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INTRODUCTION 
 
 

Machine learning of models and intelligent data analysis with the use of  
these models are becoming more and more relevant and widespread. Areas 
based on the use of large language models and services such as ChatGPT from 
OpenAI are developing especially rapidly. However, the effectiveness of solving 
a problem depends on its correct formulation, chosen information technologies 
and model architecture, methods of data analysis and visualization as well as 
prediction results using these models. ChatGPT and its analogs solve many 
problems, but not all of them – you still need a data scientist who will correctly 
set the problem, formulate a request, and verify the answer (ChatGPT often 
"hallucinates", i.e. synthesizes a random, and not a correct answer), will use it to 
solve the problem. Solving problems became much easier, processes became 
more intelligent and not routine. This textbook is intended to provide a 
comprehensive introduction to the above issues presenting suggestions, 
recommendations and peculiarities useful for the application of the latest 
technologies in system analysis. 

The purpose of this textbook is to acquaint undergraduates and graduate 
students with the basic knowledge and skills in Machine Learning, Intelligent 
Data Analysis, the Internet of Things, and the Artificial Intelligence of Things 
necessary for solving real problems of varying complexity, as well as to help 
find the optimal choice of information technologies and services for automating 
this process.  

The material of the textbook can also be useful for students of the second 
higher education in systems analysis, information systems and technologies, and 
students of other specialties who do not have enough basic knowledge and skills 
in this field. The textbook will also be interesting and useful for students who 
study the specialties 124 "System Analysis" and 126 "Information Systems and 
Technologies" of the II and III levels when learning the following subjects: 
"Internet of things and intelligent data analysis", "Information technologies of 
monitoring and analysis of the state of complex systems", "Information 
technologies of monitoring and data analysis", "Information intelligent 
technologies", "System analysis", "Smart Technologies" as well as for students 
undergoing the industrial and pre-diploma practice, the pedagogical practice for 
graduate students. It can also be useful for students of other areas: management, 
finance, construction, cyber security, bio-, electrical and mechanical 
engineering, agriculture, biology, medicine, education, etc. The textbook 
provides many examples of tasks in these areas. 

The textbook contains the following chapters: 
1. General Aspects of Setting and Solving Tasks in Data Science and 

Intelligent Data Analysis. 
2. Data Preprocessing and Exploratory Data Analysis. 
3. Feature Engineering. 
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4. Training and Tuning of Machine Learning Models. 
5. Intelligent Data Analysis. 
6. Internet of Things. 
Machine learning models, the training of which is described in chapters 1-

4, are not an “end in themselves”. As a rule, they are built to solve applied prob-
lems using intelligent data analysis technologies that is using special technolo-
gies that take into account the specifics of data, and using pre-trained machine 
learning models. Therefore, although the material presented in chapters 1-4 al-
lows you to solve problems of arbitrary complexity, it is more effective to use 
them together with the material of chapters 5, 6: images and videos (section 5.1), 
natural language texts (sections 5.2, 5.3), time series (section 5.4), IoT systems 
(Chapter 6). All programs in this tutorial are in Python. Appendix A lists the 
basic Python commands, data types, and basic Python libraries that you should 
know as a minimum to be able to read later chapters. There are practical exer-
cises and examples of their solutions at the end of chapters 1, 2, 4, and 5. There 
are generalized topics given as possible topics for practical and laboratory tasks 
in the all chapters 1-6.  

Appendices B-G provide auxiliary resources for all chapters 1-6: Appen-
dix B for building your dataset in the Kaggle environment, Appendix C – exam-
ples of setting problems from Machine Learning and Intelligent Data Analysis, 
Appendix D – lists of IT infrastructure, Appendix E presents libraries and meth-
ods for automatic Exploratory Data Analysis: Pandas_profiling, AutoViz, 
SweetViz with many examples, Appendix F highlights libraries SHAP, LIME 
for the model interpretation with many examples, Appendix – with Neural Net-
work architectures.  

When presenting the material, it will be taken into account that it is now 
easy to find the content and parameters of any command, operator, function, or 
library in ChatGPT, therefore such material will be presented minimally – in-
stead, at the end of each chapter, infographics with the names of such commands 
or libraries which should be mastered independently will be provided. Each 
chapter will provide reviews of examples for solving real problems, taking into 
account the authors' many years of experience, and problems of a training nature 
from the Kaggle, platform of data scientists, which as of May 2024 already con-
tains more than 21 million accounts, 60 million notebooks and 5 million datasets 
from data scientists around the world (see Kaggle metadata). 

In addition, there will be links to ready-made Python programming code 
with an illustration of the material presented on the example of solving such real 
or training tasks. Each chapter will end with a list of test questions. 

The authors of the textbook have extensive experience in solving real 
problems in the fields of medicine and biology, ecology and meteorology, 
economics and trade, electronics and the Internet of Things, energy and 
electromechanics, agriculture, management, finance, construction, cyber 
security, bioengineering, education, transport and control of drones, recognition 
of data from remote sensing of the Earth, including aerial photography, etc. 

https://www.kaggle.com/
https://www.kaggle.com/datasets/kaggle/meta-kaggle
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using artificial intelligence technologies, machine learning, and intelligent data 
analysis technologies.  

In addition to real tasks, the authors have significant achievements in the 
ratings of the Kaggle platform. Professor Vitalii Mokin has the title of Kaggle 
Notebooks Grandmaster (the first in Ukraine to receive this title, at that time 
there were only about 60 of them in the world), and he reached the 10th place in 
the Kaggle world rating for notebook development! His profile has more than 
850 Python notebooks, incl. about 200 public ones and these are the ones that 
were used as examples in this textbook.  

The main text was written by Professor Vitalii B. Mokin, but Mykola G. 
Pradivliannyi did a creative translation of most of the material into English and 
selected examples for various tasks, as well as summarized material from vari-
ous web resources. Approximately 80% of the material – Vitalii B. Mokin, 20% 
– Mykola G. Pradivliannyi. 

Author's Kaggle Notebooks are dedicated to solving all the types of prob-
lems discussed in this textbook. Many drawings and explanations were taken 
from them. Readers can copy them and adapt them to their tasks using this text-
book. For many of these notebooks, there are also Ukrainian-language lectures 
by Vitalii B. Mokin on his YouTube channel "AI-ML-DS Training course on 
Python". 

The team of authors would like to thank such data scientists for their use-
ful advice and comments, which allowed to significantly improve the level of 
the material of the textbook: 

- Doctor of Technical Sciences, Professor of the Department of System 
Analysis and Information Technologies (SAIT) of VNTU, Prof. Oleksandr 
Mokin for valuable advice on various aspects; 

- David Groozman for his advice on topics of Data Science, Artificial in-
telligence and Data Engineering; 

- Boris Sorochkin for his advice on development methods, programming, 
and systems analysis; 

- Mykhailo Dratovanyi for his help in designing the textbook [1], the ma-
terial from which was used as the basis for this textbook; 

- Dmytro Shmundiak for exceptional quality consultations when writing 
the material on the analysis of anomalies in time series in chapter 5; 

- Kaggle Grandmaster Yaroslav Isaienkov for sharing valuable experience 
and expertise when writing the material on the GANs in chapter 5; 

- Kaggle Grandmaster Leonid Kulyk for sharing valuable experience and 
expertise when writing the material on the Diffusion Models in chapter 5; 

- Volodymyr Kopniak for help in writing the material on the analysis of 
time series and the text on the heteroscedasticity of series in chapter 5; 

- PhD Arsen Losenko for his materials on forecasting time series using 
Prophet (Facebook Prophet) in chapter 5; 

- Kostiantyn Bondalietov for his advice in web scrapping and NLP re-
search in chapter 5; 
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- Borys Varer and Serhii Levitskiy for their advice on chat-bots and LLM 
models in chapter 5; 

- Dmytro Honcharenko for the assistance in writing Chapter 6 on the In-
ternet of Things and in developing practical tasks for it. 

This is the first edition of the textbook. Please feel free to send comments, 
remarks, and recommendations for its improvement. The e-mail of the Depart-
ment of SAIT of VNTU sait@vntu.edu.ua.  

 

mailto:sait@vntu.edu.ua
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1 GENERAL ASPECTS OF SETTING AND SOLVING TASKS IN 
DATA SCIENCE AND INTELLIGENT DATA ANALYSIS 

 
 
1.1. Basic concepts of data science, machine learning, artificial 

intelligence, and intelligent data analysis 
 

In all spheres of our life it is necessary to be able to process information 
optimally and correctly: collect it, analyze it, forecast it, use it to make informed 
decisions, etc. The entire complex of approaches, techniques, methods and tools 
for solving the above problems is called "Data Science". The main components 
of DS are the following [1]: 

- Data engineering, which includes methods and means of data collection 
and management, their preliminary analysis and processing for use in machine 
learning tasks; 

- Machine learning – a complex of techniques, methods and technologies 
for solving applied problems, which is preceded by "training" models on com-
puters (machines) on certain data; 

-  Artificial intelligence (or artificial intelligence technologies) is a set of 
techniques, methods and machine learning technologies that simulate various 
aspects of human cognition, such as learning, problem solving, reasoning, per-
ception and decision-making; 

- «Intelligent Data Analysis» – solving applied problems of analyzing var-
ious data using a set of techniques, methods and intelligent technologies. 

Let's define what intelligent models are. There are many definitions. We 
suggest the following: an intelligent model is an information model built for the 
efficient solution of the analytical problem, capable of learning from experience 
and generalizing knowledge to process new data and scenarios. This definition 
reflects the main difference of this kind of models – they allow to predict data, 
events, generate new knowledge and information with high accuracy. If an in-
formation system or technology makes a simple comparison of the input data 
with a database of samples (fingerprints, DNA, faces, cadastral information, 
etc.), then it is not intelligent, but if it can predict how a specific face will 
change in 10 years or how it looked 10 years earlier, then this is already an evi-
dence of its intellectuality within this definition. 

However, it is worth noting the following important features [1]: 
1. Machine learning (ML) focuses primarily on training machine models 

with information from datasets, while data engineering (DE) focuses on creating 
and managing these datasets. That is why they are called so. But some publish-
ers and employers often include ML in DE or DE in ML when posting data en-
gineer or ML developer jobs. 

2. Intelligent data analysis (IDA), as a rule, consists in the use of special-
ly developed information technologies and pre-trained intelligent models for 
solving applied analytical problems. Although, some authors often consider 
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ML/AI as one of the initial stages of IDA or IDA as one of the final stages of 
ML or AI.  

This textbook suggests the following way of structuring these terms, con-
cepts, methods and technologies (Fig. 1.1) [1]: 

1.  Collection and processing of data is carried out, including big data 
(Big Data), from IoT or information systems and the formation of datasets for 
data analysis – data engineering (DE), which can be considered as a section of 
data science (DS) or as an independent section. 

2.   Based on the results of DE, Exploratory Data Analysis (EDA) is car-
ried out, which involves the applied application of certain sections of mathemat-
ics, including statistics, to data. This analysis may also involve trial building of 
models to analyze certain patterns in the features. Moreover, such models can 
also be multilayers neural networks (DL). 

3. Based on the results of EDA, machine learning (ML) models, deep 
learning (DL) and artificial intelligence (AI) models are carried out. 

4. Pretrained ML/DL/AI models are used for intelligent data analysis 
(numbers, text, images, video, speech, sounds) (IDA) aimed at solving various 
applied analytical problems. 

 

 
Figure 1.1 – Basic concepts and their combination in the field of 

ML/DL/AI/DE/DS/IDA 
 
They are all united by data science (DS), including DE, although they all 

share some aspects of the software-hardware plan that DS does not, so they only 
overlap. 

DS is a more general concept than mathematics, including statistics, and 
DE, EDA, IDA, and therefore it covers them completely. 

Application software and integrated development environments are used 
to automate all these operations – IDE. 
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This structure corresponds to the division of tasks within the IT compa-
nies into data engineers and data scientists. In turn, data scientists either create 
new ML/DL/AI models, or, more often, use ready-made models, but develop 
technologies for their application to solve new problems. The most valuable 
nowadays is the ability to use IDA itself, but this is impossible qualitatively 
without understanding the fundamentals of ML/DL/AI model building, so it is 
important to master all these aspects of DS. 

Regarding Data Science, a slightly different scheme is common in the lit-
erature. With some of our improvements and a combination with Internet of 
Things (IoT) and IDA, the corresponding scheme is shown in Fig. 1.2. 

 

 
Figure 1.2 – Basic concepts and their combination in the field of Data Science,  

IoT and IDA 
 

Fig. 1.2 shows that informatics (IT and Computer Sciences) in combina-
tion with knowledge and data about the subject area (which is commonly called 
as "Domain Knowledge & Data") and knowledge and data about performance 
indicators, user or customer requirements, business-strategies and limitations, 
etc. (Business Knowledge & Data) form "IoT Software Development". And the 
combination of mathematics, including statistics, and cybernetics, including the-
ory of control and optimization of systems, with this knowledge and data it is 
traditional research in the field of mathematical simulation, prediction and opti-
mization of processes and systems. The combination of IT, including infor-
mation and information-measurement systems, as well as computer sciences, 
with a mathematical apparatus, made it possible to create machine learning and 
artificial intelligence (ML & AI). And at the junction of all of them, there were 
formed: 
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- Data Science (DS) as a theoretical complex; 
- Intelligent Data Analysis (IDA) as an applied application of DS for vari-

ous tasks and tasks; 
- Internet of Things with Artificial Intelligence (AI&IoT = AIoT) as a full-

cycle intelligent information system: observation, storage, processing, intelligent 
analysis and decision support (Industry 4.0). 

It is important to realize that in applied terms, data science, machine 
learning, artificial intelligence, and intelligent technologies are, first of all, in-
formation technologies that process information from input to output according 
to certain algorithms aimed at increasing the amount of information I, primarily 
– for the better systematization and formalization, detection and prediction of 
new knowledge and regularities. These algorithms, depending on the uncertainty 
of the input data, the structure of the models or the branching and multivariation 
of the algorithm, have different complexity. Therefore, for a better understand-
ing of the material, the manual will use the appropriate infographics, which will 
demonstrate how each block of information technologies can be located in such 
a coordinate system S(I) (Fig. 1.3). 

 
Figure 1.3 – Infographics for visualization of information technologies for the 
transformation of input data into output, depending on the complexity S of the 

algorithm and the amount of information they add 
 

If there are many blocks on the diagram, then for a better understanding of 
their sequence along the abscissa axis, the projection of these blocks onto it can 
be added in the form of green vertical lines from the center of the blocks to this 
axis. 

Each section will present examples of setting and solving both real prob-
lems and training problems in the Kaggle platform from the relevant topic. The 
textbook is focused on the use of the Python programming language (see Ap-
pendix A with some infographics and links to documentation and problem sets, 
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which will allow you to speed up its learning, if you already have knowledge of 
at least some other programming language and the basics of algorithmization). 

 
1.2 Setting the task of data analysis. Search for information on it. 

Building a dataset, its division into training, validation, and test datasets 
 

The vast majority of data analysis problems fall into 2 classes [1]: 
1. Tasks of exploratory data analysis, where the data itself is enough to 

analyze patterns, dependencies, primary statistical analysis, etc. without using 
complex models. 

2.  Data analysis and prediction tasks that require the use of complex 
models to make high-precision predictions, after which either the analysis of the 
predictions made is carried out, or the model itself is analyzed, whose good pre-
dictive function has proven its adequacy. 

The tasks of the second class, in turn, are divided into problems that can 
be effectively solved using pre-trained models, and problems that require the 
construction of a new model. 

This textbook is dedicated to the most complex case, when it is necessary 
to carry out both exploratory data analysis and intelligent data analysis, for 
which it is still necessary to build models based on datasets that have yet to be 
created from data that has yet to be found.  

For the first class, the task is, as a rule, a requirement to carry out an intel-
ligence analysis of data to detect the presence and identification of patterns, in-
cluding statistical; detection of wrong, anomalous and problematic data; detec-
tion of connections between data, their grouping and clustering; visualization of 
the obtained conclusions in an easy-to-understand form. There may be broader 
task statements. 

Most tasks of the second class are optimization tasks. It is worth distin-
guishing between the tasks of machine learning of intelligent models and tasks 
of IAD. Even if it is not explicitly formulated, optimization can be carried out in 
functions of libraries that are used to improve the accuracy of model training. 

Classical optimization tasks in systems theory are usually formulated as 
follows: for given input data, control variables, under the influence of controlled 
and uncontrolled disturbances, ensure the optimum of the optimization criterion 
under certain restrictions. 

In machine learning tasks, as a rule, the input data and the so-called "tar-
get" are distinguished. There can be many targets, or all data can be a target in 
turn. Often, all this data is located in one table. The optimization criterion is a 
numerical indicator (metric or error). There may be no restrictions. Basically, 
their role is to limit the use of only values from the dataset and prohibit the use 
of others. But there may also be certain physical restrictions, for example, the 
prohibition of fractional values (in the case of using regression models to predict 
or forecast the number of objects, all values should be rounded to a whole and 
only then determine the metric – see the example of determining the number of 
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survivors on the "Titanic" in a notebook) or the number of patients with corona-
virus cannot be negative, etc. 

So, the classic task of machine learning of an intelligent model is usually 
formulated as follows: for a given dataset (data tables, text files, audio, video 
files or images), build and train an intelligent model that will provide the opti-
mum (maximum or minimum) of the given metric (criteria) for a given target 
feature(s). Additional restrictions may be applied, but are not required. 

The tasks of intelligent analysis can be the optimization of the use of vari-
ous models, methods and technologies to identify complex relationships and 
regularities in various datasets, including those with numerical, textual, graph-
ical static and/or dynamic information, with the aim of forming predictions or 
obtaining insights for effective decision-making and problem solving in various 
fields. There may be other (more general or more narrow) statements of IDA 
tasks. 

There is no single algorithm for setting and solving all such tasks, alt-
hough below in this section there is a generalized algorithm and recommenda-
tions for the most complex options for setting the problem, but unfortunately, it 
do not cover all possible options. 

Algorithms may differ in the stage at which task solving begins. Competi-
tions and training examples already have datasets and task statements that need 
to be solved. In real problems [1]: 

Option 1. The data set may be a known one. This may be, for example, 
data from medical tests and only the desire to improve the treatment efficiency 
or evaluate the spread of the disease in the country more accurately. But it still 
remains unknown how to do it and what indicators to use. That means that the 
exact formulations of the tasks need to be done independently. 

Option 2. The task statement may be known. For example, this may be to 
increase the accuracy of the daily forecast of the officially published number of 
coronavirus patients in the country, but what factors to take into account remains 
unknown, i.e. the dataset still needs to be created, and after creating, in is neces-
sary to clarify the task statement, since not all data usually can be found, accord-
ing to the requirements. 

Option 2 occurs more often and is the most generalized, and option 1 is its 
simplified case. Therefore, we will pay more attention to option 2. 

Ready-made datasets can be searched on web platforms (GitHub, Kaggle, 
Hugging Face, etc., where there are hundreds of thousands of them and they are 
publicly available). If you could not find the required dataset, or if it is found, 
but it does not look the way you want, you should create your own dataset. It of-
ten makes sense to create your own dataset, even when there are different exist-
ing datasets, but you still need to apply many pre-processing operations to them 
each time. Then you apply them, select everything you need, save it once in its 
optimal form, and then only use it in the future. 

When collecting data, it is very important to consider those features that im-
pact or potentially affect the target feature and ignore those that definitely do 
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not. For example, there is a web page with the so-called "False Correlations". 
These are regularities between which there is no physical or semantic connec-
tion, but statistical analysis shows that the correlation is present (Fig. 1.4). 

 

 
Figure 1.4 – 0.79 Correlation of Non-Commercial Space Launches and Sociolo-

gy PhDs defended on  «False Correlations» 
 
Appendix B provides an algorithm and recommendations for building 

your own dataset in the Kaggle environment. Also, you can create datasets as 
files on your local computer (for use in Python programs on the same computer), 
on GitHub, on your Google Drive, in the Amazon S3 service, etc.  

An important aspect in machine learning tasks is the formation of training, 
validation and test datasets. Models are trained on the training dataset. It is also 
called "training". Optimal model is chosen on the validation dataset. And the 
testing one is been used to apply only the optimal model. 

In real tasks, all data are usually divided into training and validation or in-
to training and testing, but the testing acts as the validation one. Usually, the 
training dataset contains from 70% to 90% of the total data, and the validation 
dataset from 10% to 30%. The most popular options are: 75/25% or 80/20%. 
The 90/10% option is used if the total amount of data is too small and the model 
cannot learn using 70-85%, and the option with 70/30% (or even 60/40%) when 
the data is very uniform and the model gives a super high accuracy of 100% 
matches, even using 70/30%. 

Usually, the validation data are selected from the general randomly, but 
for time series, when it is necessary to predict the future, then the last values of 
the series are validating, so that the optimal model most accurately reproduces 
the data located in time immediately before the test ones. 

For classic machine learning tasks, cross-validation is usually used, when 
only the percentage of data that should be selected for training and validation, 
and the number of cross-validations (abbreviated as "cv") and other parameters 
(percentage of overlap, etc.) are set (Fig. 1.5). 

https://www.tylervigen.com/spurious-correlations
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Figure 1.5 – Cross-validation of training and validation data with cv = 5, 

without data overlap (from GitHub)  
 
That is, all data is divided into blocks, which one by one become a valida-

tion dataset, and the rest are training data. If data overlap is specified, then each 
value can be multiple times in the validation dataset. In some cases this method 
allows to significantly increase the accuracy of the model. 

It is also important that the validation and test data have the same ranges 
of feature values as in the training data, otherwise the model may be underfitted. 
For example, if the training dataset contains only used cars with a value of 
$10,000 to $20,000, and the validation and test dataset contains $300,000 or 
more up to 2 million dollars, then such a model is unlikely to be effective. For 
this, it is important to analyze and compare the distribution laws of these da-
tasets, which will be discussed in more detail in the next Сhap. 2. 

- A dataset, as a separate set of files on a disk or in a cloud environment, is 
not always necessary if the data can be obtained through an Application Pro-
gram Interface (API) or simply from web resources. To do this, it is enough to 
make a request in the program, download the data and start processing. For ex-
ample, you can: 

-  download a web page, extract the text from it and analyze it (this will be 
discussed in Сhap. 5);   

-  download the cryptocurrency rate via API from the cryptocurrency ex-
change (this will be discussed in Сhap. 5); 

-  in Kaggle, you can use another notebook as a dataset in your notebook 
(Python program) and tighten its results directly, without the separate saving to 
the cloud as a dataset. 

However, using a dataset is more convenient, because you can store in 
one place different versions of the data, general, training, validation and test 
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parts of the dataset, versions in different languages and with different coding, 
their description, comments on them, programs for their processing, etc. 

 
1.3 Definition of the target feature, types of tasks and metrics of 

machine learning. Clarifying the statement of the tasks 
 

After the dataset is formed, it is necessary to clarify the formulation of the 
task or tasks that can be solved on its basis. 

To clarify the statement of the tasks, it is important that the customer (he 
can be the researcher himself) first describe the tasks, as he sees it, in 3-5 sen-
tences, add a dataset or datasets with data, briefly describe the desired expected 
results. With this in mind, one should clearly define the type of feature or fea-
tures to be targeted, select a metric or metrics that can be used for that type, and 
determine if and which constraints there are. Therefore, you should get answers 
to the following questions [1]:  

1.  What is a target feature and what type is it?  
Incorrect understanding of what a target is or a misunderstanding of its 

type or nature leads to the impossibility of correctly and qualitatively solution of 
the task. This question, in turn, is divided into a number of sub-questions. 

