс] / В. Б. Мокін,
М. Г. Прадівлянний – Вінниця: ВНТУ, 2024. – (PDF, 230 с.)

Посібник містить теоретичні відомості про основні концепції, методи та інстру-
менти науки про дані (Data Science), машинного навчання, штучного інтелекту, ін-
телектуального аналізу даних, штучного інтелекту речей, а також практичні рекомен-
дації щодо застосування сучасних технологій у вирішенні численних прикладних задач,
задач та проблем системного аналізу. Наведено перелік контрольних питань для пере-
вірки набутих теоретичних знань і практичних навичок.

Навчальний посібник призначений для іноземних студентів, які навчаються за
спеціальностями 124 «Системний аналіз» та 126 «Інформаційні системи та технології»
II та III рівнів при вивченні дисциплін «Інтернет речей та інтелектуальний аналіз да-
них», «Інформаційні технології моніторингу та аналіз стану складних систем», «Інфор-
маційні технології моніторингу та аналізу даних», «Інформаційні інтелектуальні техно-
логії», «Системний аналіз», «Розумні технології», а також для студентів, які проходять
виробничу та переддипломну практику і для педагогічної практики аспірантів. Він та-
кож може бути корисним для студентів інших напрямків: менеджмент, фінанси, будів-
ництво, кібербезпека, біоінженерія, електротехніка та машинобудування, сільське гос-
подарство, біологія, медицина, освіта тощо. У посібнику подано багато прикладів за-
вдань із цих напрямків.

mailto:irvc.vntu@gmail.com

	INTRODUCTION
	1 GENERAL ASPECTS OF SETTING AND SOLVING TASKS IN DATA SCIENCE AND INTELLIGENT DATA ANALYSIS
	1.1. Basic concepts of data science, machine learning, artificial intelligence, and intelligent data analysis
	1.2 Setting the task of data analysis. Search for information on it. Building a dataset, its division into training, validation, and test datasets
	1.3 Definition of the target feature, types of tasks and metrics of machine learning. Clarifying the statement of the tasks
	1.4 Generalized algorithms for solving machine learning and IDA tasks and IT infrastructure for their implementation
	1.5 Examples of setting tasks of intelligent data analysis in applied areas
	1.5.1. Cyber Security and Encryption
	1.5.2. Electronics and Telecommunications
	1.5.3. Automation and Robotics, UAV, Transport, Mechanical Engineering
	1.5.4. Architecture and the Building Construction
	1.5.5. Electrical Engineering
	1.5.6. Bioengineering, Medicine
	1.5.7. Management, Economy, Finance
	1.5.8. Agricultural Engineering, Environment, Biology
	1.5.9. Education and Social spheres
	Practical exercises
	Possible topics of practical tasks
	Test questions

	2 DATA PREPROCESSING AND EXPLORATORY DATA ANALYSIS
	2.1 Data cleaning and preprocessing
	2.2 Clustering and data dimensionality reduction
	2.3 Exploratory data analysis
	Practical exercises
	Possible topics of practical tasks
	Test questions

	3 FEATURE ENGINEERING
	3.1 Main tasks and stages of feature engineering
	3.2 Standardization and normalization of features
	3.3 Construction of feature importance diagrams and automation of feature selection based on Sklearn, SHAP, LIME libraries. Interpretability of models
	Possible topics of practical tasks
	Test questions