1.1. What are the permissible values of the target characteristic? 
It is necessary to find or obtain examples of the values of the target char-

acteristic, to analyze its dimensions, ideally to find out the full set of possible 
values (if there are few of them) or – theoretically achievable statistical indica-
tors (minimum, maximum, average value, etc.), if there may be many values . 

1.2. Is the target feature the only one, can it be reduced to one, or is it a 
task with many target features? 

The most common and simple option is the option with one target feature 
or when the task can be reduced to a number of separate tasks, where each time 
there will be a different single target feature and each such task must be solved 
separately. A more difficult option are tasks where several interrelated target 
features must be determined at once and cannot be divided into separate ones – 
for such tasks, special models should be used, for example, neural networks with 
many outputs. 

2. Is the task a classification or regression? 
Classification tasks are machine learning tasks, where a limited number of 

classes are predicted, each of which has a sufficient amount of data to study the 
patterns of their formation. Accordingly, regressive tasks are tasks where values 
of the target feature are predicted, for studying the regularities of each range of 
data, there may not be enough input data, and then they are simply predicted by 
the model, i.e. the identified dependencies are spread ("regressed") to other val-
ues. Note, that regression models should not be confused with regression tasks – 
this is a different classification! For example, a logistic regression model is often 
used to solve classification tasks. 
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In practice, tasks where the target feature is a fractional number are im-
mediately classified as regression tasks, and tasks where it is an integer and this 
number is 2-20 or less are classification tasks. In other options, a more thorough 
study is required. Tasks with 100 classes and a billion data can be considered as 
a classification problem, and if there are only 200 pieces of data, then it is better 
to solve it as a regression tasks, otherwise the model will not learn enough. 

Tasks with the so-called "binary target" are most effectively solved, that 
is, when the target attribute takes only 2 values (0 or 1, True or False, sick or 
healthy, whether a passenger on the Titanic survived or died, etc.). A classic ex-
ample is forecasting not the values themselves, (for example, sales volumes, cur-
rency exchange rates, weather parameters, etc.), but whether there will be an in-
crease in the next step (value 1) or not (0)? 

The importance of classifying the problem by the target feature will be-
come clear in chapter 4, where it is noted that most names of machine learning 
models consist of two parts, the first of which is the actual name of the model, 
and the second is the type of problem ("Classifier" or "Regressor") , for exam-
ple: RandomForestClassifier and RandomForestRegressor. 

3. This is the task of analysis, prediction or forecasting?  
There are tasks where you just need to analyze the available data and the 

result is various valuable conclusions and recommendations. And there are tasks 
where it is necessary to predict the results. However, there are tasks where no 
prediction is carried out, but only analysis, so it makes sense to separate the 
"analysis" task type as a separate one. 

In general, forecasting tasks are a subspecies of predicting tasks, but in 
forecasting problems it is important to consider time dependence and use special 
time series models. Prediction tasks are more common, but in them, on the con-
trary, the feature of each moment of time, if it is present, must be removed, oth-
erwise the model, as they say, will be retrained or "overfitted". It will diligently 
predict facts that occurred strictly at those points in time that were in the training 
dataset. 

It will not generalize and analyze the nature of the phenomenon itself and 
will not be able to correctly work with test data at previously unobserved mo-
ments of time. For example, we accidentally receive a photo and have to deter-
mine whether it is a cat or a dog – this is a prediction task and it should not take 
into account the time of receiving the photo. And if we forecast the exchange 
rate on the market, the environmental quality indicator, the number of cars at the 
traffic light, the amount of electricity produced by the solar panel with minute 
averaging, the expected harvest in the field, etc., then this is a forecasting task 
and time must be taken into account. Time series analysis and forecasting will 
be discussed in more detail in subsection 5.4, and other materials will focus 
mainly on predicting problems. 

4. In the development of the previous question: what is the type of data 
formalization and what is the type of the given problem? The algorithm for solv-
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ing the given tasks will depend significantly on the answers to these questions, 
that is, the choice among the following options:  

- data tables that are not sequences of data over time (not time series), and 
classic classification or regression problems of multivariate prediction, when 
one or more target features (columns of the table) should be determined for cer-
tain input features – the universal models of this type are more detailed in Chap-
ter 4; 

- image or video: tasks of analysis, recognition and/or generation of imag-
es – tasks in which it is necessary to determine to which class the given images 
(or video as a sequence of images) belong, or to find specific objects or to ana-
lyze them according to other criteria – this is detailed in chapter 5; 

- text: tasks of analysis, processing and/or generation of natural language 
text – tasks in which natural language text should be analyzed, classified or oth-
erwise processed – this is explained in more detail in chapter 5; 

- time series of data: tasks (as a rule, regression) in which a given target 
characteristic should be predicted as a result of a change in another or many oth-
ers, or the same one, but – at earlier moments in time – this is explained in chap-
ter 5. 

Of course, this classification does not cover all the variety of data and 
problem statements. There is also speech as sound signals; sounds that are not 
speech signals; game algorithms (chess, checkers, Go, etc.) and others. But for 
these other types of tasks, a significant amount of special knowledge in the sub-
ject area, in the field of data engineering, programming, signal theory, etc., is 
necessary, this should be the material of a separate textbook for each of them. 
More briefly, this question sounds like this: tables, images, videos, text, time se-
ries or other? 

Now we will consider the types of metrics for checking the optimality of 
the target feature. 

A metric in machine learning is an optimization criterion that should be 
given an optimal value at various stages of data processing (clustering, building 
models, data classification, etc.). 

For prediction tasks, the following are the most popular (for more details 
and formulas, see subsection 1.5):  

- for classification tasks: "accuracy_score", ROC-AUC, if the dataset is 
unbalanced, i.e. some class significantly prevails, then – "F1_score" or 
"F2_score"; 

- for regression problems: «r2_score», «MAE», «MAPE», «SMAPE»; 
- for clustering problems: «siluette_score» and other. 
There are many others in the sklearn library – see in the documentation 

and in its description «User Guide».  
 In the following sections, other metrics will be mentioned in the context 

of the tasks that will be described there. 
After determining the target characteristic, the type of task (data type) and 

the metric, it is necessary to clarify the statement of the task. Appendix B pro-

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/model_evaluation.html
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vides examples of such problem statements, both real and from Kaggle prize 
competition. 

Fig. 1.6 presents an infographic of the algorithm for setting the tasks in 
the S(I) coordinate system. 

Figure 1.6 – Infographics of the algorithm for setting the tasks machine learning 

1.4 Generalized algorithms for solving machine learning and IDA 
tasks and IT infrastructure for their implementation 

To solve the tasks of machine learning of an intelligent model, in general, 
the following algorithm is used [1]: 

1. Collect data. Build a dataset.
2. Perform data preprocessing and cleaning.
3. Carry out an intelligence analysis of the data and determine which

models should be built next. If the result is satisfactory and it is clear which 
models should be built, then proceed to point 5, otherwise, to point 4. If item 4 
fails to improve the data, then go to item 1 and find additional data. 

4. Carry out a feature engineering. After that, repeat point 3, if the new
features contain raw data, then go to point 2. 

5. Choose the architecture of promising models. Carry out their tuning on
the training dataset. 

6. Carry out model diagnostics on the validation dataset and analyze outli-
ers (anomalies). If, according to the results of diagnostics, it turned out that all 
models were over- or undertraining, then repeat point 5 with other tuning pa-
rameters. If it did not help after N attempts, then go to point 4, and build differ-
ent diagrams of the features importance according to the constructed models and 
analyze these features. If one or more models meet the metric requirements, then 
go to point 7. 
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7.  Choose an optimal model (perhaps an ensemble of models) that satis-
fies the requirements of the problem in terms of metrics and constraints. 

8. Apply the optimal model and make predictions (forecasting), analyze 
emissions and detected regularities, ensure visualization and reproducibility of 
the obtained results. 

Fig. 1.7 shows the infographics of this algorithm in the S(I) coordinate 
system. 

 

 
Figure 1.7 – Infographics of the generalized algorithm for solving the tasks 

of machine learning of an intelligent model 
 

The following sections will be devoted to the stages of this algorithm. 
As it was mentioned above, pre-trained machine learning models are used 

at the stage of intelligent data analysis (IDA). In addition, as a rule, the input is 
not raw data, but ready-made datasets to which IDA should be applied. In most 
cases, it makes sense to perform data preprocessing and cleaning, since models, 
as a rule, work with numerical data, and in IDA data can be images, videos, text, 
etc. The new stages are the transformation of the input data into a format ac-
ceptable to the optimal pretrained models and the post-processing of the results 
to obtain a higher quality analysis. Fig. 1.8 presents an infographics of the gen-
eralized algorithm for solving the IDA problems. 

In general, it is rarely sufficient to use only pretrained models for high-
quality IDA. More often, they are used only at certain stages, and then new ma-
chine learning models are built to generalize the results of their application. 
Therefore, to solve a real task, you should combine the algorithms of Fig. 1.7 
and 1.8. 
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Figure 1.8 – Infographics of the generalized algorithm for solving the problem 

of intelligent analysis using pretrained machine learning models  
(intelligent models) 

 
 
 

1.5 Examples of setting tasks of intelligent data analysis in applied 
areas 

1.5.1. Cyber Security and Encryption 
1. IEEE-CIS Fraud Detection. Can you detect fraud from customer trans-

actions? (2019). 
The IEEE-CIS Fraud Detection competition is devoted to developing ma-

chine learning models that can accurately detect fraudulent customer transac-
tions. Using Vesta's real-world e-commerce dataset, which includes a variety of 
features from device type to product characteristics, create and benchmark mod-
els to enhance the accuracy of fraud detection. Your goal is to improve the sys-
tem's efficacy, reducing false positives and fraud losses for businesses while en-
hancing the customer experience. Submissions will be evaluated based on the 
area under the ROC curve (AUC-ROC).  

Data size: 6,4 Gb. 
2. ALASKA2 Image Steganalysis. Detect secret data hidden within digi-

tal images (2020). 
An efficient and reliable statistical method must be developed to detect 

secret data hidden in digital images (Fig. 1.9).  
 

https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/alaska2-image-steganalysis
https://www.kaggle.com/competitions/alaska2-image-steganalysis
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Figure 1.9 – The Kaggle competition “ALASKA2 Image Steganalysis. Detect 

secret data hidden within digital images” 
 
These images, captured with up to 50 different cameras and processed in 

various ways, aim to reflect real-world conditions. Successful methods will use 
robust detection algorithms with minimal false positives, and submissions will 
be evaluated based on the weighted AUC to emphasize reliable detection with a 
low false alarm rate. 

Data size: 32 Gb. 
3. The Learning Agency Lab - PII Data Detection. Develop automated 

techniques to detect and remove PII from educational data (2024). 
The Learning Agency Lab is hosting a competition to develop automated 

techniques for detecting and removing personally identifiable information (PII) 
from educational data. The goal is to create a model that can accurately identify 
PII in student writing, which will reduce the cost and increase the scalability of 
releasing educational datasets for research and tool development. Current meth-
ods, such as manual review and Named Entity Recognition (NER), are either too 
costly or insufficiently accurate. Submissions will be evaluated based on a clas-
sification metric that prioritizes recall over precision to ensure comprehensive 
PII detection. 

Data size: 110 Mb. 
4. TalkingData AdTracking Fraud Detection Challenge. Can you detect 

fraudulent click traffic for mobile app ads? (2018). 
This contest aims to detect fraudulent click traffic for mobile app ads. 

Companies face significant volumes of fraudulent traffic, leading to misleading 

https://www.kaggle.com/competitions/alaska2-image-steganalysis
https://www.kaggle.com/competitions/alaska2-image-steganalysis
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection
https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection
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data and financial losses. Participants are tasked with developing an algorithm to 
predict whether a user will download an app after clicking on a mobile ad, using 
a dataset of approximately 200 million clicks over four days. Submissions are 
evaluated based on the area under the ROC curve (AUC) between the predicted 
probabilities and the actual outcomes. 

Data size: 11.3 Gb. 
5. Microsoft Malware Prediction. Can you predict if a machine will soon 

be hit with malware? (2019). 
The task involves predicting the probability of a Windows machine get-

ting infected by various families of malware based on its properties, using a da-
taset provided by Microsoft. This dataset includes telemetry data and infection 
reports from Windows Defender. Each row represents a unique machine, with 
the ground truth labeled as "HasDetections". The objective is to use the training 
data to predict the "HasDetections" value for each machine in the test data. 
Submissions will be evaluated based on the area under the ROC curve between 
the predicted probabilities and the observed labels. 

The training and test datasets of this contest contain more than 80 features 
and 8-9 million rows each (Fig. 1.10). 

 

 
Figure 1.10 – Statistics for feature "Platform" (platform name) in the training  
dataset of the contest “Microsoft Malware Prediction” (from the notebook) 

 
 

One of the authors of this manual (Prof. Vitalii Mokin) received a bronze 
medal for participating in this competition. 

Data size: 8.5 Gb. 
 

https://www.kaggle.com/competitions/microsoft-malware-prediction
https://www.kaggle.com/competitions/microsoft-malware-prediction
https://www.kaggle.com/code/youhanlee/my-eda-i-want-to-see-all
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/vbmokin/competitions
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1.5.2. Electronics and Telecommunications 
1. Google Smartphone Decimeter Challenge 2022. Improve high preci-

sion GNSS positioning and navigation accuracy on smartphones 
(2022). 

The goal of this competition is to compute smartphones location down to 
the decimeter or even centimeter resolution. It is necessary to develop a model 
based on raw location measurements from Android smartphones collected in 
open sky and light urban roads using datasets collected by the host. It helps pro-
duce more accurate positions, bridging the connection between the geospatial 
information of finer human behavior and mobile internet with improved granu-
larity (Fig. 1.11). 

 

 
Figure 1.11 – Smartphone 2022: A look at the maps (from the notebook) 

 
Data size: 22.9 Gb. 
 
 
2. SETI Breakthrough Listen - E.T. Signal Search. Find extraterrestrial 

signals in data from deep space (2021). 
Anomalous signals must be found in scans of Breakthrough Listen targets. 

Since there are no confirmed alien signals for training, simulated signals ("nee-
dles") are included in the data (Fig. 1.12).  

https://www.kaggle.com/competitions/smartphone-decimeter-2022
https://www.kaggle.com/competitions/smartphone-decimeter-2022
https://www.kaggle.com/code/carlmcbrideellis/smartphone-2022-a-look-at-the-ground-truth-maps
https://www.kaggle.com/competitions/seti-breakthrough-listen
https://www.kaggle.com/competitions/seti-breakthrough-listen
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Figure 1.12 – The simulated signals ("needles") are included in the data from the 

Green Bank Telescope (from the notebook) 
 

The data consist of two-dimensional arrays, and submissions are evaluat-
ed based on the area under the ROC curve between predicted probability and 
observed target. 

Data size: 156 Gb. 
 
 
3. Indoor Location & Navigation. Identify the position of a smartphone in 

a shopping mall (2021). 
The task is to predict the indoor position of smartphones using real-time 

sensor data provided by XYZ10 and Microsoft Research. There is the dataset of 
nearly 30,000 traces from over 200 buildings to improve the accuracy of indoor 
positioning solutions, which is crucial for enhancing location-based apps and 
services (Fig. 1.13). 

https://www.kaggle.com/code/reighns/eda-seti
https://www.kaggle.com/competitions/indoor-location-navigation
https://www.kaggle.com/competitions/indoor-location-navigation
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Figure 1.13 – Indoor Location & Navigation: identification the position of a 

smartphone in a shopping mall (the illustration from the notebook) 
 

Submissions will be evaluated based on the mean position error. 
Data size: 60 Gb. 
 
1.5.3. Automation and Robotics, UAV, Transport, Mechanical 

Engineering 
1. CVPR 2018 WAD Video Segmentation Challenge. Can you segment 

each objects within image frames captured by vehicles? (2018). 
The task is devoted to image segmentation of movable objects, such as 

cars and pedestrians, at the instance level within image frames captured by vehi-
cles (Fig. 1.14).  

Using a unique dataset provided by Baidu Inc., participants will help im-
prove computer vision algorithms for environmental perception in autonomous 
driving, with evaluation based on mean average precision (mAP) across various 
IoU thresholds. The challenge includes annotations for seven object types: car, 
motorcycle, bicycle, pedestrian, truck, bus, and tricycle. 

Data size: 102.6 Gb. 

https://www.kaggle.com/code/ravishah1/understanding-the-indoor-loc-github-data-eda
https://www.kaggle.com/competitions/cvpr-2018-autonomous-driving
https://www.kaggle.com/competitions/cvpr-2018-autonomous-driving
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Figure 1.14 – The segmentation of movable objects within image frames cap-

tured by vehicles (from the contest) 
 

2. ECML/PKDD 15: Taxi Trip Time Prediction (II). Predict the total 
travel time of taxi trips based on their initial partial trajectories (2015). 

The task involves predicting the total travel time of taxi trips in Porto, 
Portugal, using initial partial trajectories. This prediction aims to enhance the 
efficiency of electronic taxi dispatching systems by helping dispatchers assign 
drivers to pick up requests more effectively. Submissions will be evaluated 
based on the Root Mean Squared Logarithmic Error (RMSLE), emphasizing ac-
curate estimation of trip durations using trajectory data. 

Data size: 0.5 Gb. 
3. New York City Taxi Fare Prediction. Can you predict a rider's taxi 

fare? (2018). 
Your goal is to predict the fare amount (including tolls) for a taxi ride in 

New York City based on the given pickup and dropoff locations, pickup time, 
and number of passengers. You need to build a model to minimize the RMSE in 
fare prediction. This competition was the first where one of the authors (Vitalii 
Mokin) participated in a Kaggle competition (Fig. 1.15). 

Data size: 5.7 Gb. 
 

https://www.kaggle.com/competitions/cvpr-2018-autonomous-driving/overview
https://www.kaggle.com/competitions/pkdd-15-taxi-trip-time-prediction-ii
https://www.kaggle.com/competitions/pkdd-15-taxi-trip-time-prediction-ii
https://www.kaggle.com/competitions/new-york-city-taxi-fare-prediction
https://www.kaggle.com/competitions/new-york-city-taxi-fare-prediction
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Figure 1.15 – Feature engineering in the Kaggle competition  

“New York City Taxi Fare Prediction” was performed  
by the team “SAIT VNTU” of Prof. Vitalii Mokin (2019) 

 
4. Logical Rhythm 2k22 Motorbike Cost. Help predict the price of the 

motorcycles and be an awesome stuntman (2022). 
Predict the price of motorcycles based on various features and become an 

awesome stuntman in the process. Submissions will be evaluated using Root-
Mean-Squared-Log-Error (RMSLE). Use the provided dataset, which includes 
columns like model_name, model_year, kms_driven, owner, location, mileage, 
power, and price, to train your model and predict prices. 

Data size: 720Kb. 
5. Lyft Motion Prediction for Autonomous Vehicles. Build motion pre-

diction models for self-driving vehicles (2020). 
In this task, you develop motion prediction models for self-driving vehi-

cles, aiming to predict the trajectories of surrounding traffic agents such as cars, 
cyclists, and pedestrians (Fig 1.16).  

https://www.kaggle.com/competitions/motorbike-cost
https://www.kaggle.com/competitions/motorbike-cost
https://www.kaggle.com/competitions/lyft-motion-prediction-autonomous-vehicles
https://www.kaggle.com/competitions/lyft-motion-prediction-autonomous-vehicles
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Figure 1.16 – The Kaggle competition  

“Lyft Motion Prediction for Autonomous Vehicles” 
 

Utilizing the largest Prediction Dataset released, you will apply your data 
science and machine learning skills to build and test your models. The goal is to 
address the challenge of multi-modality and ambiguity in traffic scenes, using 
either unimodal models for single predictions or multi-modal models for multi-
ple hypotheses. Your work will contribute to advancing autonomous vehicle 
technology and making transportation safer and more accessible. 

Data size: 23.7 Gb. 
4. Peking University/Baidu - Autonomous Driving. Can you predict ve-

hicle angle in different settings? (2020). 
Self-driving cars, despite significant advancements, still face challenges in 

accurately perceiving objects in traffic, leading to consumer and legislative hesi-
tation. Your task is to develop an algorithm capable of estimating the absolute 
pose (6 degrees of freedom) of vehicles from a single image in real-world traf-
fic. This will improve computer vision and aid in the broader adoption of auton-
omous vehicles, potentially reducing the environmental impact of our growing 
societies. Submissions will be evaluated based on the mean average precision 
between the predicted and actual vehicle pose. 

Data size: 6.3 Gb. 
5. Lyft 3D Object Detection for Autonomous Vehicles. Can you advance 

the state of the art in 3D object detection? (2019). 
This competition challenges participants to advance the state of the art in 

3D object detection for autonomous vehicles. Leveraging a large-scale dataset 
featuring raw sensor inputs from high-end autonomous vehicles, participants 

https://www.kaggle.com/competitions/lyft-motion-prediction-autonomous-vehicles
https://www.kaggle.com/competitions/pku-autonomous-driving
https://www.kaggle.com/competitions/pku-autonomous-driving
https://www.kaggle.com/competitions/3d-object-detection-for-autonomous-vehicles
https://www.kaggle.com/competitions/3d-object-detection-for-autonomous-vehicles
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will develop and optimize algorithms to improve perception, prediction, and 
planning. The goal is to democratize access to high-quality data, fostering inno-
vation in higher-level autonomy functions and ultimately contributing to the de-
velopment of safer, more efficient self-driving technology. Success will be 
measured based on mean average precision at various intersections over union 
(IoU) thresholds. 

Data size: 125.8 Gb. 
6. Passenger Screening Algorithm Challenge. Improve the accuracy of 

the Department of Homeland Security's threat recognition algorithms (2017). 
This contest seeks to enhance the USA Department of Homeland Securi-

ty's threat recognition algorithms to reduce high false alarm rates that cause sig-
nificant delays at airport checkpoints. The challenge invites the data science 
community to improve the accuracy of these algorithms using a dataset of imag-
es from the latest scanning equipment. Participants are tasked with predicting 
the probability of threats in 17 body zones for each scan, aiming to improve pas-
senger experience and maintain security (Fig. 1.17). 

 
Figure 1.17 – The passenger's body surface is shown in a 2-dimensional repre-
sentation using a cylindrical coordinate system for 7 body parts: 2 legs, 1 trunk, 

2 biceps, and 2 forearms (from the notebook) 
 

No one understands the need for both thorough security screenings and 
short wait times more than the U.S. Transportation Security Administration 
(TSA). They are responsible for all U.S. airport security, screening more than 
two million passengers daily.  

https://www.kaggle.com/competitions/passenger-screening-algorithm-challenge
https://www.kaggle.com/competitions/passenger-screening-algorithm-challenge
https://www.kaggle.com/code/nathanrm/full-solution-cylindrical-coordinate-method
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This competition is one of the leaders among Kaggle competitions in 
terms of the value of the prize fund: $1,500,000. 

Data size: 134 Gb. 
7. Mercedes-Benz Greener Manufacturing. Can you cut the time a Mer-

cedes-Benz spends on the test bench? (2017). 
Daimler, one of the world's largest manufacturers of premium cars, is 

challenging participants to optimize the testing time for Mercedes-Benz vehi-
cles. With a focus on maintaining safety and efficiency, the competition requires 
developing powerful algorithmic solutions to predict the testing time for various 
car feature combinations. The goal is to reduce the time vehicles spend on the 
test bench, thereby lowering carbon dioxide emissions without compromising on 
quality. Submissions will be evaluated based on the R2 score. 

Data size: 0.35 Mb. 
8. Porto Seguro’s Safe Driver Prediction. Predict if a driver will file an 

insurance claim next year (2017). 
In this task, you are challenged to develop a model that predicts the prob-

ability of a driver filing an auto insurance claim in the next year for Porto Se-
guro. This improved prediction will help tailor insurance pricing more accurate-
ly, making it fairer and more accessible for cautious drivers. Your model's per-
formance will be assessed using the Normalized Gini Coefficient.  

Data size: 300.5 Mb. 
9. Blue Book for Bulldozers. Predict the auction sale price for a piece of 

heavy equipment to create a "blue book" for bulldozers (2013). 
The task is to predict the auction sale price of heavy equipment, specifi-

cally bulldozers, based on usage, equipment type, and configuration. The goal is 
to create a "blue book" for bulldozers, helping customers value their heavy 
equipment fleets at auction. The data comes from auction results and includes 
details on usage and configurations. The evaluation metric is the RMSLE (root 
mean squared log error) between actual and predicted auction prices. 

Data size: 213.8 Mb. 
 
1.5.4. Architecture and the Building Construction 
1. Google Landmark Recognition Challenge. Label famous (and not-so-

famous) landmarks in images (2018). 
The Google Landmark Recognition Challenge invites participants to de-

velop models that accurately identify landmarks in images from a dataset lack-
ing large annotated resources. Unlike traditional image classification challenges, 
this competition focuses on recognizing a wide array of landmarks, totaling 
15,000 classes, with varying amounts of training data per class. Submissions are 
evaluated using Global Average Precision (GAP), emphasizing precision across 
diverse landmark categories (Fig. 1.18). 

https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/bluebook-for-bulldozers
https://www.kaggle.com/competitions/bluebook-for-bulldozers
https://www.kaggle.com/competitions/landmark-recognition-challenge
https://www.kaggle.com/competitions/landmark-recognition-challenge
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Figure 1.18 – Examples of landmark categories (from the notebook) 

 
The data is no longer available – see them in the updated version below. 
2. Google-Landmarks Dataset. Label famous (and not-so-famous) land-

marks in images (2022). 
The Google-Landmarks Dataset aims to label famous and lesser-known 

landmarks in images, assisting users in identifying and organizing their vacation 
photos. It addresses the challenge of landmark recognition by predicting labels 
directly from image pixels. This dataset, divided into training, test, and index 
sets, supports two main computer vision tasks: landmark recognition, where 
each test image is assigned a landmark label, and retrieval, where relevant index 
images are identified for each test image to aid in further analysis and under-
standing of landmark features (Fig. 1.19). 

 

 
Figure 1.19 – Examples of landmark features (from the notebook) 

 
Data size: 1 Gb. 
3. ASHRAE - Great Energy Predictor III. How much energy will a 

building consume? (2019). 
In the ASHRAE Great Energy Predictor III competition, participants are 

tasked with developing accurate models to predict metered energy consumption 
(chilled water, electric, hot water, and steam) for over 1,000 buildings across a 
three-year period. The goal is to improve current fragmented estimation methods 
and support pay-for-performance financing, where payments are based on the 
difference between actual and predicted energy use. The data includes building 
metadata, weather information, and energy consumption measurements, with 
evaluation based on Root Mean Squared Logarithmic Error. Accurate models 
will encourage investments in building efficiency improvements. 

Data size: 2.6 Gb. 
 

https://www.kaggle.com/code/abhishektyagi001/landmark-recognition-challenge
https://www.kaggle.com/datasets/google/google-landmarks-dataset
https://www.kaggle.com/datasets/google/google-landmarks-dataset
https://www.kaggle.com/code/ekta97/google-landmark-identification-eda
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/competitions/ashrae-energy-prediction
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1.5.5. Electrical Engineering 
1. Global Energy Forecasting Competition 2012 - Wind Forecasting. A 

wind power forecasting problem: predicting hourly power generation up to 48 
hours ahead at 7 wind farms (2012). 

The Global Energy Forecasting Competition 2012 focuses on developing 
models to predict hourly wind power generation up to 48 hours ahead at seven 
wind farms using historical data and wind forecasts (Fig. 1.20).  

 

 
Figure 1.20 – Wind power time series (from the notebook) 

 
The accuracy of these models is evaluated based on RMSE. The data is 

available for periods ranging from the 1st hour of 2009/7/1 to the 12th hour of 
2012/6/28.  

Data size: 27 Mb. 
2. Global Energy Forecasting Competition 2012 - Load Forecasting. A 

hierarchical load forecasting problem: backcasting and forecasting hourly loads 
(in kW) for a US utility with 20 zones (2012). 

Develop models to backcast and forecast hourly electricity loads (in kW) 
for a US utility. The participants are required to backcast and forecast at both the 
zonal level (20 series) and system (sum of the 20 zonal level series) level, a total 

https://www.kaggle.com/competitions/GEF2012-wind-forecasting
https://www.kaggle.com/competitions/GEF2012-wind-forecasting
https://www.kaggle.com/competitions/GEF2012-wind-forecasting
https://www.kaggle.com/code/sebastianjcastro/forecasting-multiple-time-series
https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting
https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting
https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting
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of 21 series. Data (loads of 20 zones and temperature of 11 stations) history 
ranges from 2004/1/1 to 2008/6/30. Given the actual temperature history, the 8 
weeks are set to be missing and are required to be backcasted. 

Data size: 9 Mb. 
3. AMS 2013-2014 Solar Energy Prediction Contest. Forecast daily solar 

energy with an ensemble of weather models (2013). 
The contest challenges participants to forecast daily solar energy produc-

tion at 98 Oklahoma Mesonet sites using ensemble weather models. With re-
newable energy sources like solar fluctuating based on weather conditions, accu-
rate forecasts are crucial for balancing energy resources and minimizing costs. 
Contestants utilize numerical weather predictions from the GEFS. The competi-
tion evaluates predictions against Mean Absolute Error (MAE), aiming to identi-
fy models that best predict short-term solar energy production. 

Data size: 3 Gb. 
4. ASHRAE - Great Energy Predictor III. How much energy will a 

building consume? (2019). 
In the ASHRAE Great Energy Predictor III competition, participants are 

tasked with developing accurate models to predict metered energy consumption 
(chilled water, electric, hot water, and steam) for over 1,000 buildings across a 
three-year period. The goal is to improve current fragmented estimation methods 
and support pay-for-performance financing, where payments are based on the 
difference between actual and predicted energy use (Fig. 1.21).  
 

 
Figure 1.21 – How much energy will a building consume? (From the notebook) 

 
The data includes building metadata, weather information, and energy 

consumption measurements, with evaluation based on Root Mean Squared Log-
arithmic Error. Accurate models will encourage investments in building effi-
ciency improvements. 

Data size: 2.6 Gb. 

https://www.kaggle.com/competitions/ams-2014-solar-energy-prediction-contest
https://www.kaggle.com/competitions/ams-2014-solar-energy-prediction-contest
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/code/hmendonca/starter-eda-and-feature-selection-ashrae3
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5. Enefit - Predict Energy Behavior of Prosumers. Predict Prosumer En-
ergy Patterns and Minimize Imbalance Costs (2024). 

The competition is devoted to addressing the issue of energy imbalance 
caused by prosumers, who both consume and generate energy. The goal is to 
develop a predictive model that accurately forecasts prosumer energy patterns to 
minimize imbalance costs, which pose logistical and financial challenges to en-
ergy companies. Effective solutions will reduce operational costs, improve grid 
reliability, and promote efficient integration of prosumers into the energy sys-
tem. Submissions will be evaluated based on the Mean Absolute Error (MAE) 
between predicted and actual energy use. 

Data size: 1.1 Gb. 
6. VSB Power Line Fault Detection. Can you detect faults in above-

ground electrical lines? (2019). 
Your task is to detect partial discharge patterns in signals from medium 

voltage overhead power lines, using data acquired with a new meter designed at 
the ENET Centre at VŠB. Effective classifiers developed from this data will en-
able continuous monitoring of power lines for faults, reducing maintenance 
costs and preventing power outages. Submissions will be evaluated based on the 
Matthews correlation coefficient (MCC) between the predicted and observed re-
sponses. 

Data size: 12.6 Gb. 
7. Belkin Energy Disaggregation Competition. Disaggregate household 

energy consumption into individual appliances (2013). 
The task involves disaggregating household energy consumption into in-

dividual appliances. Participants are to develop a system that not only displays 
total power consumption but also breaks it down by appliance in real time, 
providing personalized energy-saving recommendations. The challenge is to ac-
curately sense and identify the energy usage of various appliances using ma-
chine learning, specifically by examining Electromagnetic Interference (EMI) 
signatures (Fig 1.22).  

There are a few lab-quality videos that may help you grasp the big picture: 
the video of the signal and the video of the technology applied to energy moni-
toring.  

Submissions will be evaluated based on their accuracy in a multi-label 
classification task, measured by the mean Hamming Loss. 

Data size: 21.5 Gb. 
 

https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers
https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers
https://www.kaggle.com/competitions/vsb-power-line-fault-detection
https://www.kaggle.com/competitions/vsb-power-line-fault-detection
http://cenet.vsb.cz/en/
https://www.vsb.cz/en
https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
http://youtu.be/o-SqO8y8XUA
http://www.youtube.com/watch?v=dcPI1Cp0VZI
http://www.youtube.com/watch?v=dcPI1Cp0VZI
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Figure 1.22 – The example of EMI captured from a home: signatures of various 
appliances in the frequency domain (Kaggle competition “Belkin Energy Dis-

aggregation Competition”) 
 

1.5.6. Bioengineering, Medicine 
1. Mayo Clinic - STRIP AI. Image Classification of Stroke Blood Clot 

Origin (2022). 
The goal of this competition is to classify the blood clot origins in ischem-

ic stroke. Using whole slide digital pathology images, it is necessary to build a 
model that differentiates between the two major acute ischemic stroke (AIS) eti-
ology subtypes: cardiac and large artery atherosclerosis (Fig. 1.23). 

 
Figure 1.23 – Data of the Kaggle Competition “Mayo Clinic - STRIP AI”  

(from the notebook) 
 

Data size: 395.36 Gb. 
2. UW-Madison GI Tract Image Segmentation. Track healthy organs in 

medical scans to improve cancer treatment (2022). 
Develop a deep learning method to automate the segmentation of the 

stomach and intestines in daily MRI (Magnetic Resonance Imaging) scans to 

https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
https://www.kaggle.com/competitions/belkin-energy-disaggregation-competition
https://www.kaggle.com/competitions/mayo-clinic-strip-ai
https://www.kaggle.com/competitions/mayo-clinic-strip-ai
https://www.kaggle.com/code/datark1/eda-images-processing-and-exploration
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
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expedite radiation therapy for gastrointestinal cancer patients, enhancing treat-
ment precision and reducing patient discomfort (Fig. 1.24).  

 

 
Figure 1.24 – Kaggle competition “UW-Madison GI Tract Image Segmenta-

tion”: segment the stomach and intestines on MRI scans 
 

In these scans, radiation oncologists must manually outline the position of 
the stomach and intestines to adjust the direction of the X-ray beams to increase 
the dose delivery to the tumor and avoid the stomach and intestines. This is a 
time-consuming and labor-intensive process that can prolong treatments from 15 
minutes a day to an hour a day. The contest helps automate this process. 

Data size: 2.47 Gb. 
3. Google Brain - Ventilator Pressure Prediction. Simulate a ventilator 

connected to a sedated patient's lung (2021). 
The task involves simulating a ventilator connected to a sedated patient's 

lung, with the best submissions considering lung attributes like compliance and 
resistance. The goal is to develop algorithms that can generalize across different 
lung characteristics, ultimately reducing the cost and clinician burden associated 
with mechanical ventilation. The competition is judged based on the mean abso-
lute error between predicted and actual pressures during the inspiratory phase. 

Data size: 0.7 Gb. 
4. Grasp-and-Lift EEG Detection. Identify hand motions from EEG re-

cordings (2015). 
The task is to develop a model that accurately identifies specific hand mo-

tions (grasping, lifting, replacing objects) from electroencephalography (EEG) 
recordings. This is crucial for advancing brain-computer interface (BCI) pros-
thetic devices, aiming to restore independence to patients with neurological dis-

https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/competitions/ventilator-pressure-prediction
https://www.kaggle.com/competitions/ventilator-pressure-prediction
https://www.kaggle.com/competitions/grasp-and-lift-eeg-detection
https://www.kaggle.com/competitions/grasp-and-lift-eeg-detection
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abilities who have lost hand function. The competition evaluates submissions 
based on the mean column-wise Area Under the Curve (AUC) of ROC curves, 
requiring calibrated probabilities across multiple subjects and series to ensure 
consistent scaling of predictions. 

Data size: 1.1 Gb. 
5. Stanford Ribonanza RNA Folding. Create a model that predicts the 

structures of any RNA molecule (2023). 
The competition challenges participants to develop a model that accurate-

ly predicts the structures of RNA molecules based on experimental chemical re-
activity data (Fig. 1.25).  
 

 
Figure 1.25 – Predicted structure of RNA molecules (from the notebook) 

 
This predictive model is crucial for advancing medical research by ena-

bling the discovery of RNA-based therapies and addressing antibiotic resistance, 

https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding
https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding
https://www.kaggle.com/code/jocelyndumlao/rna-structure-prediction-performance-analysis
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while also offering insights into fundamental biological processes and potential 
applications in biotechnology and climate change mitigation. Submissions are 
evaluated based on their Mean Absolute Error (MAE) in predicting chemical re-
activity profiles across RNA molecules. 

Data size: 130.4 Gb. 
6. Mechanisms of Action (MoA) Prediction. Can you improve the algo-

rithm that classifies drugs based on their biological activity? (2020). 
Your objective is to enhance an algorithm that classifies drugs based on 

their biological activity, specifically their Mechanism of Action (MoA). This in-
volves developing a multi-label classification model using a unique dataset 
combining gene expression and cell viability data across 100 different cell types. 
You will train your model on a provided training dataset to predict MoA labels 
for a test set. The performance of your algorithm will be evaluated using the av-
erage logarithmic loss function on the drug-MoA annotation pairs. Successful 
development of this algorithm will aid in advancing the drug discovery process 
by accurately predicting compounds' MoAs based on their cellular signatures. 

One of the authors of this manual (Prof. Vitalii Mokin) received a bronze 
medal for participating in this competition. 

Data size: 216 Mb. 
 
1.5.7. Management, Economy, Finance 
1. Loan Default Prediction - Imperial College London. Constructing an 

optimal portfolio of loans (2014). 
The task involves predicting loan defaults and estimating the associated 

losses, aiming to go beyond binary classification by predicting both default like-
lihood and loss severity. This approach bridges traditional banking's focus on 
economic capital reduction with asset management's risk optimization for finan-
cial investors. Evaluation in this competition is based on mean absolute error 
(MAE), emphasizing accurate prediction of loss amounts incurred from loan de-
faults. 

Data size: 0.6 Gb. 
2. RecSys2013: Yelp Business Rating Prediction. RecSys Challenge 

2013: Yelp business rating prediction (2013). 
The contest focuses on predicting Yelp business ratings based on a de-

tailed dataset from Phoenix, AZ, including over 10,000 businesses, 8,000 check-
in sites, 40,000 users, and 200,000 reviews. Participants are tasked with creating 
a model to predict future user ratings of businesses which is evaluated using the 
root mean squared error (RMSE) metric to measure accuracy. 

Data size: 0.18 Gb. 
3. CPROD1: Consumer PRODucts contest #1. Identify product mentions 

within a largely user-generated web-based corpus and disambiguate the men-
tions against a large product catalog (2012). 

The CPROD1 contest focuses on identifying and disambiguating consum-
er product mentions within user-generated web content against a large product 

https://www.kaggle.com/competitions/lish-moa
https://www.kaggle.com/competitions/lish-moa
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/competitions/loan-default-prediction
https://www.kaggle.com/competitions/loan-default-prediction
https://www.kaggle.com/c/yelp-recsys-2013
https://www.kaggle.com/c/yelp-recsys-2013
https://www.kaggle.com/c/cprod1
https://www.kaggle.com/c/cprod1
https://www.kaggle.com/c/cprod1
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catalog. Participants must develop state-of-the-art methods to automatically rec-
ognize product mentions in a diverse collection of web content and accurately 
match them to specific products in a catalog of over fifteen million items.  

Data size: 1.6 Gb. 
4. Indoor Location & Navigation. Identify the position of a smartphone 

in a shopping mall (2021). 
The task is to predict the indoor position of smartphones using real-time 

sensor data provided by XYZ10 and Microsoft Research. There is the dataset of 
nearly 30,000 traces from over 200 buildings to improve the accuracy of indoor 
positioning solutions, which is crucial for enhancing location-based apps and 
services. Submissions will be evaluated based on the mean position error. 

Data size: 60 Gb. 
5. Optiver - Trading at the Close. Predict US stocks closing movements 

(2024). 
In this competition, you are tasked with developing a model to predict the 

closing price movements for hundreds of Nasdaq-listed stocks. Using data from 
the order book and the closing auction, your model will assess supply and de-
mand dynamics, adjust prices, and identify trading opportunities, especially dur-
ing the critical final ten minutes of trading. This project provides an opportunity 
to handle real-world data science problems, similar to those faced by profession-
als at Optiver, and aims to improve market efficiency and accessibility. Submis-
sions will be evaluated based on the Mean Absolute Error (MAE) between the 
predicted return and the observed target. 

Data size: 0.65 Gb. 
6. GoDaddy - Microbusiness Density Forecasting. Forecast Next 

Month’s Microbusiness Density (2023). 
The goal of the GoDaddy Microbusiness Density Forecasting competition 

is to predict the monthly density of microbusinesses in specific areas using U.S. 
county-level data. Participants will develop models to provide accurate fore-
casts, which will aid policymakers in understanding and supporting microbusi-
nesses. The competition aims at utilizing advanced data science techniques to 
improve current econometric models and better inform policy decisions. Sub-
missions will be evaluated based on the Symmetric Mean Absolute Percentage 
Error (SMAPE) between the predicted and actual values. 

Data size: 11.4Mb. 
7. OTTO – Multi-Objective Recommender System. Build a recommend-

er system based on real-world e-commerce sessions (2022). 
The task of this competition is to build a “Multi-Objective Recommender 

System” to predict e-commerce clicks, cart additions, and orders based on real-
world user session data. The goal is to improve the shopping experience by 
providing tailored recommendations, thereby increasing customer satisfaction 
and retailer sales (Fig. 1.26).  

https://www.kaggle.com/competitions/indoor-location-navigation
https://www.kaggle.com/competitions/indoor-location-navigation
https://www.kaggle.com/competitions/optiver-trading-at-the-close
https://www.kaggle.com/competitions/godaddy-microbusiness-density-forecasting
https://www.kaggle.com/competitions/godaddy-microbusiness-density-forecasting
https://www.kaggle.com/competitions/otto-recommender-system
https://www.kaggle.com/competitions/otto-recommender-system
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Figure 1.26 – E-commerce clicks, cart additions, and orders based on real-world 

user sessions data (from the notebook) 
 
This involves creating a single model to optimize multiple objectives sim-

ultaneously and will be evaluated based on Recall@20 for each action type, with 
weighted averages for the three recall values. 

Data size: 11.9 Gb. 
8. American Express - Default Prediction. Predict if a customer will de-

fault in the future (2022). 
In this competition, participants are tasked with developing a machine 

learning model to predict customer credit defaults. By leveraging industrial-
scale datasets that include time-series behavioral data and anonymized customer 
profiles, the goal is to create a model that surpasses the current production mod-
el used by American Express. The evaluation metric for the competition is the 
mean of the Normalized Gini Coefficient and the default rate captured at 4%. 
Successful models could improve customer experiences and optimize lending 
decisions. 

Data size: 50.3 Gb. 
9. JPX Tokyo Stock Exchange Prediction. Explore the Tokyo market 

with your data science skills (2022). 
The task involves predicting future returns for stocks on the Tokyo Stock 

Exchange. Participants build models to rank approximately 2,000 stocks from 
highest to lowest expected returns and be evaluated on the Sharpe Ratio of their 
daily spread returns. The competition provides historical and real-time financial 
data, and the goal is to identify undervalued stocks to buy and overvalued stocks 
to sell. Successful models foster learning and potentially increase retail investor 
interest in quantitative trading. 

Data size: 1.33 Gb. 
10. Ubiquant Market Prediction. Make predictions against future market 

data (2022). 
In the Ubiquant Market Prediction competition, your task is to develop a 

model that accurately forecasts the return rates of investments. You will train 
and test your algorithm using historical price data, aiming for high precision in 

https://www.kaggle.com/code/hlgdatascience/visualizing-session-data-in-a-timeline
https://www.kaggle.com/competitions/amex-default-prediction
https://www.kaggle.com/competitions/amex-default-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction
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your predictions. Successful models will enhance the capability of quantitative 
researchers to predict returns, aiding investors in making informed decisions. 
Submissions will be evaluated based on the mean Pearson correlation coefficient 
for each time ID. 

This dataset is no longer available for download but there are many public 
notebooks with solutions worth exploring. 

11.  G-Research Crypto Forecasting. Use your ML expertise to predict re-
al crypto market data (2022). 

Participants in this competition are tasked with using machine learning to 
predict short-term returns for 14 popular cryptocurrencies. The competition pro-
vides a dataset of high-frequency market data, including various price and trad-
ing metrics, dating back to 2018. Participants must build models that forecast 
returns, with submissions evaluated based on a weighted version of the Pearson 
correlation coefficient. The challenge involves handling volatile and non-
stationary data while avoiding overtraining to achieve persistent predictive accu-
racy. 

Data size: 3.12 Gb. 
See the article by Prof. Vitalii Mokin with co-authors “Information Tech-

nology for the Cryptocurrency Rate Forecasting on the Basics of Complex Fea-
ture Engineering” about this contest and other decisions regarding cryptocurren-
cies (Ukrainian language). 

12.  M5 Forecasting - Uncertainty. Estimate the uncertainty distribution of 
Walmart unit sales (2020). 

This competition challenges participants to estimate the uncertainty distri-
bution of Walmart's unit sales for various products sold across the USA. Using 
hierarchical sales data from Walmart, including item-level details, department 
categories, and store information from three states, competitors must forecast 
daily sales for the next 28 days and quantify the uncertainty of these forecasts. 
The robust dataset also includes explanatory variables like price, promotions, 
and special events. Participants are encouraged to use both traditional forecast-
ing methods and machine learning to enhance forecast accuracy, with the goal of 
advancing forecasting theory and practice. 

Data size: 0.5 Gb. 
One of the authors of this manual (Prof. Vitalii Mokin) received a bronze 

medal for participating in this competition. 
13.  Recruit Restaurant Visitor Forecasting. Predict how many future visi-

tors a restaurant will receive (2018). 
The objective of this competition is to develop a predictive model to esti-

mate the number of visitors a restaurant will receive on future dates, using reser-
vation and visitation data. This task is crucial for helping restaurants optimize 
their ingredient purchases and staffing schedules, mitigating the challenges 
posed by unpredictable factors like weather and local competition. Recruit Hold-
ings provides access to valuable datasets to support the development of accurate 

https://www.kaggle.com/competitions/g-research-crypto-forecasting
https://www.kaggle.com/competitions/g-research-crypto-forecasting
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757/2576
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757/2576
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2757/2576
https://www.kaggle.com/competitions/m5-forecasting-uncertainty
https://www.kaggle.com/competitions/m5-forecasting-uncertainty
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/vbmokin/competitions
https://www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting
https://www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting
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forecasts. Submissions will be assessed based on the root mean squared loga-
rithmic error (RMSLE). 