	4 TRAINING AND TUNING OF MACHINE LEARNING MODELS
	4.1 Types of machine learning models and their advantages
	4.2 Training of machine learning models and their regularization
	4.3 Tuning of models' hyperparameters and controlling their training's effectiveness
	4.4 Linear Regression, Ridge and Lasso models. Logistic Regression
	4.4.1 Linear Regression, Ridge and Lasso models
	4.4.2 Logistic Regression
	4.5 SGD, SVM, k-NN, GP, NB models
	4.5.1 Stochastic Gradient Descent
	4.5.2 Support Vector Machine
	4.5.3 K-nearest neighbor method
	4.5.4 Forecasting methods based on the Gaussian process
	4.5.5 Naive Bayes model
	4.6 Decision Trees. Comparative analysis of models on an example
	4.6.1 Decision Trees
	4.6.2 Comparative analysis of models on an example
	4.7 Randomized ensembles of trees: Random Forest and others
	4.8 Boosting models
	4.9 Ensembles of models. Comparative analysis of model ensembles on an example
	4.10 Neural Network (NN) training and analyzing its accuracy. Deep Learning (DL) Concepts
	Practical exercises
	Possible topics for practical and laboratory tasks
	Test questions

	5 INTELLIGENT DATA ANALYSIS
	5.1 Intelligent Analysis of Images and Videos
	5.1.1 Basic concepts, colors encoding, basic types, tensors
	5.1.2 Typical tasks
	5.1.3 Image preprocessing. OpenCV library
	5.1.4 Convolutional Neural Networks (CNN): principles of work and typical architecture
	5.1.5 Modern architectures of neural networks
	5.1.6 Auto encoders in unsupervised tasks
	5.1.7 Videos analysis and recognition. YOLO.
	5.1.8 Image generation and detection: GAN, VAE, Stable Diffusion
	5.2 Intelligent Analysis of Text: Natural Language Processing and Generating
	5.2.1 NLP: basic concepts, types of problems, data collection and preprocessing
	5.2.1 Linguistic models and classification of natural language text
	5.2.1.1 Bag of Words.
	5.2.1.2 TF-IDF.
	5.2.1.3 GloVe. Embeddings.
	5.2.1.4 Word2Vec.
	5.2.1.5 Transformer
	5.2.1.6 BERT.
	5.2.1.7 Hugging Face (HF).
	5.2.1.8 FE in NLP tasks.
	5.3 Large Language Models (LLM) and Chatbots
	5.4 Intelligent Analysis and Forecasting of Time Series
	5.4.1 Basic concepts and types of problems
	5.4.2 EDA and FE for time series.
	5.4.3 Construction of time series models: ARIMA, Prophet
	Practical exercises
	Possible topics for practical and laboratory tasks
	Test questions

	6 INTERNET OF THINGS
	6.1 Basic concepts and concepts of the Internet of Things. Overview of LPWAN IoT technologies
	6.1.1 Basic concepts and concepts of the Internet of Things
	6.1.2 LPWAN IoT technologies: LoRaWAN, Sigfox, NB-IoT
	6.2 Architecture of IoT systems. Types of its typical components. Optimization of the architecture of IoT systems
	6.2.1 Architecture of IoT systems. Types of its typical components
	6.2.2 Choosing an IoT platform for data collection, storage and analysis
	6.2.3 Optimization of the architecture of IoT systems
	6.2.4 The example of creating an IoT system
	6.3 Artificial Intelligence of Things (AIoT)
	Possible topics for practical and laboratory tasks
	Test questions

	REFERENCES
	APPENDIX A PYTHON BASICS: SYNTAX, DATA TYPES, BASIC COMMANDS AND BASIC LIBRARIES
	APPENDIX B BUILDING YOUR OWN DATASET IN THE KAGGLE ENVIRONMENT
	APPENDIX C EXAMPLES OF SETTING PROBLEMS FROM MACHINE LEARNING AND INTELLIGENT DATA ANALYSIS
	APPENDIX D IT INFRASTRUCTURE OF MACHINE LEARNING AND INTELLIGENT DATA ANALYSIS
	APPENDIX E LIBRARIES AND METHODS FOR AUTOMATIC EDA: PANDASPROFILING, AUTOVIZ, SWEETVIZ
	APPENDIX F LIBRARIES SHAP, LIME FOR THE MODEL INTERPRETATION
	APPENDIX G NEURAL NETWORK ARCHITECTURES