Data size: 27.3 Mb. 
14.  Porto Seguro’s Safe Driver Prediction. Predict if a driver will file an 

insurance claim next year (2017). 
In this task, you are challenged to develop a model that predicts the prob-

ability of a driver filing an auto insurance claim in the next year for Porto Se-
guro. This improved prediction will help tailor insurance pricing more accurate-
ly, making it fairer and more accessible for cautious drivers. Your model's per-
formance will be assessed using the Normalized Gini Coefficient.  

Data size: 300.5Mb 
15.  Instacart Market Basket Analysis. Which products will an Instacart 

consumer purchase again? (2017). 
In this competition, participants are tasked with predicting which previ-

ously purchased products will be included in a user's next order using anony-
mized customer order data. The dataset includes over 3 million grocery orders 
from more than 200,000 users, detailing the sequence of products, order times, 
and intervals between orders. Competitors will be evaluated based on their pre-
dictions' mean F1 score. This analysis helps Instacart enhance its recommenda-
tion systems and improve user experience. 

Data size: 205.8 Mb. 
16.  House Prices - Advanced Regression Techniques. Predict sales prices 

and practice feature engineering, RFs, and gradient boosting (this competition 
runs indefinitely with a rolling leaderboard). 

 

 
Figure 1.27 – The Histogram, the Probability Plot and the Box Plot for the fea-

ture 'SalePrice' in the training dataset of this contest (from the notebook) 
 

https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction
https://www.kaggle.com/competitions/instacart-market-basket-analysis
https://www.kaggle.com/competitions/instacart-market-basket-analysis
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/code/fightingmuscle/eda-more-technical
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In this competition, your task is to predict the final sales price of homes in 
Ames, Iowa, using a dataset with 79 explanatory variables that describe various 
aspects of residential properties (Fig. 1.27). 

You need to create a model that can accurately estimate the sales price for 
each house, given its unique features. Submissions will be evaluated based on 
the Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted 
prices and the logarithm of the actual sales prices, ensuring that errors in predict-
ing both expensive and inexpensive homes are treated equally. 

This is the competition from the "Getting Started competitions" which 
Kaggle data scientists created for people who have little to no machine learning 
background. They are a great place to begin if you are new to data science or 
just finished a MOOC and want to get involved in Kaggle. 

Data size: 1 Mb. 
17.  Store Sales - Time Series Forecasting. Use machine learning to pre-

dict grocery sales (this competition runs indefinitely with a rolling leaderboard). 
Your task is to build a machine learning model to predict grocery sales for 

thousands of items sold at different Favorita stores. You'll work with a dataset 
containing dates, store and item information, promotions, and unit sales to im-
prove the accuracy of sales forecasts. The goal is to reduce overstocking and 
stock outs, thereby minimizing food waste and improving customer satisfaction. 
The competition uses Root Mean Squared Logarithmic Error as the evaluation 
metric. 

This is the competition from the "Getting Started competitions" too. 
Data size: 125 Mb. 
 
 
1.5.8. Agricultural Engineering, Environment, Biology 
1. Beyond Visible Spectrum: AI for Agriculture 2023. Boosting auto-

matic crop type classification using Sentinel satellite data and self-supervised 
learning (2023). 

In the contest challenge, participants are tasked with developing self-
supervised learning (SSL) models for automatic crop type classification using a 
massive remote sensing dataset, including multispectral and SAR data (Fig. 
1.28). 

https://www.kaggle.com/competitions/store-sales-time-series-forecasting
https://www.kaggle.com/competitions/store-sales-time-series-forecasting
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
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Figure 1.28 – Beyond Visible Spectrum: Boosting automatic crop type classifi-

cation using Sentinel satellite data and self-supervised learning 
 

The goal is to improve crop classification accuracy without relying on la-
beled training data, addressing the challenge of time-consuming ground-truth 
sample collection. 

Data size: 2.34 Gb. 
2. Beyond Visible Spectrum: AI for Agriculture 2023. Automated Crop 

Disease Diagnosis from Hyperspectral Imagery 2nd (2023). 
In the contest challenge, participants are tasked with developing models 

for the accurate diagnosis of yellow rust disease in crops using hyperspectral 
imagery. The goal is to enhance precision management by leveraging detailed 
spectral-spatial information for better diagnostic accuracy, with the performance 
of models evaluated based on categorization accuracy. 

Data size: 0.9 Gb. 
3. Wids datathon (Optimizing Agricultural Production). Develop a mod-

el to identify the most profitable crop to grow in a Specific agricultural region 
(2023). 

Develop a machine learning model to identify the most suitable crop to 
grow in a specific agricultural region using data on weather, soil conditions, and 
crop growth. Utilize datasets containing information on rainfall, climate, and 
fertilizer data to optimize agricultural production by leveraging the precision ag-
riculture approach, which includes the use of GPS, drones, and sensors for data 
collection. The goal is to enhance efficiency, reduce costs, and improve crop 
yields by analyzing factors such as soil nitrogen, phosphorus, potassium content, 
temperature, humidity, soil pH, and rainfall. 

Data size: 150 Kb. 

https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-2023-p2
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-P1
https://www.kaggle.com/competitions/beyond-visible-spectrum-ai-for-agriculture-P1
https://www.kaggle.com/competitions/wids-datathon-optimizing-agricultural-production
https://www.kaggle.com/competitions/wids-datathon-optimizing-agricultural-production
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4. ML Olympiad – AgriSol. Use TensorFlow to build an image classifi-
cation model to predict crop diseases (2022). 

Data: 116933 files, size 1.8 Gb. Test contains 33 test images for later for 
prediction purpose. 

5. BirdCLEF 2024. Bird species identification from audio, focused on 
under-studied species in the Western Ghats, a major biodiversity hotspot in India 
(2024). 

The task is to apply machine-learning techniques to identify under-studied 
bird species in the Western Ghats of India using audio data. Participants will de-
velop computational solutions to recognize bird species by their calls, focusing 
on endemic and endangered species, as well as nocturnal species. This aims to 
leverage passive acoustic monitoring and machine learning for more efficient 
and effective avian biodiversity assessment, supporting conservation efforts in 
this biodiverse region (Fig 1.29).  

 

 
Figure 1.29 – Geographical Distribution of Bird Species (from the notebook) 

 
The competition evaluates solutions using a macro-averaged ROC-AUC 

metric adapted to skip classes with no true positive labels, facilitating accurate 
population trend assessments and adaptive conservation strategies. 

Data size: 23.4 Gb. 
 
1.5.9. Education and Social spheres 
1. Visualize the State of Public Education in Colorado. Using 3 years of 

school grading data supplied by the Colorado Department of Education and R-
Squared Research, visually uncover trends in the Colorado public school system 
(2013). 

Visualize the State of Public Education in Colorado by analyzing and pre-
senting trends from three years of school grading data (2013) provided by the 

https://www.kaggle.com/competitions/ml-olympiad-agrisol
https://www.kaggle.com/competitions/ml-olympiad-agrisol
https://www.kaggle.com/competitions/birdclef-2024
https://www.kaggle.com/competitions/birdclef-2024
https://www.kaggle.com/code/jefersonpazze/eda-baseline-birdclef-2024
https://www.kaggle.com/competitions/visualize-the-state-of-education-in-colorado
https://www.kaggle.com/competitions/visualize-the-state-of-education-in-colorado
https://www.kaggle.com/competitions/visualize-the-state-of-education-in-colorado
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Colorado Department of Education and R-Squared Research. Use the Colorado 
School Grades platform to create accessible and easy-to-understand visualiza-
tions that help community members, parents, students, and educators make in-
formed decisions and engage in local school improvement efforts.  

Data size: 7 Mb. 
2. The Learning Agency Lab - PII Data Detection. Develop automated 

techniques to detect and remove PII from educational data (2024). 
The Learning Agency Lab is hosting a competition to develop automated 

techniques for detecting and removing personally identifiable information (PII) 
from educational data. The goal is to create a model that can accurately identify 
PII in student writing, which will reduce the cost and increase the scalability of 
releasing educational datasets for research and tool development (Fig. 1.30). 

 

 
Figure 1.30 – Visualization of an example of hiding personal information in 

found patterns in the text (from the notebook) 
 
Current methods, such as manual review and named entity recognition 

(NER), are either too costly or insufficiently accurate. Submissions will be eval-
uated based on a classification metric that prioritizes recall over precision to en-
sure comprehensive PII detection. 

Data size: 110 Mb. 

https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data
https://www.kaggle.com/code/dschettler8845/tlal-pii-data-detection-eda-learn-with-me
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3. CommonLit - Evaluate Student Summaries. Automatically assess 
summaries written by students in grades 3-12 (2023). 

The task is to develop a model that automatically evaluates the quality of 
summaries written by students in grades 3-12. This model should assess how 
well a student captures the main ideas and details of a source text, as well as the 
clarity, precision, and fluency of the summary. Using a collection of real student 
summaries, the goal is to assist teachers in evaluating student work efficiently 
and help learning platforms provide immediate feedback. Submissions are 
scored using the Mean Columnwise Root Mean Squared Error (MCRMSE) met-
ric. 

Data size: 3.45 Mb. 
4. Learning Equality - Curriculum Recommendations. Enhance learning 

by matching K-12 content to target topics (2023). 
The goal of this competition is to streamline the process of matching K-12 

educational content to specific curriculum topics using an accurate and efficient 
model. Participants will develop models trained on a diverse library of educa-
tional materials organized by topic taxonomies, especially in STEM subjects. 
The challenge lies in aligning these materials to various national curricula, a 
process currently done manually and requiring significant resources. Submis-
sions will be evaluated based on their mean F2 score, calculated for each pre-
dicted row and then averaged. 

Data size: 0.9 Gb. 
5. Feedback Prize - English Language Learning. Evaluating language 

knowledge of ELL students from grades 8-12 (2022). 
The Feedback Prize – English Language Learning competition aims to 

evaluate the language proficiency of 8th-12th grade English Language Learners 
(ELLs). Participants will use a dataset of essays written by ELLs to develop pro-
ficiency models that provide accurate feedback on language development, expe-
diting the grading cycle for teachers (Fig. 1.31).  

https://www.kaggle.com/competitions/commonlit-evaluate-student-summaries
https://www.kaggle.com/competitions/commonlit-evaluate-student-summaries
https://www.kaggle.com/competitions/learning-equality-curriculum-recommendations
https://www.kaggle.com/competitions/learning-equality-curriculum-recommendations
https://www.kaggle.com/competitions/feedback-prize-english-language-learning
https://www.kaggle.com/competitions/feedback-prize-english-language-learning
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Figure 1.31 – WordCloud "Vocabulary from Reviews" for this contest  

(from the notebook) 
 
This initiative addresses the lack of tailored feedback in existing automat-

ed tools, which often fail to meet the unique needs of ELL students. The goal is 
to enable ELLs to receive more appropriate learning tasks, ultimately enhancing 
their English language proficiency. Submissions are scored using the MCRMSE. 

Data size: 9.3 Mb. 

Practical exercises  
1) Calculate the result of the “print (True and not False or False)” op-

eration on Python. Experiment with other options for using parentheses and op-
erations “not”, “and”, “or”. Remember that the expressions in parentheses are 
processed first, then “not”, then equivalent in status “and” and “or”. 

https://www.kaggle.com/code/mohamedbakrey/eda-and-predict-the-score-by-using-pytorch
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2) Practice applying operations sorted, min, max, len to lists of numbers 
(Fig. 1.32 and see Appendix A). 

 

 
Figure 1.32 – Common operations 

 
3) Practice correctly applying operations lst[3:7], lst[-4:-1], lst[3:], lst[:-

4] and other for text, for example lst = “learning” (Fig. 1.33 and see Appendix 
A). 
 

 
Figure 1.33 – Indexing of a list 

 
4) Practice correctly writing and applying user’s function ("def...return"), 

condition ("if .... else"), loop ("for...in..."), understand the options for using 
"range" in the loop "for...in…" (for examples: range(5), range(1,5), 
range(2,12,3), etc.) (Fig. 1.34 and see Appendix A). 
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a) 
 

 
b) 
 

 
c) 

 
d) 

 
Figure 1.34 – Basic structures of the Python code and its elements: a) user’s 

function, b) conditions, c) loop “for”; d) range for loop “for” 
 
 Note that in Python, it is very popular to write a condition in this concise 
form: 
  
 x = 0 if a > 0 else 1 
 
instead of: 
 

if a > 0: 
     x = 0 
else: 
     x=1 
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Possible topics of practical tasks 
Topic No. 1. Formulation of the machine learning task using the ex-

ample of real tasks and tasks of competitions of Artificial Intelligence 
Kaggle platform 

The purpose of the lesson is to get acquainted with the formulation of 
tasks and selection of information technologies that were used for solving the 
tasks of the competitions of the international platform of artificial intelligence 
Kaggle or real tasks using the example of one of the Kaggle datasets. 

Lesson plan: 
1. Select a competition or Kaggle dataset that has at least one notebook, 

the author of which is an expert, master, or grandmaster of Kaggle. Provide the 
title (the main one and additional), web link, an author or organization that owns 
the Kaggle dataset or data of the Kaggle contest. 

2.  Describe the composition of the data tables (or one main table) of the 
dataset (column names, for which years). It is worth providing graph(s) from 
notebooks that illustrate exactly what data is in the dataset. If the data is geo-
graphically referenced, provide a map that illustrates this information. 

3.  Characterize the tasks that can be solved on the basis of this dataset (or 
from the competition task, from the "Task" section of the dataset, or come up 
with it yourself). 

4. Indicate and characterize which Python libraries and/or information 
technologies were used in the notebooks of the competition or Kaggle dataset 
with the best rating (either with the highest places in the competition or with the 
most votes for the notebook). For example, Plotly library for building interactive 
graphs, Xgboost library for model building, Folium library for building interac-
tive map, IT analysis of image recognition based on PyTorch, etc. 

Examples of datasets: 
- notebook with links and description of datasets of Prof. Mokin V.B. at 

Kaggle in the field of water quality monitoring; 
- other public datasets of Prof. Mokin V.B. in Kaggle: 
- a popular contest «Titanic - Machine Learning from Disaster» for new-

comers to Kaggle (it is important to note that the notebooks of Kaggle competi-
tions cannot be used in labs № 2-8, because the rules of the competition prohibit 
sharing them with the teacher – they can be used only if the authors make public 
notebooks immediately, that is, available to everyone Internet users). 

 
Topic No. 2. Generalized formulation of the problem and construc-

tion or selection of a dataset for it. 
The purpose of the lesson is to acquire the knowledge and skills to create 

your own dataset and read it using a Python program. 
Lesson plan: 
1. Clarify the formulation of the problem in order to understand the most 

necessary data for its solution. 
2.  Analyze available public datasets in Kaggle, GitHub. 

https://www.kaggle.com/c/titanic
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3.  Study the data source (title, author, content, size of data and their de-
scription). Find examples or understand in the documentation or description how 
to import data in Python. 

4. Explore the possibilities and master the basic skills of working with a 
given IDE (PyCharm, VSCode or Spyder in Anaconda) or a "Jupyter Notebook" 
(JNB) type shell (SageMaker of Amazon, Google Colab, Kaggle notebook edi-
tor or in Jupyter Notebook or JupiterLab in Anaconda) to create Python pro-
grams. 

5. Create a Python program in IDE/JNB from point 3 to download data 
from point 1 using techniques from point 2. 

- Examples of JNB notebooks with techniques for uploading data in vari-
ous ways to Kaggle, including via API:  

- 50 Tips: Data Science (tabular data) for beginner 
- 50 Advanced Tips: Data Science for tabular data 

 
Topic No. 3. 
Formation of an integrated dataset for analyzing system state data 

from various sources (API, CSV files, etc.) in Python in IDE or Jupyter 
Notebook. 

The purpose of the lesson is to study data storage systems and learn the 
skills to read data from these systems using a Python program. 

Lesson plan: 
1. Study the data source (title, author, content, amount of data and their 

description). 
2. Study examples of how to import data into Python from the following 

sources: 
- information system or IoT system; 
- Kaggle dataset (CSV, JSON, etc. formats); 
- GitHub dataset; 
- web system with API. 
3. Explore the possibilities and master the basic skills of working with a 

given IDE (PyCharm, VSCode or Spyder in Anaconda) or a "Jupyter Notebook" 
(NB) type shell (SageMaker of Amazon, Google Colab, Kaggle notebook editor 
or in Jupyter Notebook or JupiterLab in Anaconda) to create Python programs. 

4. Create a Python program in IDE/JNB from point 3 to download data 
from point 1 using techniques from point 2. Combine all data into one or more 
dataframes. 

Examples of JNB notebooks with techniques for uploading data in various 
ways to Kaggle, including via API: 

- 50 Tips: Data Science (tabular data) for beginner 
- 50 Advanced Tips: Data Science for tabular data 

 

https://www.kaggle.com/vbmokin/50-tips-data-science-tabular-data-for-beginner
https://www.kaggle.com/vbmokin/50-advanced-tips-data-science-for-tabular-data
https://www.kaggle.com/vbmokin/50-tips-data-science-tabular-data-for-beginner
https://www.kaggle.com/vbmokin/50-advanced-tips-data-science-for-tabular-data
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Test questions 
1) What does the concept of data science include? Give a short definition. 
2) What stages does the process of collecting information and building a 

dataset for analysis include? 
3) What target features can be used in machine learning tasks? Give ex-

amples. 
4) What are the main types of machine learning problems? Give a brief 

description of each species. 
5) What metrics are used to evaluate the quality of machine learning mod-

els? Give examples of metrics. 
6) What does the generalized algorithm for solving the machine learning 

problem contain? List the basic steps. 
7) What stages does the generalized algorithm contain for solving the 

problem of intelligent data analysis? Describe each stage. 
8) What infrastructure is used to solve machine learning and data analysis 

problems? Give examples of infrastructure. 
9) What are examples of setting tasks for machine learning and intelligent 

data analysis? 
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2 DATA PREPROCESSING AND EXPLORATORY DATA ANALYSIS 
 

2.1 Data cleaning and preprocessing 
 

Most data sets require cleaning before use [1]: 
- Replacing the marks "missing", "-", "same", ">0.2", "<10" with a num-

ber or with the value "np.nan"   («Not a Number»); 
- Replacing words from a textual description with values from a fixed set 

(for example, with possible words of medical diagnosis); 
- Removal or replacement of html tags, special character codes, web ad-

dresses, emoticons, etc., although emoticons should be replaced with text in sen-
timent analysis tasks (see examples in functions «remove_emoji», «re-
move_punctuations», «convert_abbrev_in_text» in the notebook); 

- in the case of receiving data from a pdf file, the text from the footers 
(page numbers, etc.) can get there, which needs to be deleted. 

The input data is often called "Raw Data". And after cleaning: «Cleaned 
Data».  

More complex are preprocessing operations (see many preprocessing op-
erations in author's articles [2, 3]): 

1. Transformation of formats (replacement of "float64" by "int8", "str" by 
"bool", etc.) to optimize memory for data storage. By default, datasets are read 
by the read_csv command with float64 and object data types. Therefore, they 
must be converted into the most economical formats. This can be done in two 
ways: 

- immediately when reading, specify the required data types – see «Tip 
2.4» from [4]); 

- if the data formats are not known in advance, then you can first read the 
data, then change the logical types to "bool", and for numerical data, use «Tip 
5.1» from [5]. 

A special function can be used to transform text into numerical data 
sklearn.preprocessing.LabelEncoder (see «Tip 5.3» from [4]). 

Date is often read as "str" or "object". But it is better to save it in datetime 
format. The most common variant is "2023-10-30", which is coded in Python as 
«%Y-%m-%d» – see «Tip 5.6» from [4]). 

2. Elimination of duplicates. The presence of complete duplicate rows of 
the table distorts the statistics, so they must be identified and removed (see. 
«Tips 5.5» from [4]). 

3. Cleaning text data. For simple cases, the re library is used, and for more 
complex ones, the powerful NLTK library, described in more detail in [6]).  

4. Replace very small or very large values np.inf and negative (-np.inf) 
values with np.nan, since it is better to work with only one kind of problematic 
values (see «Tip 4.5» from [4]). 

5. Imputation of missing numerical data. Most machine learning models 
(except for Prophet and some others) require the absence of missing (np.nan) 

https://www.kaggle.com/code/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert
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value of data. For this, they use "imputing": "SimpleImputer", "KNNImputer" 
and "IterativeImputer" of the Sklearn library. 

6. Formation of a new class from textual missing values. For missing text 
values, the value is replaced by some number that is definitely not in the table, 
forming a new class. For example, if all numbers are positive, then the missing 
numbers are replaced by (-1) (see "Tip 4.5" from [4]). 

7. Filtering of abnormal values. It will be described below. 
 

2.2 Clustering and data dimensionality reduction 
 
After performing data preprocessing, they are often clustered, or reduced 

in dimension, sometimes it is necessary to look for associations, and only then 
the results of these operations are analyzed more thoroughly. 

Data clustering – it is the process of grouping similar objects into classes 
or clusters based on their characteristics. The main goal of clustering is to find 
hidden structures in the data and highlight groups of objects that are similar to 
each other without a prior known distribution or classification. This is a classic 
task "unsupervised". 

Search for association consists in finding connections and relationships 
between different elements in a data set. The main goal of association search is 
to find association rules that indicate which elements often occur together or 
with similar characteristics. This may include identifying items that are fre-
quently purchased together; events that take place under similar conditions, etc. 
Association is a task "supervised". Usually, such methods as Apriori, Eclat, FP-
growth and others are used for these tasks. For example, see the Kaggle note-
book «Apriori Association Rules | Grocery Store». 

Dimensionality Reduction – it is a process of reducing the amount of data 
or features (dimensionality) in a data set. The goal of this process is to reduce 
the number of features that should be considered during data analysis, retaining 
as much useful information as possible about the structure of the data and the 
relationships within it. This operation allows: 

- increase the efficiency and speed of calculations;  
- reduce the risk of  overtraining due to the reduction data noise;  
- improve visualization (for example, it is possible to reduce the multi-

dimensional feature space to 2- or 3-dimensional, which can be displayed and 
analyzed visually).  

The following methods are popular:  
- Principal Component Analysis (PCA); 
- t-Distributed Stochastic Neighbor Embedding (t-SNE); 
- UMAP; 
- Autoencoders (see below), etc. 
The clustering operation is most often used in machine learning, so let's 

consider it in details.  
Basic functions of clustering: 

https://www.kaggle.com/code/ekrembayar/apriori-association-rules-grocery-store
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– detection of data structure to search for new important regularities; 
– simplifying complex data to reduce the dimensionality of the data or to 

decompose it into smaller datasets or tables (for example, see the notebook); 
– filling in missing data with statistical averages by cluster or class. 
All clustering methods can be conditionally divided into the following 

types [7]: 
− Partitioning methods;  
− Hierarchical methods;  
− Density-based;  
− Graph-based methods; 
− Model-based clustering. 
The following are the most popular methods of clustering: 
1. Kmeans. Divides the data into k clusters, where k is a predetermined 

number.  
Work algorithm: k input data are randomly selected as centroids of future 

clusters. Next, the distance from each point to each of the clusters is determined, 
and then the point belongs to the cluster to which this centroid is the closest. At 
the next iteration, another point is selected among the points of each cluster, 
which is better suited to the role of the centroid, and all operations are repeated. 
It continues until the distance between the old and new centroid becomes less 
than a certain threshold. Other criteria can be the maximum number of iterations 
or inertia (sum of squared distances between objects and the centroid of their 
cluster) (Fig. 2.1). 

 
Figure 2.1 – Stages of the clustering method Kmeans 

 

https://www.kaggle.com/code/vbmokin/fungi300-research
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A number of approaches and metrics are used to determine the optimal 
number of clusters (Sklearn has nearly 20 ones). The most popular are the use of 
such criteria [8]: 

- «Silhouette score» (sklearn.metrics.silhouette_score) – the extent to 
which points within one cluster are similar to each other compared to points in 
other clusters; 

- «Calinski and Harabasz Score» 
(sklearn.metrics.calinski_harabasz_score) analyzes the ratio of the sum of vari-
ance between clusters and variance within clusters for all clusters; 

- «Davies and Bouldin Score» (sklearn.metrics.davies_bouldin_score) – 
compares the distance between clusters with the size of the clusters themselves; 

- «Adjusted Rand Index» (ARI); 
- «Adjusted Mutual Information» (AMI). 
In fig. 2.2 gives an example of analyzing the sensitivity of patients to var-

ious allergens based on real data from the author's notebook. As can be seen in 
fig. 2.2a, the optimal number of clusters is 4.  
 

 
a)               b) 

Figure 2.2 – Illustration of choosing the optimal number of clusters in the 
Kmeans method using the Silhouette criterion for analyzing the sensitivity of pa-

tients to various allergens based on real data from the author's notebook: a) 
curve of the Silhouette criterion, depending on the number of clusters; b) the re-

sult of applying the Kmeans clustering method with 4 clusters 
 

The modern version of the Kmeans method implemented in the Sklearn 
library uses an improved method called "Kmeans++". Its main differences are as 
follows:  

1) instead of the distance between the point and the centroid, the square of 
this distance is determined;  

2) only the first centroid is selected, and each subsequent one is selected 
taking into account the probability of being selected as a centroid, proportional 
to the square of the distance from the point to the nearest already selected cen-
troid;  

3) the criterion of the method is the minimization of the inertia. 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.cluster
https://www.kaggle.com/code/vbmokin/fungi300-research
https://www.kaggle.com/code/vbmokin/fungi300-research
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KMeans is very computationally expensive and requires a lot of memory. 
MiniBatch is used for large data or with limited computing resources. This 
method does not work with all data, but only with a certain random sample. 
Centroids are updated after each such mini-batch. It is interesting that this meth-
od can give sometimes no worse results than the KMeans method on all data, 
but in much less time and can be effective for a relatively small amount of data. 

To increase the speed of the method, it is recommended to perform data 
preprocessing using PCA. 

There is an option for time series: 
tslearn.clustering.TimeSeriesKMeans. The author's notebook provides an ex-
ample of clustering by this method of the exchange rate of about 80 cryptocur-
rencies with a capitalization of more than a billion (in US dollars) as of April 
2022. 

2. The DBSCAN method (Density-Based Spatial Clustering of Applica-
tions with Noise) is clustering based on data density under noisy conditions. 
Each point can be the centroid of the cluster (the "main" point) if there is a given 
minimum number of points within a certain radius from it (Fig. 2.3). 

 

 
Figure 2.3 – Operation of the method DBSCAN (in dynamic) 

 
  
3. Hierarchical clustering methods. The method of agglomerative cluster-

ing is the most popular of these methods: it starts with individual objects and 
successively iteratively pairs them together into clusters, depending on the 
method of aggregation (by the smallest, by the largest, by the average distance 
between them or others). It does not require the number of clusters. After form-
ing a hierarchical tree of pairs of points, the cut level should be set and the 
method will immediately return clusters that will correspond to this level (Fig. 
2.4). 

 

https://www.kaggle.com/code/vbmokin/cryptocurrencies-1b-time-series-clustering
https://primo.ai/index.php?title=Density-Based_Spatial_Clustering_of_Applications_with_Noise_%28DBSCAN%29
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Figure 2.4 – Method of agglomerative clustering 

 
4. Clustering and dimensionality reduction methods "UMAP" ("Uniform 

Manifold Approximation and Projection") and t-SNE ("t-Distributed Stochastic 
Neighbor Embedding"). The goal of both methods is to reduce the dimensionali-
ty of the data while preserving important local structures and dependencies be-
tween the data. UMAP uses distances in a low-dimensional space to find simi-
larities between points, while t-SNE uses the probabilities of having these simi-
larities 

A bright demonstration of the possibilities of clustering and dimensionali-
ty reduction methods «UMAP», «t-SNE» and «PCA» is  «Embedding Projec-
tor» for an interactive visualization of how these methods work on typical and 
user datasets. Also, see author's notebooks «MNIST Digits Original : 2D t-SNE 
with Rapids», «MNIST Original : 2D tSNE, 3D UMAP with RAPIDS» (Fig. 
2.5). 

The Sklearn library contains a nice comparison table for different cluster-
ing methods. 

See in notebook «Titanic Top 3% : cluster analysis» clustering of Titanic 
passengers using 11 methods (see Fig. 2.6). 

 

https://umap-learn.readthedocs.io/en/latest/clustering.html
https://projector.tensorflow.org/
https://projector.tensorflow.org/
https://www.kaggle.com/code/vbmokin/mnist-digits-original-2d-t-sne-with-rapids/notebook
https://www.kaggle.com/code/vbmokin/mnist-digits-original-2d-t-sne-with-rapids/notebook
https://www.kaggle.com/code/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis
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Figure 2.5 – The result of applying the UMAP clustering method to the MNIST 
handwritten Arabic numerals dataset («MNIST Original : 2D tSNE, 3D UMAP 

with RAPIDS») 
 

 
Figure 2.6 – Clustering of Titanic passengers using 11 methods and their com-
parison with the values of the target characteristic («Titanic Top 3% : cluster 

analysis») 
 

https://www.kaggle.com/code/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://www.kaggle.com/code/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis
https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis
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Notebook “Titanic Top 3%: cluster analysis” contains a universal function 
that immediately performs clustering by a given method with given parameters 
(new methods can be easily added in clustering_algorithms). 

Fig. 2.7 provides an infographics of the toolkit mentioned in subsections 
2.1 and 2.2 in the S(I) coordinate system. 

 
Figure 2.7 – Infographics of data preprocessing and clustering 

 
2.3 Exploratory data analysis 
 
Exploratory data analysis (EDA) – it is an analysis of the main properties 

of the data, finding general regularities, distributions and anomalies in them us-
ing relatively simple models. 

The purpose of EDA is the following: 
- maximum study and "understanding" of data; 
- identification of main structures and systematization of data; 
- detection of deviations and anomalies (outliers); 
- testing the main hypotheses; 
- construction and researching data using relatively simple models (re-

gressions, decision trees). 
EDA methods are applied both to all data and to their clusters and sepa-

rately to training, validation and test data: 
- analysis of probability distributions of variables; 
- construction and analysis of correlation matrices; 
- factor analysis; 
- discriminant analysis; 
- multidimensional scaling, etc. 
Depending on the specifics of the task and research results, EDA may in-

clude the following stages: 
1. Calculation of quantitative indicators in the dataset (see section 2.1): 

https://www.kaggle.com/code/vbmokin/titanic-top-3-cluster-analysis
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- the total number of rows and columns and the number of missing values 
in each column (see «Tip 4.3» from [4]); 

- identifying rows where there is a significant percentage of missing val-
ues in various attributes and possibly removing such rows or filling in these 
missing values; 

- format and examples of values in each column – see "Tip 5.2" from [5]. 
2. Drawing various plots for the analysis of regularities regarding the val-

ues of each feature and their combinations, etc. (libraries matplotlib, seaborn, 
etc. – see notebooks Plotting with pandas, matplotlib, and seaborn, Data-
Visualization-Using-MATPLOTLIB-SEABORN-PLOTLY, Visualization Mat-
plotlib vs Seaborn). 

3. Building descriptive statistics: characteristics are analyzed for each fea-
ture: min, max, mean, std, counts, quantiles (quartiles) (P25(Q1), P50(Q2) and 
P75(Q3), rarely – P05, P10, P90 and P95); number of missing values, number of 
unique values.  

4. Advanced primary statistical analysis of each feature and their combi-
nations. For each feature, a distribution law should be constructed and a hypoth-
esis regarding its type should be checked whether it is normal (Gaussian) [9, 
10]. 

As a rule, distribution laws are built for each class separately, for exam-
ple, see the example in Fig. 2.8 from notebook) (Fig. 2.8) and analyze whether 
there is no need to balance them. Feature balancing (FE stage) is described in 
Chap. 3. 

 

 
 

Figure 2.8 – Distribution laws for different target values t=0 and t=1  
from the notebook 

 
5. If the dataset contains training, validation and test data or at least 2 of 

these 3 options, then their characteristics are compared, first of all, distribution 
laws – this is a very important step that is recommended to be done every time 
(Fig. 2.9). 

 

https://www.kaggle.com/code/chandraroy/plotting-with-pandas-matplotlib-and-seaborn
https://www.kaggle.com/code/abhishekvaid19968/data-visualization-using-matplotlib-seaborn-plotly
https://www.kaggle.com/code/abhishekvaid19968/data-visualization-using-matplotlib-seaborn-plotly
https://www.kaggle.com/code/fazilbtopal/visualization-matplotlib-vs-seaborn
https://www.kaggle.com/code/fazilbtopal/visualization-matplotlib-vs-seaborn
https://www.kaggle.com/code/cdeotte/200-magical-models-santander-0-920/notebook
https://www.kaggle.com/code/cdeotte/200-magical-models-santander-0-920/notebook
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Figure 2.9 – Comparison of distribution laws training and test datasets [9]  

 
Analysis of plots in Fig. 2.9 shows that the distribution laws are normal 

and very similar, so the datasets are good for further processing. The function 
plotly.create_distplot [9] was used to construct distribution laws. Also, you can 
use other functions, such as seaborn.distplot, as in notebook. 

6. Correlation analysis (determining the presence of dependence and 
strength of influence between characteristics). For example, the intercorrelations 
of features and the detection of those that are most dependent on each other are 
analyzed. The result can be both a matrix of numbers and a graph of the 
"heatmap" type or a hybrid variant. Out of every two strongly correlated fea-
tures, one should be removed if there are enough features. Sometimes, as for ex-
ample, with the analysis of the "Open", "High", "Low", "Close" features of the 
cryptocurrency exchange rate, they are usually not removed, although they are 
highly correlated, as they contain very valuable information, and there are few 
such features in these datasets [11]. 

7. Regression analysis – construction and analysis of simple models (line-
ar or logistic regression, decision trees, etc.) to study certain regularities between 
characteristics to confirm the presence and determine the nature and form of in-
fluence of one indicator on others. 

8. Analysis of outliers and data anomalies. This can be done in three 
ways: 

1) by quantiles, when filtering feature values where the maximum or min-
imum value is times bigger than P90 (or P95) or less than P10 (or P05), respec-
tively, then all values bigger than P90 or less than P10, respectively, are discard-
ed – see [11];  

2) visually – plots are built, as a rule, using interactive plots of the plotly 
library, and anomalies are investigated by value or by the first and/or second 
change of values, news on the Internet is studied, whether it is really an anomaly 
that has some explanation (for example, when a large companies or the govern-

https://www.kaggle.com/code/cdeotte/200-magical-models-santander-0-920/notebook
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ment of the country bought something or, on the contrary, sold something, or 
something, or an outbreak of a disease, or a natural disaster, etc.) and then this 
value refers to abnormal (see Crypto - BTC : Advanced EDA, COVID in UA: 
Prophet with 4, Nd seasonality); 

3) using special libraries for time series, which will be detailed in Chap. 5. 
9. Analysis of patterns of data using methods of clustering, factor analysis 

and dimensionality reduction – see subsection. 2.2. 
10.  Analysis of the variability of features, that is, whether there is a suffi-

cient number of different variants of the values of each feature. Features that 
take a single value should be removed, as they will prevent the model from 
learning. 

11.  Grouping of data by certain features and analysis of how other fea-
tures are clustered relative to this one (see subsection 2.2). 

12.  For time series: detection of seasonality of values and identification 
of periods of these fluctuations, checking of series for stationarity and hetero-
scedasticity (see below subsection 5.4). 

A more complete overview of these methods and their classification is 
presented in articles [2, 3] of one of the co-authors. 

In addition to these methods, various system analysis methods can be used 
to identify important patterns between features and identify features that are 
most closely related: Bayesian modeling [12-16], associative data analysis, sta-
tistical modeling, etc. 

The ultimate goal of EDA is to answer such questions: 
1. Is the data ready for building models or does it need additional pro-

cessing? 
2. What models should be built to solve the given problem, according to 

what metrics and with what initial values of parameters and hyper-parameters? 
The easiest way to build descriptive statistics for a Python dataframe is 

the "describe" method of the pandas library (Fig. 2.10). 
 

 
Figure 2.10 – Statistics of the describe function of the pandas library for the data 
of the contest regarding the passengers of the Titanic from the author's notebook 
 

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-eda
https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality
https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality
https://www.kaggle.com/code/vbmokin/automatic-eda-with-pandas-profiling
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Appendix E lists some specialized Python libraries that allow you to per-
form automatic IDA. 

In addition, to build analytical plots according to your own script, you can 
use universal libraries that have built-in functions for EDA: Matplotlib, Seaborn, 
Plotly, Pandas (see the notebook «EDA for tabular data: Advanced Tech-
niques»). 

Fig. 2.11 presents infographics of the toolkit mentioned in the Chap. 2 in 
general, in the coordinate system S(I). 
 

 
Figure 2.11 – Exploratory data analysis (EDA) infographics  

 

Practical exercises  
1) Find the median for the given list of numbers. The median is the aver-

age value of a sorted list of numbers. If the number of numbers is even, the me-
dian is the average of the two middle numbers. 

Python: np.median(np.array(numbers_list)) 
But it can be useful to be able to find the median manually (Fig. 2.12). 

 
List of numbers: 20 7 2 10 9 5 1 
Sort a list and find the median: 
1 2 5 7 9 10 20 => median = 7 
1 2 5 7 9 10 => median = (5+7)/2 = 6 

 
Figure 2.12 – Determining the median of the list of numbers 

 
2) Find the mode for the given list of numbers. The mode is the meaning 

of the list that occurs most often. The list can have several modes if they occur 
equally often (Fig. 2.13). 

https://www.kaggle.com/code/vbmokin/eda-for-tabular-data-advanced-techniques
https://www.kaggle.com/code/vbmokin/eda-for-tabular-data-advanced-techniques
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10,12,12,23,23,23,23,38,45,45,45 => mode – 23  
10,12,12,23,23,23,38,45,45,45 => modes – 23 and 45 

 
Figure 2.13 – Determining the modes of the list of numbers 

 
3) There are three points: A(x1, y1), B(x2, y2), and C(x3, y3). Calculate 

the distance between the nearest points that can form a cluster using the Ag-
glomerativeClustering method with the parameter linkage='single'. 

For example, there are three points: A(1, 1), B(2, 3), and C(5, 6). Calcu-
late the distance between the nearest points (Fig. 2.14). 

 

 
Figure 2.14 – Distances between the nearest points A, B, C 

 
As you can see on Fig. 2.14, the smallest distance is between points A and 

B. Also, answer: 2.236. 
 

Possible topics of practical tasks 
Topic No. 1. "Exploratory data analysis and visualization of analysis 

results in Python"). 
The purpose of the lesson is to study information technologies and Python 

libraries for intelligence analysis and data visualization, and to master practical 
skills in their application using the example of one of the Kaggle datasets or data 
downloaded via the API. 

Lesson plan: 
1.  Find a dataset with real or realistic data with a description that is inter-

esting for analysis. It is optimal to find a Kaggle dataset in which there are pub-
lic notebooks with medals (at least bronze ones). Describe it. 

2. Choose the Python libraries that will be used for exploratory analysis 
and data visualization (EDA): Matplotlib, Seaborn, Plotly, Pandas, Sklearn, etc., 
and specify what exactly for. 

3. To review notebooks or articles regarding the dataset from point 1 us-
ing bibliographies from point 2 for its EDA. Provide at least 5 graphs, with a de-
scription of exactly what laws they illustrate and what exactly is visible on them. 
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4.  Develop your own notebook that carries out a similar or other study (it 
is optimal to take an existing well (with a gold or silver medal) Kaggle notebook 
and adapt it to another dataset and draw conclusions about the EDA results 
yourself. 

 
Samples of notebooks with EDA: 
- EDA for tabular data: Advanced Techniques 
- Heart Disease – Multiple Clustering by 12 methods 
- MNIST Original : 2D t-SNE, 3D UMAP with RAPIDS 
- MNIST Digits Original : 2D t-SNE with Rapids 
- Automatic EDA with Pandas Profiling 2.9 (09.2020) 
- Titanic Top 3% : cluster analysis 
- Heart Disease – Automatic AdvEDA & FE& 20 models 
- Autoselection from 20 classifier models & L_curves 
- Biomechanical features - 20 popular models 
- Suspended substances prediction in river 
- AI-ML-DS Training. L1T: NH4 – linear regression 
Also, you can use all notebooks from datasets COVID-19 in Ukraine: dai-

ly data or Forecasting Top Cryptocurrencies. 
 

Test questions 
1)   What does the process of data preprocessing involve and why is it 

important before further analysis? 
2)   Name several methods of data cleaning and give examples of situa-

tions where they can be used. 
3)   What clustering methods are used to group similar objects? Give ex-

amples of their use. 
4)   How can data dimensionality reduction techniques help in further 

analysis and modeling? 
5)   What is exploratory data analysis (EDA) and what tasks does it solve 

in the data analysis process? 
6)   What visualization tools can be used for EDA? Give examples of 

plot types. 
7)   What are the main steps involved in the data analysis performed by 

the Kaggle competition winners? 
8)   What intelligent techniques are used for data analysis in Kaggle 

competitions? 
9)   How to identify anomalies or outliers in data during EDA, and how 

does this affect further analysis? 
10)   Why is it important to understand the distribution of the target fea-

ture during exploratory data analysis? 

https://www.kaggle.com/vbmokin/eda-for-tabular-data-advanced-techniques
https://www.kaggle.com/vbmokin/heart-disease-multiple-clustering-by-12-methods
https://www.kaggle.com/vbmokin/mnist-original-2d-tsne-3d-umap-with-rapids
https://www.kaggle.com/vbmokin/mnist-digits-original-2d-t-sne-with-rapids
https://www.kaggle.com/vbmokin/automatic-eda-with-pandas-profiling-2-9-09-2020
https://www.kaggle.com/vbmokin/titanic-top-3-cluster-analysis
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models
https://www.kaggle.com/vbmokin/autoselection-from-20-classifier-models-l-curves
https://www.kaggle.com/vbmokin/biomechanical-features-20-popular-models
https://www.kaggle.com/vbmokin/suspended-substances-prediction-in-river
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l1t-nh4-linear-regression
https://www.kaggle.com/vbmokin/covid19-in-ukraine-daily-data/code
https://www.kaggle.com/vbmokin/covid19-in-ukraine-daily-data/code
https://www.kaggle.com/datasets/vbmokin/forecasting-top-cryptocurrencies
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3 FEATURE ENGINEERING 
 

3.1 Main tasks and stages of feature engineering 
 

Feature engineering (FE) is the analysis and processing of features of a 
dataset, including removal of uninformative ones and synthesis of new ones. 

The purpose of FE is: 
– detection of uninformative features that can be removed, reducing the 

noise of the solution and increasing the speed of the model; 
– identification and removal of features that have a deterministic depend-

ences on other; 
–  detection of highly correlated pairs of features; 
– detection and removal of "leaks", when some feature contains the target 

value or can be obtained from it on the basis of deterministic dependencies, that 
is, the model can simply accurately calculate the target based on it; 

- analysis of the importance of each feature using both relatively simple 
models (regressions, decision trees) and more complex models, in case of pass-
ing this stage again after the stage of building complex models; 

- synthesis of new ("secondary") more informative features based on the 
values of the existing ones; 

- improvement of features values. 
Depending on the specifics of the task and research results, FE may con-

tain the following stages: 
1. Synthesis of fundamentally new features based on knowledge of the 

subject area. To do this, they study the content of the features, the statement of 
the task, study analogues of solving similar problems in GitHub, Kaggle, in pro-
fessional articles in Google Scholar and in other special sources.  

2. Analysis of data types of all features. Typically, using the function for 
dataframes using df.info() of the pandas library. See "Type 5.1" and "Type 5.2" 
from [4]). 

3. Identification of the most informative features that satisfy the following 
minimum requirements: 

- is not a leak; 
- is not a constant; 
- does not have missing values (after preprocessing); 
- is not a feature highly correlated with others. 
An additional requirement is the high importance of the feature, but this is 

discussed in the subsection 3.3.  
4. Discretization of informative features by forming a small set (3-10) of 

values of a numerical feature instead of a large number or fractional values in a 
certain range, for example, by dividing an integer by a certain number – see of 
advice "Tip 5.5" in [5]. 
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5. Formal synthesis of new ("secondary" or "synthetic") features from 
those available according to such an algorithm (see the example in "Tip 5.5" in 
[5]):  

1) convert the value of the available informative features to a type «str»; 
2) combine the values of 2, 3 or more characters through some symbol 

("_"or "-"), and then:  
 

df[i + "_" + j] = df[i].astype('str') + "_" + df[j].astype('str');           (3.1) 
 
3) encode the newly formed values with the numbers of the values in the 

list. 
The most interesting thing is to use some non-linear function (multiplica-

tion, division, root, power, etc.) rather than addition, then the new feature will be 
fundamentally new, which most models will not be able to synthesize on their 
own. Example: synthesis of technical indicators of cryptocurrency in subsection 
2.4 of the notebook Crypto - BTC : Advanced Analysis & Forecasting. Another 
interesting example is the synthesis of features in the "Google Analytics Cus-
tomer Revenue Prediction" (Google Online Store) contest, where it was neces-
sary to analyze when a user browsing the pages of an online store will finally 
buy something and for what amount. In Fig. 3.1 see the "pageviews/hits" attrib-
ute, which is the ratio of the number of viewed web pages divided by the total 
number of hits.  

 

 
Figure 3.1 – The relationship between the total revenue from transactions in the 
Google online store "transactionRevenue" and "pageviews/hits" – the number of 

views divided by the number of operations (button clicks) 
 

As can be seen from Fig. 3.1, it is already possible to obtain a solution to 
the problem with considerable accuracy, since it is clearly visible after which 
threshold value the client will almost certainly buy something, and up to which – 
not. 

The FE stage also often includes some reprocessing operations to save 
memory by specifying the format of features and transforming formats (see 
clauses 1 and 2 in subsection 2.1).  

6. Reduction of the dimension (number) of features (see subsection 2.1).  

https://www.kaggle.com/c/ga-customer-revenue-prediction/overview
https://www.kaggle.com/c/ga-customer-revenue-prediction/overview
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7. Factor analysis is the identification of hidden (latent) factors that can 
explain the observed relationships between features in the dataset. 

8. Feature engineering can include feature value operations (they can also 
be applied at the preprocessing stage). For example, see "Type 4.4" in [4]. 

9. It is advisable to divide features with date and time into separate ones: 
year, month, day, hour... with different increments (quarter, season, half hour...). 
And the date and time itself is often removed over time to avoid overtraining. 

10. Balancing of different target classes in the training dataset using the 
Synthetic Minority Oversampling TEchnique (SMOTE) method or others – see 
an example in the article on the analysis of coronavirus patients in Great Britain 
[17]. 

The mentioned FE operations require some creativity and are usually carried 
out alternately with the EDA stage, in a cycle. But there are FE operations that 
are already carried out with the final dataset, which at the EDA stage is defined 
as meeting the minimum requirements and promising for building a model. 
These are operations of standardization and normalization of data – they are de-
voted to the following subsection 3.2. 

In addition, there is an important stage of FE as feature importance analysis. 
This requires machine learning models – either simplified (at the first stage) or – 
already after the stage following FE – the model building stage. We will consid-
er these operations in more detail in subsection 3.3. 

 
3.2 Standardization and normalization of features 

 
Most machine learning models try to adapt to all features equally, but 

those features that have a greater dispersion, a greater variety of values and de-
viations from them will be more influential. And then the model can "overfit" 
for them. To avoid this, the data should be standardized (Fig. 3.2a). 

The Sklearn library has a number of methods for this: 
1. Standardization (sklearn.preprocessing.StandardScaler) (see Fig. 3.2b), 

which is applied to all values of the feature , except for target, with obtaining 
the centered value  according to the formula (the denominator and the numera-
tor are optional – you cannot subtract the average  or divide by variations ): 

 
  

.            (3.2) 
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Figure 3.2 – Typical methods of standardization and normalization of features 
using Python libraries Sklearn – from the documentation: a) sample data; b) re-

sult of normal standardization; c) scaling result; d) the result of robust standardi-
zation; e) result of normalization 

 
2. Minimax scaling (sklearn.preprocessing.MinMaxScaler) (see Fig. 3.2c) 

of the feature  shall be performed by its minimum  and  maximum 
values  
 

.           (3.3) 
 

It is usually widely used for displaying different features on one graph in 
the range from 0 to 1 along the y-axis.  

1.  Standardization according to formula (3.2) can lead to significant data 
distortions, if there are significant anomalies. In such cases, robust standardiza-
tion sklearn.preprocessing.RobustScaler is used (see Fig. 3.2d). 

2.  Some clustering methods are more effective for heterogeneous data if 
they are first normalized (see Fig. 3.2e). 3 normalization options are possible, 
depending on the selected norm: based on the sum of vector modules, based on 
the Euclidean norm (length of the vector), which is the default option), based on 
the maximum value of the vector. 

Usually, all these standardization and normalization functions are adjusted 
(scaler.fit_transform) to training data, and (scaler.transform) is applied to both 
training and test data, otherwise there will be a data leak, that is, the model will 
become inoperable under real conditions when the test data unknown in ad-
vance. 

 

https://python-data-science.readthedocs.io/en/latest/normalisation.html
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3.3 Construction of feature importance diagrams and automation of 
feature selection based on Sklearn, SHAP, LIME libraries. Interpretability 
of models 

 
As mentioned above, it is important not only to build a machine learning 

model, but also to be able to draw correct conclusions based on it. Often, an ad-
equate model is not needed for prediction, but for providing reasonable conclu-
sions based on it. Therefore, the interpretability of models is important. And it is 
often carried out on the basis of a relative comparison of the importance of fea-
tures under certain conditions. 

For the first application of FE, simple models are used to analyze the im-
portance of features, for example, linear regression or decision trees from the 
Sklearn library, and feature importance (FI) is determined. A corresponding FI-
diagram is built according to the decrease of this importance and analyzed (Fig. 
3.3). 

 

 
Figure 3.3 – An example of a feature importance diagram for a decision tree in 

the problem of predicting the cost of a New York taxi ride 
in the 2018 Kaggle Author's Solution Competition (see Fig. 1.15) 
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The following conclusions should be drawn from the diagram of the im-
portance of features: 

1.  If a feature occurs very often (perhaps in all lines of the dataframe), 
but its importance is very low, then it should be removed as uninformative, 
which only introduces additional noise (see Fig. 3.3 on the feature "passen-
ger_count" – that is the number of passengers). 

2. If the feature is very important, then it should remain. 
3. If the feature has low importance, but it is rare, then its value should be 

analyzed only by the accuracy of the model (if it increases with it, then it should 
be left, if not, then it can be removed). 

At the FE stage, not only methods for analyzing the importance of fea-
tures are important, but also automated methods for selecting the best features. 
For this, there are special automation methods of "Feature Selection" (FS) from 
the Sklearn library [18]. Most of them use a machine learning model chosen by 
the analyst, which will be explained in more detail in the next chapter. 

1. Selection of features by the Pearson correlation coefficient (corr in the 
pandas library – for linear dependencies or features distributed according to the 
normal law) or Spearman (corr(method='spearman') in the pandas library – that 
is, for non-linear dependencies or features not distributed according to the nor-
mal law by law). 

2. Selection of features using the SelectFromModel method using a specif-
ic machine learning model, usually linear. 

3. The SelectKBest method – selects the K best features that have the 
greatest impact using a given criterion. Criteria: 

- for classification problems: F-statistics, for categorical features – Chi-2 
(χ2-criterion); 

- for regression problems: ANOVA ("ANalysis Of VAriance"), Pearson's 
or Spearman's correlation coefficient, etc. 

4. Feature selection using the Recursive Feature Elimination (RFE) meth-
od. The algorithm gradually removes less important features (a given number or 
percentage) until a given number is reached. Any given models are used. 

5. Selection of features using VarianceThreshold — features with low 
variability (a small number of unique values) are removed. Hence, the name: 
threshold for variance. 

Tips 5.6-5.13 in [5] provide examples of the application of these FE 
methods. 

More effective tools for exploring and visualizing the importance of fea-
tures are library methods based on game theory and on approximation by simpli-
fied models around a specific example of data. Let's consider them in more de-
tail. 

The most interesting and detailed explanations of features with good visu-
alization are provided by methods of the SHAP, LIME library (see Appendix F). 



77 
 

In Kaggle, competitions are often held to solve certain problems, where in 
order to win, you need to be able to analyze the importance of features and be 
able to process and generate them (see section 1.5): 

1. FE for predicting the risk of loan default from Home Credit. 
2. Development of methods for automatic detection of personally identifi-

able information (PII) in educational data from The Learning Agency Lab. 
3. Highlighting key characteristics for predicting the behavior of prosum-

ers in the energy sector from Enefit. 
4. Processing and aggregation of data from the order block and the final 

auction to predict stock price movements in the final minutes of trading from 
Optiver. 

5. Isolation of important features for predicting chemical effects on vari-
ous cell types from Open Problems – Single-Cell Perturbations and others. 

Fig. 3.4 presents an infographics of the toolkit mentioned in section 3 as a 
whole, in the S(I) coordinate system. 

Figure 3.4 – Infographics of all the main operations and technologies of feature 
engineering (FE) 

Possible topics of practical tasks 
Topic. Analysis of the importance of features. 
The purpose of the class is to learn information technologies and Python 

libraries for analyzing the importance of features and performing FeatureEngi-
neering of data and mastering practical skills of using some of them on the ex-
ample of one of the Kaggle datasets or on data downloaded via the API. 

Lesson plan: 
1. Select a dataset (see Chapter 1). 
2. Carry out primary EDA of the dataset and define tasks for FE. 
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3. Characterize the stages of feature processing (which existing ones are 
deleted and why, which new ones are created and for what, which ones are 
transformed and why). 

4. Give a diagram of the importance of the features of one of the models 
and what conclusions can be drawn from it. 

5. Indicate which optimal features were selected based on the results of 
clauses 3, 4 (these clauses can be applied alternately and repeatedly:  3, 4, 3, 
4...). Also, a combined (or complex) diagram of the importance of features, built 
according to several models at the same time, can be given – see example in 
notebooks: FE - Feature Importance – Advanced Visualization (for the classifi-
cation problem)  

- FE-FI for Regression Task – Advanced Visualization (for the regression 
problem). 

Notebook samples: 
The following notebooks are recommended for this work: 
- for the classification task: FE - Feature Importance – Advanced Visuali-

zation; 
- for the regression task: FE-FI for Regression Task – Advanced Visuali-

zation; 
Also, you can see other examples of notebooks with feature importance 

charts: 
- Autoselection from 20 classifier models & L_curves 
- Biomechanical features - 20 popular models 
- Suspended substances prediction in river 
- WQ SB river : EDA and Forecasting 
- Heart Disease – Automatic AdvEDA & FE & 20 models 
 

Test questions 
1) What does feature engineering (FE) involve and why is it important in 

data analysis and model building? 
2) What are the main stages of feature engineering and what problems do 

they solve? 
3) What methods can be used to synthesize new features based on exist-

ing data? 
4) What is the standardization and normalization of features, and why is 

it important before building a model? 
5) How can you build a feature importance diagram, and what is its role 

in choosing the most important features for the model? 
6) What Python libraries can be used to automate feature selection, and 

what methods do they provide for this? 
7) How to ensure the interpretability of machine learning models from 

the point of view of feature engineering? 

https://www.kaggle.com/vbmokin/fe-feature-importance-advanced-visualization
https://www.kaggle.com/vbmokin/fe-fi-for-regression-task-advanced-visualization
https://www.kaggle.com/vbmokin/fe-feature-importance-advanced-visualization
https://www.kaggle.com/vbmokin/fe-feature-importance-advanced-visualization
https://www.kaggle.com/vbmokin/fe-fi-for-regression-task-advanced-visualization
https://www.kaggle.com/vbmokin/fe-fi-for-regression-task-advanced-visualization
https://www.kaggle.com/vbmokin/autoselection-from-20-classifier-models-l-curves
https://www.kaggle.com/vbmokin/biomechanical-features-20-popular-models
https://www.kaggle.com/vbmokin/suspended-substances-prediction-in-river
https://www.kaggle.com/vbmokin/wq-sb-river-eda-and-forecasting
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models
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8) What strategies are used to process categorical features during feature 
engineering? 

9) What are the possible problems that can occur during feature engi-
neering and how can they be avoided or solved? 
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4 TRAINING AND TUNING OF MACHINE LEARNING MODELS 

 
 

4.1 Types of machine learning models and their advantages  
 
Machine learning models are divided into the following main classes (see 

documentation of the library Sklearn):  
1) Linear models (the package “sklearn.linear_model” – about 20 models 

and methods), the most common:  
• LinearRegression; 
• Ridge; 
• Lasso; 
• LogisticRegression; 
• Stochastic Gradient Descent; 

2) Models based “Support Vector Machine” (the package “sklearn.svm” – 
several models, but with many variations), the main: 

• SVC; 
• LinerSVC; 

3) Models based on the “Neighbors Method” (the package 
“sklearn.neighbors” – near 10 models), the main: NearestNeighbors; 

4) Forecasting methods based on the “Gaussian Process” and when not 
the values themselves are forecast, but their probabilistic characteris-
tics (the package sklearn.gaussian_process – several models, but with 
many variations), the main: GaussianProcess; 

5) The Naive Bayes model (the package "sklearn.naive_bayes" – several 
models), the main: GaussianNB; 

6) Decision Trees; 
7) Ensembles of models:  

• ensemble of Decision Trees:  
• the baging; 
• the boosting; 
• the stacking; 
• the voting; 

8) Neural Networks and their ensembles: 
• Perceptron (Sklearn); 
• MLP – Multi-Layer Perceptron (Sklearn); 
• Neural Networks of frameworks Keras, TensorFlow and 

PyTorch.  
The last 2 classes are the most effective and popular, but in order to un-

derstand them better, you must first master the first six.  
The personal experience of the authors and the results of studying many 

solutions and sources in various fields of application allow to state: 

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
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- linear models work well for small or very noised datasets; 
- logistic regression works quickly in classification tasks and is often used 

for post-processing in solutions using Neural Networks; 
- Decision Trees allow a good understanding of data patterns, have good 

possibilities for visualization, selection of features according to their im-
portance; 

- ensembles are the most effective, but very sensitive to the quality of the 
models they consist of; 

- Neural Networks and their ensembles require larger datasets than linear 
models or Decision Trees but are more efficient for big data. 

 
4.2 Training of machine learning models and their regularization 
 
Each model of machine learning, for example, name_model (with param-

eters model_params) from the package name_package of the library sklearn 
using the dataframe train and target (a column of data frame as type «series») is 
built in the same way: 

 
From sklearn.name_package import name_model 
model = name_model(model_params) 
model.fit(train, target) 

 
and then the prediction (predict) of the values y_pred or prediction of the prob-
ability (predict_proba) of these values by the model according to the test data-
frame is carried out in the following way: 
 

y_pred = model.predict(test) 
 

Next, we will give only values for each model: name_package, 
name_model and examples model_params. 

Almost all models, except for LinearRegression, Lasso, GaussianNB, in 
the Sklearn library have an option for the classification problem (the word 
"Classifier" is added at the end of the name) and for the regression problem 
("Regressor"): DesicionTreeClassifier and DecisionTreeRegressor, etc. There is 
no LinearClassifier, LassoClassifier, or GaussianNBClassifier model variant. 

LogisticRegression is the only classification model that can’t be used to 
solve regression problems. It is intended only for classification tasks, despite the 
name. 

In all models, as a rule, there is a random_state parameter of the "int" 
type, which must be fixed, for example, random_state=42, or 0, 1, 2, or another 
integer. This ensures the reproducibility of the results, else calculation result 
can’t be repeated. 

And there is also the verbose parameter, which is usually equal to 1 (dis-
play intermediate results of calculations) or 0 (do not display). 
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All models other than LinearRegression typically have specific  
model_params. In machine learning, these are called hyperparameters – pa-
rameters that are not learned by themselves during model training, but define the 
architecture or configuration of the model. They are set before training begins 
and determine how the model should learn and how it should adapt to the data. 

It is important to configure hyperparameters in such a way as to prevent or 
minimize the risk of overtraining. To do this, regularization is used – a tech-
nique in machine learning to reduce the values of model parameters to improve 
its generalization ability and avoid overtraining. It is best to explain its essence 
in the example of identifying polynomial regression for one feature (Fig. 4.1). 

 

 
         a)               b) 

 
Figure 4.1 – Examples of polynomial regression construction: a) parabola 
(polynomial of order n=2), which exactly passes through n+1=3 points; 

b) polynomials of the (m=6) and lower orders that are close to m+1=7 points 
 

As you know, a straight line can be precisely drawn through n=2 points, 
that is, a polynomial of order n-1=1. Through n=3 points – a parabola, that is, a 
polynomial of order n-1=2 (Fig. 4.1, a), through n=7 points – a polynomial of 
order n-1=6 (Fig. 4.1, b, blue line). However, this very precise curve will differ 
significantly from the basic trend line between the known points. Theoretically, 
the parameters can be sign-changing and have a value of 106or more. Because of 
this, when test data with values that differ from the training dataset arrive, the 
model will give significantly inadequate results. To avoid this, artificial limita-
tion of parameter values is introduced. It is necessary to limit both positive and 
negative values, and therefore, use 2 types of functions of the 1st or 2nd orders 
with the corresponding designation L1 or L2: 

- L1: module function: 

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification
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      (4.1) 
 

- L2: square function: 

        (4.2) 
 

Almost all machine learning models have 3 parameters: L1 and L2, which 
take the value True or False, or one (for example, "penalty"), which takes the 
value L1, L2, or None. The third parameter is the degree of regularization (usu-
ally denoted as "alpha" if larger values mean more regularization, or as "C" if 
vice versa) – a positive float number. There are models with both types of regu-
larization at the same time, for example, ElasticNet. 

Let's consider how the models are trained and how the effectiveness and 
accuracy of their training is controlled. 

 
4.3 Tuning of models' hyperparameters and controlling their 

training's effectiveness 
 
The key stage of machine learning is actually model training (hence the 

name). The purpose of training is to achieve some goals (in the direction of de-
creasing importance): 

- achieving a better value of the metric on the validation dataset val_loss; 
- there is no or minimal difference between the value of the metric on the 

training train_loss and validation val_loss datasets; 
- shorter duration of calculations; 
- lower cost of calculations, as well as lower requirements for the neces-

sary computing power in the form of GPU or TPU. 
That is, among models with the same very good values, for example, 

val_loss, you need to choose the one in which train_loss=val_loss (or almost 
so), and if it also coincides, then – the one that makes predictions faster (and 
training too) and is also cheaper, that is, it requires less power for calculations. 

The main goal is to achieve a better metric value on the val_loss valida-
tion dataset, but it is important that the loss value on the training data is also 
good and does not significantly differ from val_loss (at least by no more than 5–
10%). According to the ratio of these values, 3 types of machine learning results 
are distinguished (Fig. 4.2): 

- Undertraining (very bad learning): the value of loss is "bad" or unsat-
isfactory, then the value of val_loss no longer has a special value, or train_loss 
= val_loss; 

- Just Right or Appropriate-Fitting (good learning): both val_loss and 
train_loss are good or at least satisfactory (val_loss should be worse than 
train_loss, but slightly, for example by 3-10%); 
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- Overtraining (bad learning): train_loss is good but train_loss is 
"bad" or unsatisfactory or train_loss is better than val_loss by more than 10%. 

 

 
                                         a)        b)             c) 
Figure 4.2 – Types of machine learning model results: a) Undertraining; b) Just 

Right or Appropriate-Fitting; c) Overtraining 
 

Usually, in the case of a good implementation of the models and advice 
from subsections 4.1 and 4.2, it is possible to achieve a good loss, and then the 
main problem is overtraining itself, which takes place in very many cases. That 
is why it is often said that the main task of machine learning is to avoid over-
training! There are a number of techniques to achieve this. 

1. Using cross-validation to select training and validation datasets (see 
"Tip 6.1" in [5]). 

2. Using the sklearn.model_selection.GridSearchCV function, which al-
lows you to perform a complete search of model parameter options in given lists 
of discrete values with given cross-validation (see "Tip 6.2" in [5]). 

https://stanford.edu/%7Eshervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks


85 
 

There is also a RandomizedSearchCV option – this is the same as 
GridSearchCV, but without the full selection of options. Only certain random 
combinations are taken – not as accurate, but works much more accurately and 
you can try more options, also set continuous ranges of values. 

First of all, you need to configure: 
- the architecture of the models, if they provide for the use of different 

components; 
- for Decision Trees: maximum depth (max_depth) and/or number of 

leaves (num_leaves); 
- learning_rate (lr); 
In addition to tuning the hyperparameters of the model itself, other tech-

niques for improving the accuracy of models can still be effective: 
- parameters of cross-validation (cv); 
- changing the size or number of batches (batch); 
- method of selecting random features during model tuning (ran-

dom_state). 
During tuning, it is necessary to analyze various combinations of parame-

ters to find the most successful ones and form a plan for their further change. In 
author's notebooks (GRU & LSTM mix & custom loss - tuning by 3D visual, 
Stock Embedding - FFNN - upgrade & 3D, MoA: Pytorch-RankGauss-PCA-NN 
upgrade & 3D visual) there are nice 5D (3D coordinates + shape + color) visual-
izations of how different parameters affect accuracy. According to those graphs, 
it is possible to improve this accuracy well. 

There are special methods to automate the setup process. The most popu-
lar among them are the following: 

- GridSearchCV from sklearn.model_selection; 
- HyperOpt from the hyperopt library; 
- Optuna from the optuna library. 
Good examples of using GridSearchCV and HyperOpt (Fig. 4.3) are in the 

notebook for predicting Titanic survivors (in the Kaggle competition). 
Good examples of using the Optuna method with detailed explanations 

and infographics are in the notebook.  
Recommended model training algorithm: 
1. Based on the results of the exploratory analysis, possible ranges of val-

ues are selected. 
2. Apply the HyperOpt or Optuna method and significantly narrow the 

possible ranges of values and the number of hyperparameters that can be 
changed and that have the greatest impact on accuracy. 

3. GridSearchCV is used to refine the global optimum for the values and 
hyperparameters selected in point 2. 

Although, sometimes the algorithm ends at point 2, and sometimes, with a 
small number of possible value options, point 2 is skipped and only 
GridSearchCV is used. 

 

https://www.kaggle.com/code/vbmokin/titanic-0-83253-comparison-20-popular-models
https://www.kaggle.com/code/corochann/optuna-tutorial-for-hyperparameter-optimization
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Figure 4.3 – An example of XGB Classifier model parameter tuning by the Hy-
perOpt method: the best parameter combinations (the last 2 out of 10 are shown) 

and the selected optimal model parameter combination  
(see last dictionary {}) (from the notebook) 

 
When analyzing model training accuracy, it is important not only to calcu-

late the basic metric but also to analyze the learning curve and confusion matrix. 
The Learning Curve displays the dependence of the metric on the amount 

of training data or on the number of training iterations. It shows: how best to 
choose cross-validation parameters. Is the data evenly distributed between 
batches? Is there overtraining or undertraining, and which steps of cross-
validation increase this risk? A learning curve helps you evaluate how a model 
learns and how its performance changes over time or with different data. Usual-
ly, 2 learning curves are built: the Training Curve and the Validation Curve. It is 
valuable to analyze not only them but also their comparison. The optimal situa-
tion is when the validation curve at the end of training is close to the training 
curve, but has slightly worse accuracy than it, and they both achieve good accu-
racy values. 

Confuse Matrix or Error Matrix is a square matrix, the size of which is 
equal to the number of classes of the target feature, so it is built only in classifi-
cation problems. Each row of this matrix corresponds to the predicted classes, 
and each column corresponds to the true classes. In each cell, the relative num-
ber of correctly predicted corresponding classes is displayed (there may also be 
an absolute value of this number and how much data had to be predicted in to-
tal). An ideal confusion matrix is a single diagonal matrix, that is, a matrix in 
which all 1s are in the diagonal, and 0s in the other cells. For a binary target, the 
confusion matrix is shown in Fig. 4.4. 

 

https://www.kaggle.com/code/vbmokin/titanic-0-83253-comparison-20-popular-models
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Figure 4.4 – The structure of the Confusion Matrix 

 
Error "False Positive" (FP) is also called "error of the I kind" or "false 

alarm", and error "False Negative" (FN) is "error of the II kind" or "missing the 
target". A large FP value indicates overtraining, and a large FN indicates under-
training. 

These errors determine 2 more important metrics Precision and Recall, 
which are used to determine the effectiveness of models for binary classifica-
tion: 

- Precision or "Positive Predictive Value" (PPV)) determines how accu-
rate the positive (target = 1) predictions of the model are: 

,            (4.3) 
 

 - Recall or "True Positive Rate" (TPR)) determines what part of all posi-
tive (target = 1) instances the model identified correctly: 

 .           (4.4) 
 
If it is important to choose a model that has balanced values of both of 

these metrics, then the metric  (harmonic average) is used: 
 

.         (4.5) 
 
Metrics that are still popular in Kaggle competitions are: 
- ROC-AUC (Receiver Operating Characteristic – Area Under the Curve) 

– the area under the ROC curve, which graphically displays the dependence be-
tween TP and FPR shares at different threshold values in the classification mod-
el; the larger the AUC value (from 0 to 1), the better the model, where 1 indi-
cates a perfect model and 0.5 indicates a random classification model; 

https://en.wikipedia.org/wiki/Confusion_matrix
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-  – for cases where it is more important to give more weight to Recall, 
especially in tasks where it is important to avoid false negative results as little as 
possible. 

In fig. 4.5 and 4.6 are examples of learning curves and confusion matri-
ces. 

 
 

 
 

a) 
 

 
b) 
 

Figure 4.5 – Analysis of the learning results of the "Stochastic Gradient De-
scent" model from the notebook: a) learning curves; b) confusion matrices 

 
Analysis of Fig. 4.5 shows that the model learned normally, but the addi-

tion of batches worsened its accuracy, so it is advisable to revise the cross-
validation parameters. 
 

https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models?scriptVersionId=46390285
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a) 
 

 
b) 
 

Figure 4.6 – Analysis of the learning results of the "GradientBoostingClassifier" 
model from the notebook:learning curves; b) confusion matrices 

 
In fig. 4.6 the confusion matrix indicates clear overtraining. Moreover, 

values target=0 are predicted worse. To reduce overtraining, it is necessary to 
optimize the model parameters. The learning curve shows that the addition of 
batches allows you to increase the accuracy of prediction of validation data, but 
it is not enough, that is, it is advisable to optimize the cross-validation parame-
ters as well. 

It should be noted that the confusion matrix can be built not only for bina-
ry classification problems. In fig. 4.7 shows the confusion matrix for the prob-
lem of recognizing and classifying Arabic numerals. 

 

https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models?scriptVersionId=46390285


90 
 

 
 

Figure 4.7 – Confusion matrix for the problem of recognizing and classifying 
Arabic numerals from the notebook 

 
In fig. 4.8 presents an infographics of the toolkit mentioned in subsections 

4.1-4.3 in the S(I) coordinate system. 
 

 
Figure 4.8 – Machine learning model tuning infographic 

 
 
Let's consider the main models in more detail. 
 
 
 
 

https://www.kaggle.com/code/vbmokin/mnist-model-testing-typographic-digits
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4.4 Linear Regression, Ridge and Lasso models. Logistic Regression 
 

4.4.1 Linear Regression, Ridge and Lasso models 
Linear Regression is a method that describes the relationship between n 

features (input data) and target  (output feature) using linear functions 
(Fig. 4.9).   

 
Figure 4.9 – Linear regression from notebook 

 
It can be used both for features with integers (classification problem) and 

fractional numbers (regression problem), without changing the name: 
name_package = linear_model 
name_model = LinearRegression() 
Mathematically, this model looks like this: 
 

       (4.6) 
 
where  is the constant component (shift), 

 – feature importance coefficients,  
 – random noise with zero average and fixed dispersion, less than that of fea-

tures. 
The result is the  – models coefficients, which reflect the importance of 

the respective features and the value of the shift. Chapter 3 is devoted to their 
analysis. 

Linear regression itself has no parameters, but has 2 popular varieties, de-
pending on the type of regularization: 

1. Lasso is a linear regression with L1 regularization (4.1). 
name_package = linear_model 
name_model = Lasso (regressor) 
model_params = alpha=1.0, *, fit_intercept=True, precompute=False, 

copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, 
random_state=None, selection='cyclic' 

 

https://www.kaggle.com/code/vbmokin/tutorial-linear-and-logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
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The Lasso model, like linear regression, does not have a separate option 
for classification tasks. For them, it is used in the same form. 

2. Ridge is a linear regression with L2 regularization (4.2). 
 
name_package = linear_model 
name_model = Ridge (regressor), RidgeClassifier 
model_params = alpha=1.0, *, fit_intercept=True, copy_X=True, 

max_iter=None, tol=0.0001, solver='auto', positive=False, ran-
dom_state=None 

 
The parameters for the regressor and the Ridge classifier are the same. 

Higher alpha values mean higher regularization.  
It is not recommended to set alpha = 0 in both types of models. Instead, it 

is better to use the LinearRegression model.  
The main parameters that need to be varied to improve accuracy are: 
- tol is the precision (positive float) at which the algorithm stops; 
- max_iter is the maximum number of iterations if tol is not reached; 
- solver is an optimization algorithm. 
There is another subspecies of these regressions and types of regulariza-

tion, when both types of regularization L1 and L2 are applied simultaneously. 
This is a model of sklearn.linear_model. ElasticNet. It is useful when some fea-
tures are highly correlated, but it is not desirable to remove them (the Lasso 
model will leave one of them, ElasticNet – all of them).  

Fig. 4.10 presents an example of prediction of 5 different datasets by dif-
ferent types of linear regression with different regularization. 

 

 
 

Figure 4.10 – Classification of data from 5 different datasets by different types 
of linear regression with different regularization (in the lower right corner –  

accuracy_score for test (validation) data, test data are circles outlined in black) 
[19]  

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression


93 
 

As can be seen from Fig. 4.10, using Lasso as an example, a lower level 
of alpha regularization increases the accuracy of the models, but on some da-
tasets, the accuracy of the models is very low. The threshold of minimum per-
missible accuracy is conventionally considered to be values greater than 0.5, 
since if you do not make any prediction, but simply randomly generate answers, 
then the probability, theoretically, will reach just 0.5. Therefore, if the accuracy 
is higher, then it is already better. A satisfactory level is usually 0.7. Excellent – 
0.9. But there are problems where 0.9999 may not be enough, especially in Data 
Science competitions in Kaggle. If the accuracy is less than 0.5, then this is un-
acceptable! 

On Fig. 4.10 one of the best models in terms of accuracy on test data is 
Ridge(alpha=0.1), at least on the first (0.85) and last (0.9) datasets. 

 
4.4.2 Logistic Regression 
Logistic Regression is a statistical regression method based on the logistic 

function, which is used to predict the target  in the case when the input varia-
bles  are categorical, that is, they can acquire a fixed number of values 
(2–10, rarely more). It is used only for classification tasks (Fig. 4.11). 

 
Figure 4.11 – Logistic regression from the notebook 

 
As can be seen from the plot in Fig. 4.11 and from notebook, the probabil-

ity of a given class model.predict_proba(x_values) is calculated for the input 
values. It is displayed on the graph in red, and then, according to simple condi-
tions, it is assigned to a certain class. The most common option is 1 if bigger 
than 0.5, and – 0 otherwise (as in Fig. 4.11). It is important to realize that 
LogisticRegression can apply this rule to a large number of features at the same 
time, and for multi-class problems, when there are more than 2 classes. The 
main thing is that there are not too many of these classes, as a rule, no more than 
10-20. 

https://www.kaggle.com/code/vbmokin/tutorial-linear-and-logistic-regression
https://www.kaggle.com/code/vbmokin/tutorial-linear-and-logistic-regression
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It can be used both for features with integers (classification task) and frac-
tional numbers (regression task), without changing the name: 

name_package = linear_model 
name_model(model_params) = LogisticRegression (penalty='l2', *, du-

al=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, 
class_weight=None, random_state=None, solver='lbfgs', max_iter=100, mul-
ti_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) 

Most often, the same parameters are changed as for the models of Ridge 
regression and Lasso regression (see above), but instead of alpha: C is the in-
verse of the regularization force (positive float): the lower the values, the 
stronger the regularization, i.e. the stronger the constraints of the  – coeffi-
cients.  

Mathematically, this model allows you to compute the probability of each 
class for the input and then select the option with the highest probability P. For 
example, for binary targeting, the probability of class 1 ( ) for one feature 

 is calculated using the formula. 
 

,       (4.7) 
 
where  is the feature importance factor ,  and  is shift. 

The result is  -coefficients of the model, which reflect the importance of 
the relevant features and the value of the shift for analysis by FE methods. 

Fig. 4.12 shows an example of prediction of 5 different datasets by lo-
gistic regression with different parameters. 

 

 
Figure 4.12 – Classification of data from 5 different datasets by Logistic  

regression with different parameters (in the lower right corner – accuracy_score 
for test (validation) data, test data are spaces circled in black) [19]  
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On Fig. 4.12 one of the best models in terms of accuracy on test data is 
LogisticRegression(L1, C=1). It is the best on the first (0.85), third (0.6) and 
fourth (0.95) datasets. In second (0.8) and fifth (0.85) it ranks second. In addi-
tion, it can be seen that regularization and the choice of metric (L1 or L2) gives 
different results. The first dataset is invariant to parameter changes, the second 
dataset is the choice of L2 regularization with stronger regularization (lower C 
values) increases accuracy. On the third, L1 gives better accuracy, but still low 
(0.6). In fourth, both L1 and L2 are better. On the 5th, a good accuracy of 0.9 is 
provided by L2 with stronger regularization (C=0.1) and the solver='liblinear' 
optimization method (see the "lin" parameter on the graph). Conclusion: there is 
no universal advice, in each case you need to carry out individual diligent tuning 
of the model. 

 
 
4.5 SGD, SVM, k-NN, GP, NB models 

 
4.5.1 Stochastic Gradient Descent 
 
Stochastic Gradient Descent is an iterative method for optimizing gradient 

descent using stochastic approximation. It is used to speed up the search for a 
target by using a limited sample (batch) of training data, which is selected ran-
domly at each iteration. It can be considered as a stochastic approximation to the 
gradient descent optimization method, the actual gradient for the entire training 
dataset is replaced by its score (Fig. 4.13). The method significantly reduces the 
volume computing, allows to work with big data when data is loaded in batches. 

 

 
 

Figure 4.13 – Illustration of the Stochastic Gradient Descent method  
from the article 

 
 
 
 

https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D1%96%D1%81%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%96%D1%8F
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
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name_package = linear_model 
name_model(model_params): 
- SGDClassifier(loss='hinge', *, penalty='l2', alpha=0.0001, 

l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, 
verbose=0, epsilon=0.1, n_jobs=None, random_state=None, learn-
ing_rate='optimal', eta0=0.0, power_t=0.5, early_stopping=False, valida-
tion_fraction=0.1, n_iter_no_change=5, class_weight=None, 
warm_start=False, average=False); 

-  SGDRegressor(loss='squared_error', *, penalty='l2', alpha=0.0001, 
l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, 
verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', 
eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, 
n_iter_no_change=5, warm_start=False, average=False). 

 
The main popular parameter that is varied to improve accuracy, in addi-

tion to the above-mentioned tol, alpha, max_iter, is learning_rate – the speed of 
learning at each epoch (iteration). 

An example of predicting 5 different datasets will be in the next para-
graph, along with other methods. 

 
 
4.5.2 Support Vector Machine 
Support Vector Machine is a method of data analysis using a model that 

assigns new data to one or another category (class, cluster) by drawing the wid-
est "corridor" between support vectors, which are the "walls" of neighboring 
classes in multidimensional space, and then assigns the data to each of these 
classes (Figure 4.14).  
 

 
 

Figure 4.14 – Illustration of  drawing a "corridor" between support vectors 
("walls" of this "corridor") in the method of support vectors for a two-

dimensional plane in the case of two input features 
 

https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D0%B8%D1%85_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D1%96%D0%B2
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To complicate the algorithm, a preliminary nonlinear transformation of 
data is carried out using one of the types of kernels (Fig. 4.15). In addition to 
those shown in Fig. 4.15, kernels can also be: "sigmoid", "precomputed".  

 

 
a)                         b)                      c)                          d) 

 

Figure 4.15 – Types of kernels of the Support Vector Method  
with illustrations of their application from documentation: a) the linear core of 
the "linear" of the SVC method; b) the linear core of the LinearSVC method; c) 

"rbf" (radial basis functions); d) 3rd-order polynomial kernel "poly" 
 

The type of kernel is a hyper parameter. 
The LinearSVC method is similar to SVC(kernel="linear"), but uses a 

slightly different model and works better for larger datasets. 
 

name_package = svm 
name_model(model_params): 
- Classifiers: 
- SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, 

shrinking=True, probability=False, tol=0.001, cache_size=200, 
class_weight=None, verbose=False, max_iter=-1, deci-
sion_function_shape='ovr', break_ties=False, random_state=None); 

- LinearSVC(penalty='l2', loss='squared_hinge', *, dual='warn', 
tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, 
class_weight=None, verbose=0, random_state=None, max_iter=1000). 

 

- Regressors: 
- SVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, 

C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, 
max_iter=-1); 

- LinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0, 
loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1.0, du-
al='warn', verbose=0, random_state=None, max_iter=1000). 

 

The main parameter that is varied to improve accuracy, in addition to the 
above-mentioned tol, C, max_iter, in the SVC and SVR models is kernel. 

Fig. 4.16 shows an example of prediction of 5 different datasets by the 
Stochastic Gradient Method and the Support Vector Method with different pa-
rameters. 

 

https://scikit-learn.org/stable/modules/svm.html#classification
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Figure 4.16 – Classification of data from 5 different datasets  using  
the Stochastic Gradient Method (SGD) and the Support Vector Method (SVC)  
with different parameters (in the lower right corner – accuracy_score for test 

(validation) data, test data are spaces circled in black) [19]  
 
As shown in Figure 4.16, increasing regularization (larger alpha) for the 

Stochastic Gradient (SGD) model increases accuracy on the first 3 datasets. For 
the SVC model, the "RBF" kernel provides the highest accuracy for all datasets 
except for the second one, where the "linear" kernel is the best. Increasing regu-
larization (less than C) for the LinearSVC model increases accuracy on the last 2 
datasets. In general, the best in terms of accuracy on test data are: 

- on the first dataset (0.9): SVC with the kernel "RBF"; 
- on the second dataset (0.85): SGD (alpha=0.1), SVC with the kernel 

"linear"; 
- on the third dataset (0.65): SVC with the "RBF" core; 
- on the fourth dataset (0.95): LinearSVC (C=0.1); 
- on the fifth dataset (0.9): SGD (alpha=10-4), SVC with the kernel 

"RBF". 
So, the best in this example may be considered SVC with the kernel 

"RBF" and LinearSVC (C=0.1).  
 
 
4.5.3 K-nearest neighbor method 
K-nearest neighbor method (KNN) is a simple non-parametric classifica-

tion method, where objects with the shortest distance are selected to classify ob-
jects in the multidimensional feature space, they are allocated to a separate class. 
Objects of different classes are analyzed at a given distance k and the object is 
attributed to the one that is the most numerous among them. 
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Fig. 4.17 provides an example that explains the essence of the method. 
The test sample (green circle) should be classified as either blue squares or red 
triangles. If k = 3 (circle of a solid line), then it belongs to red triangles because 
there are 2 triangles inside the inner circle and only 1 square. If k = 5 (dashed 
line circle), then it is referred to as blue squares (3 squares versus 2 triangles in-
side the outer circle).  

 

 
 

Figure 4.17 – Illustration to explain the principle of operation of  
the k-nearest neighbor method 

 
Fig. 4.18 shows examples of how the method works. 
 

 
a)                      b) 

Figure 4.18 – Examples of k-nearest neighbor method:  
a) example1; b) example2 

 
name_package = neighbors 
name_model: KNeighborsClassifier, KNeighborsRegressor 
model_params (n_neighbors=5, *, weights='uniform', algorithm='auto', 

leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None) 

https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_k-%D0%BD%D0%B0%D0%B9%D0%B1%D0%BB%D0%B8%D0%B6%D1%87%D0%B8%D1%85_%D1%81%D1%83%D1%81%D1%96%D0%B4%D1%96%D0%B2
https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_k-%D0%BD%D0%B0%D0%B9%D0%B1%D0%BB%D0%B8%D0%B6%D1%87%D0%B8%D1%85_%D1%81%D1%83%D1%81%D1%96%D0%B4%D1%96%D0%B2
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/


100 
 

For the classifier and the regressor, the parameters are the same, except 
for the first one, which specifies the "neighbors" and it is the one that needs to 
be configured for the model, first of all: 

- For the classifier: n_neighbors – positive natural int; 
- For a regressor: radiusis – the radius in which you need to look for 

"neighbors" – positive float. 
The weights parameter allows you to set different weights for points, de-

pending on the distance to the specified one. 
It has advantages and disadvantages, as in clustering methods, since their 

principles of operation are similar. It is effective for data in the field of econom-
ics when there are many different factors that are poorly tracked, and there may 
not be a single adequate model. You just need to cluster the data, and then make 
predictions using the same algorithm. 

This model does not have a random_state parameter. 
An example of predicting 5 different datasets will be in one of the follow-

ing paragraphs, along with other methods. 
 
 
4.5.4 Forecasting methods based on the Gaussian process  
Forecasting methods based on the Gaussian process predict not the values 

of the data themselves, but their probabilistic characteristics (average value and 
mean square deviation). The prediction is probabilistic, and therefore empirical 
confidence intervals can be easily calculated (Figure 4.19).  

 

 
 

Figure 4.19 – An example of a prediction method based on the Gaussian process 
with documentation 

https://scikit-learn.org/stable/modules/gaussian_process.html#gaussian-process
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You can specify kernels for additional data transformation. The method 

works with all data at once, so it is not suitable for big data. 
 

name_package = gaussian_process 
name_model(model_params): 
- GaussianProcessClassifier(kernel=None, *, optimizer='fmin_l_bfgs_b', 

n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, 
copy_X_train=True, random_state=None, multi_class='one_vs_rest', 
n_jobs=None); 

- GaussianProcessRegressor(kernel=None, *, alpha=1e-10, optimiz-
er='fmin_l_bfgs_b', n_restarts_optimizer=0, normalize_y=False, 
copy_X_train=True, n_targets=None, random_state=None). 

 
The main popular parameter, which is varied to improve accuracy, is the 

kernel – (RBF, ConstantKernel, DotProduct, ExpSineSquared, Matern, possible 
combinations of ConstantKernel and DotProduct), which defines the covariance 
function of Gaussian processes. 

An example of predicting 5 different datasets will be in the next para-
graph, along with other methods. 

 
 
4.5.5 Naive Bayes model 
Naïve Bayes Classifier is a probabilistic classifier that uses Bayes' theo-

rem to determine the probability of data belonging to one of the classes, usingthe 
"naive"  hypothesis about the statistical  independence of features (Fig. 4.20).  

 

 
 

Figure 4.20 – Example of work of the "naive" Bayes model 
 
 

The method has high speed, minimal memory usage and can give results 
when other methods simply cannot run. However, it is effective only if the hy-
pothesis about the independence of features is really similar to the true one. At 
the first stage of the development of spam filtering algorithms, it was this meth-
od that gave good results, and then spammers learned to add useful text to the 
title and content, and this method ceased to be effective. 

 
 
 

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
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name_package = naive_bayes 
name_model(model_params): GaussianNB(*, priors=None, 

var_smoothing=1e-09). 
 
 
The method can be run without parameters: GaussianNB(). Interestingly, 

this model does not even have a random_state parameter . 
 Figure 4.21 shows an example of prediction of 5 different datasets by the 

k-nearest neighbor method, a classifier based on Gaussian processes, and a naive 
Bayesian classifier with different parameters. 

 

 
 

Figure 4.21 – Classification of data from 5 different datasets  
 using the k-nearest neighbor method (KNeighbors), a classifier based on Gauss-
ian processes (GPC) and a naïve Bayesian classifier (GaussianNB) (in the lower 
right corner – accuracy_score for test (validation) data, test data are spaces cir-

cled in black) [19]  
 
As shown in Fig. 4.21, the smaller the k in the k-nearest neighbors method 

(KNeighbors), the higher the precision, which is quite expected. In fact, bigger 
k is an analogy of a higher level of regularization. And for the second dataset, it 
works, because the best model is KNeighbors with k=10. 

In the GPC classifier, the best results are provided by the Matern core.  
A model based on a naive Bayesian classifier is not the best on any da-

taset. 
So, the best in this example are KNeighbors with k=3 and 10 and GPC 

with the Matern kernel. 
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4.6 Decision Trees. Comparative analysis of models on an example 
 
4.6.1 Decision Trees 
Decision Tree in Machine Learning is a structured decision-making model 

based on branching conditions if... then... else, which looks like a "tree" and is 
made up of nodes, branches, and leaves. Each node is a solution for a specific 
subset of data, the branches indicate the direction to be taken to reach the new 
node or the final result in the form of leaves. Usually, you specify the maximum 
amount of data that can be in a leaf. This sets the condition by which the nodes 
differ from the leaves. 

Decision trees are handy for understanding patterns, for visualizing a solu-
tion that is easy to understand. To avoid overtraining, conditions of the “prun-
ing” are set for trees. Theoretically, a tree with a depth of n would have 2n 
leaves. For example, if the depth is 6, then it would be 64 leaves. And then one 
of two "cropping" options is specified: or at a depth of 6 require,  so that there is 
no more, for example 40 < 64 leaves, or if the number of leaves is 64, it is re-
quired that the maximum depth does not exceed, for example, 8 > 6. And then 
the algorithm is forced to build a "pruned" tree, which will be much more gener-
alized than an "unpruned" one. Model parameters: 
 

name_package = tree 
name_model(model_params):  
- DecisionTreeClassifier(*, criterion='gini', splitter='best', 

max_depth=None, min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, random_state=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, 
ccp_alpha=0.0),  

- DecisionTreeRegressor(*, criterion='squared_error', splitter='best', 
max_depth=None, min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, random_state=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0)  

 
The parameters of the classifier model and the regressor differ only 

inthemetric (criterion): 
- Classifier: {"gini", "entropy", "log_loss"}; 
- Regressor: {"squared_error", "friedman_mse", "absolute_error", "pois-

son"}. 
The developers of the model strongly recommend specifying the parame-

ter max_depth as some kind of integer, starting from 2.  
The main advantage of a decision tree is good interpretability. There is a 

method of mapping the decision tree as a tree with all the conditions, and then it 
can be replaced by a sequence of conditions if ... then… else. This technique 
was used by one of the authors of the manual during the Kaggle competition to 
predict the survivors of the Titanic ("Titanic - Machine Learning from Disas-

https://www.kaggle.com/competitions/titanic
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ter"), in its public notebook "Titanic – Top score : one line of the prediction 
(Figure 4.22). 

a) 

b) 

Figure 4.22 – Visualization of the decision tree for the competition "Titanic - 
Machine Learning from Disaster" with parameters max_depth=3, 

min_samples_leaf=2: a) code for visualization of the model decision tree using 
the Graphviz library; b) the result of running the code 

Fig. 4.22, b presents clearly visible branches, nodes and leaves. Nodes are 
rectangles into which an arrow enters and from which 2 arrows come out. The 
arrow only enters the leaves. The color of the rectangle corresponds to the 
"class" (0 or 1 – the person did not survive or survived, respectively). Color sat-
uration is inversely proportional to the value of the "gini" criterion (the closer it 
is to 0, the more "pure" it is, that is, it contains data of only one class).  

 Fig. 4.22 is a classic decision tree visualization. As you can see, it 
"grows" in depth, not in height, and therefore its depth max_depth, not height, is 
limited in the parameters. Although, by analogy with biology, the first vertex is 
called root. This may be unusual for biologists, but that's quite common for ma-
chine learning. Probably, the reason lies in the features of visualization. As a 
rule, on computers, the first point on the screen is at the top left. In the case of 
showing the course of "growth" of the tree in the cycle, it is advisable to start 
from top to bottom. Therefore, everyone is used to the fact that it "grows" 

https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/code/vbmokin/titanic-top-score-one-line-of-the-prediction
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic
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downwards, although, in most cases, the tree is first calculated programmatically 
and mathematically, and then visualized, and this problem would no longer ex-
ist, but everyone is used to this approach. 

The convenience of decision tree interpretability lies in the fact that it can 
be simply "read": if ..., then..., and then, if ..., then... And so on until the end. 
And then the whole tree can be replaced with one condition, which will be the 
solution to the problem. And so it was done in the notebook "Titanic – Top 
score : one line of the prediction (2019) (Figure 4.23). Of course, this solution is 
preceded by the FE stage, where new features are synthesized that give such a 
beautiful and simple solution. This solution gives an accuracy of 0.80383, which 
as of April 2024 gives a level of "Top4%" (place 540 out of 15.5 thousand 
teams, although, in fact, higher, since a large part of the teams have an accuracy 
of 1.0, uploading answers known from the history of the Titanic, contrary to the 
rules of the competition).  

 

 
 

Figure 4.23 – One line of code for predicting test data in the problem ("Titanic - 
Machine Learning from Disaster", which corresponds to the decision tree in  
Fig. 4.22,b and gives an accuracy of the "Top4%" level of the competition 

 
 

The construction of decision trees is based on Shannon's information theo-
ry and probability theory, which is well described in the article and in the docu-
mentation.  

Fig. 4.24 shows an example of predicting 5 different datasets by decision 
trees with different parameters. 

  As is shown in Fig. 4.20, the metric "log_loss" is clearly better suited to 
the binary classification problem than the metric "gini". A minimum number of 
samples per leaf is a way to regularize the model, but results in degraded accu-
racy (however, for larger datasets, this can have the opposite effect). Increasing 
the maximum depth of the decision tree allows for increased accuracy, except 
for the second dataset, where it leads to overtraining.  

So, the best models in Fig. 4.24 are "DT(d=3, gini, s=1)" (first place on 
the first, second and fifth datasets) and "DT(d=8, log_loss, s=2)" (first place on 
all but the second). 

 

https://www.kaggle.com/code/vbmokin/titanic-top-score-one-line-of-the-prediction
https://www.kaggle.com/code/vbmokin/titanic-top-score-one-line-of-the-prediction
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic
https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-3-classification-decision-trees-and-k-nearest-neighbors-8613c6b6d2cd
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
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Figure 4.24 – Classification of data from 5 different datasets by decision trees  
with different parameters: maximum depth (d), "gini" or "log_loss" metric, min-

imum number of samples per leaflet (s) (in the lower right corner – accura-
cy_score for test (validation) data, test data are spaces circled in black) [19]  

 
 
4.6.2 Comparative analysis of models on an example 
Fig. 4.25 shows an example of prediction of 5 different datasets  

by the 9 best models of subsections 4.4-4.6. 
 

 
 

Figure 4.25 – Classification of data from 5 different datasets by 9 models  
 (in the lower right corner – accuracy_score for test (validation) data, test data 

are circles outlined in black) [19]  
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As can be seen from Fig. 4.25, the best in terms of accuracy on test data 
are: 

- on the first dataset (0.95): KNeighbors with k=3 and 10, GPC with the 
"Matern" core and DT(d=8, log_loss, s=2); 

- on the second dataset (0.85): Ridge(alpha=0.1), KNeighbors with k=3; 
- on the third dataset (0.75): KNeighbors with k=3, GPC with the core 

"Matern", DT(d=8, log_loss, s=2); 
- on the fourth dataset (1,0): DT(d=8, log_loss, s=2); 
- on the fifth dataset (0,9): SVC with the kernel "RBF", KNeighbors with 

k=3, GPC with the kernel "Matern", DT(d=3, gini, s=1), DT(d=8, log_loss, s=2). 
So, the best in this example are KNeighbors with k=3, GPC with the Ma-

tern kernel, and DT(d=8, log_loss, s=2).  
Let's take a closer look at them.  

 
 

4.7 Randomized ensembles of trees: Random Forest and others  
 

Some of the most common classes of machine learning models that pro-
duce good results based on the same type of model are ensembles of randomized 
decision trees. In them, subsets of features are randomly (randomly) selected 
and trees are built for each combination, and then generalized in a certain way. 
The most famous among them are the following ensembles:  

- RandomForest (RF) – in the classification problem (RandomForestClas-
sifier),the best prediction is determined by voting on the predictions of trees in 
the ensemble, and in the regression problem (RandomForestRegression) – by 
average in the values;  

- ExtraTrees (ET) – analyzes a number of randomized decision trees (extra 
(very) randomized) on different subsets of the dataset and uses averaging to im-
prove prediction accuracy; 

- IsolationForest is good at detecting anomalous values when building a 
forest of trees. 

For most tasks, RandomForest presents the best results, although in reality 
they are rarely the best. ExtraTrees sometimes gives even better solutions, but, 
in most cases, is prone to significant overtraining.  

Fig. 4.26 shows an example of prediction of 5 different datasets by the 
RandomForest model with different parameters. 

As shown in Fig. 4.26, the increase in the number of decision trees in en-
semble n is expected to increase accuracy. Similarly, there is a greater maximum 
depth d, with the exception of the second and third datasets, on which overtrain-
ing is observed. An increase in the number of samples in leaf (s), i.e., greater 
regularization, succeeds just on the second dataset. Also, on the second dataset, 
the accuracy increases if the number of decision trees in the ensemble is in-
creased by 10 times. 

So, in Fig. 4.26 The best models are "RF(d=8, n=1000)" (1st place on da-
tasets 1, 4, 5), "RF(d=5, s=5)" (1st place on datasets 2, 3, 5). 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
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Figure 4.26 – Classification of data of 5 different datasets by the RandomForest 
model with different parameters: maximum depth (d), number of decision trees 

in the ensemble (n), minimum number of samples in a leaf (s), metric every-
where – "log_loss" (in the lower right corner – accuracy_score for test (valida-

tion) data, test data are circles outlined in black) [20]  
 

 
4.8 Boosting models  
 
Data boosting is a method of machine learning of an ensemble of weak 

base models, which consists in the fact that models are built sequentially in such 
a way that each corrects the errors of the previous one. This principle is well il-
lustrated by Fig. 4.27. 

 
    (a)       b)        c)           d) 
Figure 4.27 – Illustration of the boosting (AdaBoost) of 3 decision trees: a) the 

first iteration, b) the second, c) the third; d) the answer is the  
consolidation of results 

https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81
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As can be seen from Fig. 4.27, the task is to distinguish blue "-" and red 
"+" (classification problem). The first model (it can also be a decision tree with 
max_depth=1, i.e., the usual condition "if... then… else") divides the data into 2 
classes. Next, errors are analyzed (they are also called outliers in this context); 
In the lower figure (Fig. 4.27, a) they are circled with ellipses. The following 
model tries, first of all, to classify this data circled by an ellipse. At the same 
time, new errors are generated and analyzed (see circled by an ellipse in the 
lower figure (Fig. 4.27, b), the third iteration is performed in the same way (Fig. 
4.27, c). And then, if it is decided that there are enough iterations, the models 
from all 3 iterations are consolidated and the final decision is obtained. In Fig. 
4.27, d the accuracy (accuracy_score) on training data reaches 100%. Normally,  
there are more features and elements, they are more mixed, and therefore power-
ful methods and many different technologies and thousands of iterations are 
used. 

Among the most well-known boosting models are: 
- AdaBoost (AdaptiveBoosting) (see Fig. 4.27); 
- Gradient Boosting Machines (GBM) or simply "GradientBoosting"; 
- XGBoost (eXtremeGradientBoosting) from Google; 
- Microsoft's LightGBM is another fast and efficient library for gradient 

boosting. It uses a special algorithm to optimize calculations and supports cate-
gorical features.  

The most effective XGBoost and LightGBM are the main competitors for 
data prediction and tend to perform better than the Sklearn library models, but 
they contain a lot of parameters and you need to be able to configure them. In 
addition, these two models have the ability to work with categorical and textual 
features directly, without over-processing, which improves accuracy compared 
to Sklearn models, which still require re-processing, which often leads to the 
loss of valuable information. 

Sklearn's library models tend to be quicker and easier to set up, but well-
tuned XGBoost and LightGBM are more accurate. 

The XGBoost and LightGBM models require the data to be pre-
transformed into a special format using xgb methods. DMatrix and lgbm. Da-
taset, respectively. An example of such a transformation is given in notebook.  

XGBoost models are considered to be more accurate than LightGBM-
based models, but, in practice, it is much more difficult to find the same combi-
nation of parameters that will prove this claim. LightGBM-based models are 
easier and faster to set up than XGBoost-based models, and therefore are used 
more often. 

There are even faster and simpler variants of XGBClassifier, XGBRegres-
sor, LGBMClassifier, LGBMRegressor, which do not require preliminary data 
transformation and are used as regular Sklearn models, but they do not always 
work or give an acceptable result. 

To avoid overtraining XGBoost models, developers strongly recommend 
setting the parameter max_depth (maximum depth of the decision tree), and for 

https://www.kaggle.com/code/vbmokin/merging-fe-prediction-xgb-lgb-logr-linr
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LightGBM – num_leaves (maximum number of leaves (nodes)). It is also im-
portant to correctly specify the metric of these models. Fig. 4.28 shows an ex-
ample of XGBoost documentation on this subject, but this list is several pages 
long. 

 

 
 

Figure 4.28 – Several variants of the metric parameter "objective" in the 
XGBoost model 

 
A similar few pages for metric variants in LightGBM are in Fig. 4.29. 
 

 
 

Figure 4.29 – Part of the metric variants for the "objective" parameter  
in the LightGBM model 

https://xgboost.readthedocs.io/en/latest/parameter.html#learning-task-parameters
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
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Fig. 4.30 shows an example of prediction for 5 different datasets by boost-
ing models with different parameters.  

 

 
 

Figure 4.30 – Classification of data from 5 different datasets by boosting  
models: AdaBoostClassifier (AB), XGBoostClassifier (XGB),  

GradientBoostingClassifier (GBC) with different parameters: maximum  
depth (d), number of decision trees in the ensemble (n), learning rate (lr) (in the 
lower right corner – accuracy_score for test (validation) data, test data are cir-

cles outlined in black) [20]  
 

As can be seen from Fig. 4.30, increasing the number of decision trees n 
in the AdaBoostClassifier ensemble increases accuracy as expected. Similarly, 
greater maximum depth d in the XGBoostClassifier model and lower lr learning 
rate in the GradientBoostingClassifier and AdaBoostClassifier models.  

So, in Fig. 4.30 the best models are "AB(n=200,lr=.1)" (1st place on da-
tasets 1, 2, 5), "XGB(d=8)" (1st place on datasets 1, 3, 4) and 
"GBC(n=100,lr=.1)" (1st place on datasets 1, 2, 3). 

In the XGBoost model for the 5th dataset, some combinations of parame-
ters give an error, so its graphs in Fig. 4.30 are not given. It is better to try to use 
the original xgb method for this dataset, rather than the simplified version of 
XGBClassifier. It was noted above that the last one does not always work or 
gives acceptable accuracy. 
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4.9 Ensembles of models. Comparative analysis of model ensembles 
on an example 

 
The sklearn library provides good opportunities both for using the most 

common ensemble models of decision trees, and for building your own ensem-
bles from any models.  

There are a number of models (let's call them aggregators) in the 
sklearn.ensemble library that allow you to form ensembles from other sklearn 
library models. All of them have a special parameter estimator or estimators for 
this. These models are as follows: 

- Bagging (Bootstrap aggregating) – trains a model  of one type (estima-
tor, by default it is a decision tree) based on subsets of data, and then aggregates 
their predictions (for classifiers – voting, for regressors – averaging); in fact, 
RandomForest and ExtraTrees are also decision tree bagging, but, unlike these 
models, the Bagging  aggregator can work with other types of evaluation mod-
els; 

- Stacking – training several estimator models defined in the form  of a list 
of estimators and using their predictions as input data for the main fi-
nal_estimator estimator model (it is also called a meta-classifier or meta-
regressor, depending on the type of task); 

- Voting – training several estimator models  defined in the form  of a list 
of estimators and aggregating their predictions by voting in one of two ways, 
depending on the voting parameter: 

- hard voting (voting = "hard"), when the class that provides for the 
majority of models is chosen element-by-element (as a weighted average with 
the same weights) – this is effective when the models are quite diverse; 

- soft voting (voting = "soft"), when the weight of votes depends on 
the model's confidence in its prediction: the final class is chosen based on the 
sum of probabilities for each class, i.e. the one with the largest sum and is effec-
tive when the models are comparable in accuracy. 

The n_jobs parameter of the Voting aggregator allows you to implement 
parallelization of calculations, which can significantly speed them up. In the 
weights parameter, you can specify an array of weights for each model's predic-
tions, and then these weights will be taken into account during the vote (works 
for both voting values). This is effective when some models are more confident 
than others. 

A variant of ensemble formation for a regression problem using Vot-
ingRegressor(voting ="hard"), where weights is given as an array of weights, is 
often replaced by the usual weighted average. See for example,  a notebook  
with 4 models in a competition with the prediction of the survivors of the Titan-
ic.  

 
 

https://www.kaggle.com/code/vbmokin/merging-fe-prediction-xgb-lgb-logr-linr
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Fig. 4.31 shows an example of prediction for 5 different datasets by en-
sembles selected in subsections 4.8 and 4.9 of the best models: 

- Decision tree bagging ("Bagging(DT)"); 
- Bagging RandomForest models ("Bagging(RF)"); 
- Staking based on predictions using the method of support vectors, Ridge 

and logistic regression with the final classifier RandomForest 
("Stack(SVC,RD,LgR) RF"); 

- Stacking based on predictions by a decision tree, a model based on 
Gaussian processes and a model based ont he k-nearest neighbor method with 
the final classifier RandomForest ("Stack(DT,GP,KN) RF"); 

- Ensemble based on soft voting between  
RandomForest predictions, a model based on Gaussian processes, and a model 
based on the k-nearest neighbor method ("Voting(RF,GP,KN,soft)"); 

- An ensemble based on hard voting between RandomForest predictions, a 
model based on Gaussian processes, and a model based on the k-nearest neigh-
bor method ("Voting(RF,GP,KN,hard)"). 

 

 
 

Figure 4.31 – Classification of data of 5 different datasets by ensembles of  
models: bagging, stacking and prediction voting with different combinations of 
models and parameters (in the lower right corner – accuracy_score for test (vali-

dation) data, test data are circles outlined in black) [20]  
 
As shown in Fig. 4.31, using simple DT decision trees instead of random 

RF forests during bagging degrades accuracy for all but the first dataset. The 
best results are given by the ensemble based on a hard vote on the predictions of 
the models.  
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So, in Fig. 4.31 the best models are "Bagging(RF)" (1st place on datasets 
2, 4, 5), "Voting(RF,GP,KN,hard)" (1st place on ALL datasets), the staking 
models are obviously overfitted.  

 
For other types of models, see the Sklearn documentation (Fig. 4.32). 
 

 
       (a)                 b) 

 
Figure 4.32 – Sklearn Library Machine Learning Models:  

a) classifiers; b) regressors  
 
Notebook [20, Chapter 5] lists the best of the best models built in subsec-

tions 4.4-4.9 for each of the given 5 datasets according to the accuracy_score 
metric. Models with overtraining risk, in which the difference between the error 
on training and test data exceeds 0.1, are filtered out. Fig. 4.33 shows the predic-
tion results of the 4 best models for each dataset. As for the first dataset (No. 0), 
GPC, GBC, DT, AB models have the same accuracy. 

It is important to remember that this is just an example of building models 
and analyzing them. The conclusions drawn from them cannot be extended to all 
other similar tasks. Each task requires its own analysis using the tuning methods 
from section 4.3.  

 
 

https://scikit-learn.org/stable/
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Figure 4.33 – Results of prediction by the best data models of 5 different da-
tasets [20]  

 
 
Figure 4.34 shows an infographics of the tools mentioned in subsections 

4.4-4.9 in  the S(I) coordinate system. 

 
Figure 4.34 – Infographics of machine learning models and their ensembles (ex-

cluding neural networks) 
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4.10 Neural Network (NN) training and analyzing its accuracy. Deep 
Learning (DL) Concepts 

 
A neural network in machine learning is a layer of neurons and connec-

tions between them. A neuron is a function with many inputs and one output, the 
value of which is formed depending on the  function of activating the neuron. As 
soon as the output of this function crosses a certain threshold, the output is 1, 
otherwise 0. Connections are channels through which neurons send meaning to 
each other. Each connection has its own weight – a parameter by which the val-
ue in the channel is multiplied (Fig. 4.35). It is the adjustment of these weights 
(but not only them) that is carried out during the tuning (tuning) of the neural 
network. 

 

 
Figure 4.35 – Illustration of the operation of one neuron of a neural network 

in machine learning 
 

Layers are formed from neurons. Within a layer, they are not related, but 
are related to the previous and next layers (Fig. 4.36). 

 
 

Figure 4.36 – Neural network with 4 layers, in particular with 2 hidden 
 

The input data matrix (usually a 4-dimensional matrix, which is called a 
"tensor" in machine learning) goes to the first layer. The data is directed from 
left to right. Therefore, one of the most common libraries for working with neu-
ral layers is called TensorFlow. Google acquired TensorFlow and integrated it 
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into the Keras library, so now it is enough to work only with the latter. Its main 
competitor is PyTorch. Professionals, as a rule, use PyTorch, and for educational 
purposes, it is better to master Keras, so it is also easier and faster. 

Usually, the user "sees" (can programmatically send signals or read them) 
only inputs and outputs, and the values in the nodes of the neural network are 
hidden from him, so such layers are called hidden. If the number of hidden lay-
ers of the neural network is greater than 1, then this is "Deep Learning" (DL). 

Activation function ("excitation function" or "squashing function", "trans-
fer function") of an artificial neuron is the dependence of the output signal of an 
artificial neuron on the input signal. Typically, this function displays real num-
bers in the interval [0, 1] or [-1, 1]. The most popular types of neural network 
activation functions are shown in Fig. 4.37. There is an even larger list of 
"Activation Functions", which is constantly updated from published articles, is 
available at the link (as of April 2024, the list has 73 functions). 

 
Figure 4.37 – The Most Popular Activation Functions of Neural Networks 

https://paperswithcode.com/methods/category/activation-functions
https://www.linkedin.com/posts/danleedata_which-activation-function-do-you-use-often-activity-7124783582253846528-3MMa/
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In all hidden layers, ReLU is the most popular, and in the source layer, 
especially for classification tasks, sigmoid (if all target values are positive) or 
hyperbolic tangent (if there are negative values) is used. 

Implementation of a simple neural network from Fig. 4.36 using the Keras 
library (TF) looks quite concise (Fig. 4.38).  

 
Figure 4.38 – Implementation of the neural network from Fig. 4.36 in Keras 

(TF) from notebook 
 

Similar code in PyTorch will look much larger (Figure 4.39). 

 
Figure 4.39 – Implementation of the neural network from Fig. 4.36 in PyTorch 

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
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Each stage of neural network training is called an epoch (Figure 4.40). 
 

 
 

Figure 4.40 – Fragment of an example of intermediate results  
of neural network training from a notebook 

 
It is more efficient to use the variable step learning_rate (abbreviated: lr). 

The code from Fig. 4.38 with variable pitch is shown in Fig. 4.41. 
 

 
 

Figure 4.41 – Neural network code from Fig. 4.36  
in the Keras framework with variable pitch from notebook 

 
Fig. 4.41 illustrates the ReduceLROnPlateau  command, which monitors 

the change monitor="val_loss" against the MSE metric ("val_mse") and, if its 
value does not change  within patience=3  steps, then the lr value is multiplied 
by factor=0.5, i.e. halved. This will continue until the lr value decreases to 
min_lr=0.0001, and then stop decreasing. Fig. 4.42 shows an example of a vari-
able step learning curve lr. 

 

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
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Figure 4.42 – Training a neural network with the architecture from Fig. 4.40 
Variable Pitch LR from the notebook 

 
To increase the generalization capacity of the neural network and reduce 

the risk of overtraining, the Dropout operation with a parameter from 0.1 to 0.4 
can be used between its layers. This means that between 10% and 40% of neu-
rons are randomly shut down during model weight training to increase its gener-
alizing properties (Fig. 4.43).  

 

 
 

Figure 4.43 – Illustration of the Dropout operation to disable part  
of the neurons when training a neural network from a notebook 

 
 

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/kanncaa1/convolutional-neural-network-cnn-tutorial/notebook
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Fig. 4.44 shows a fragment of adding a Dropout to the code from Fig. 
4.41.  

 

 
 

Figure 4.44 – Adding Dropout for 20% of neurons to the code from Fig. 4.41 in 
notebook 

 
 
The learning curve of a neural network with Dropout from Fig. 4.44 is 

shown in Fig. 4.45.  
 

 
 

Figure 4.45 – Training a neural network with Dropout in the code from Fig. 
4.44, which is added to the code from Fig. 4.41 in Notebook 

 
As can be seen from Fig. 4.45, Dropout introduces significant noise into 

the learning process. It is more efficient in large amounts of data and in neural 
networks of complex architecture, which have a high risk of overtraining.  

To analyze the process of learning a neural network online, there is a spe-
cial service called TensorBoard. Callbacks (https://keras.io/callbacks/) are added 
to the code and what exactly needs to be tracked is specified (Fig. 4.46).  

 

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://keras.io/callbacks/
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Figure 4.46 – An example of visualization of the current results of neural net-
work training in the browser in online mode from TensorFlow documentation 

 
Sometimes it is quite effective to use the model of a multilayer perceptron 

(neural network) from the Sklearn library: MLP ("Multi-layer Perceptron") 
 
name_package = neural_network 
name_model(model_params): 
 

- Classifier: 
- MLPClassifi-

er(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.000
1, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power
_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose
=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early
_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999,  epsi-
lon=1e-08, n_iter_no_change=10, max_fun=15000); 

 

- Regressor: 
- MLPRegressor(hidden_layer_sizes=(100,), activation='relu', *, solv-

er='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learn-
ing_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, ran-
dom_state=None, tol=0.0001, verbose=False, warm_start=False, momen-
tum=0.9, nesterovs_momentum=True, early_stopping=False, valida-

https://www.tensorflow.org/guide/summaries_and_tensorboard
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tion_fraction=0.1, beta_1=0.9, beta_2=0.999,  epsilon=1e-08, n_iter_no-
change=10, max  fun=15000). 

 
The main parameters of the MLP model, which vary to improve accuracy, 

are the number of hidden layers hidden_layer_sizes and the type of activation 
function ("identity", "logistic", "tanh", "relu"). 

Fig. 4.47 shows the learning results of the 4 models described in this sub-
section in the author's notebook. 

 

 
 

Figure 4.47 – Result of training 4 models in notebook 
 
As can be seen from Fig. 4.47, the best on the validation dataset is the 

Sklearn MLPRegressor model, although the neural network built on the basis of 
the TensorFlow library with Keras, which uses Dropout, achieved higher accu-
racy on training data. Note that the notebook is not representative, since the 
models are built on a very small sample (hundreds of data), as for a regression 
problem. For good conclusions and high accuracy of neural networks, millions 
of data are needed! 

Figure 4.48 shows an infographics of the tools mentioned in this section 
4.10 in the S(I) notation. 

 
 

Figure 4.48 – Infographics of building and training neural network models  
 

 

https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models?scriptVersionId=55286545
https://www.kaggle.com/code/vbmokin/ai-ml-ds-training-l3at-nh4-nn-models


124 
 

Practical exercises  
1) There are 2 lists of binary numbers: target and prediction. Construct a 

confusion matrix for this task and calculate metrics: 
- Precision; 
- Recall; 
- MSE; 
- Accuracy_score. 

See Chapter 4 for definitions of these metrics and how to calculate them 
in Python.  

Example of a manual calculation for the target = [0, 1, 1, 1, 1, 0] and the 
prediction = [0, 1, 0, 1, 1, 0] see on the Fig. 4.49-4.53. 

 

 
 

Figure 4.49 – Confusion matrix 
 

We draw attention to the fact that the confusion matrix in Fig. 4.49 differs 
from the same matrix in Fig. 4.4. There are "Predicted Positive" (1) in the left 
column and is "Predicted Negative" (0) in the right one in Fig. 4.4, and on Fig. 
4.49 vice versa. Similarly, "Actual Positive" (1) is in the top row, and "Actual 
Negative" (0) is in the bottom in Fig. 4.4, and in Fig. 4.49 on the contrary. Fig. 
4.4 is taken from the documentation, and Fig. 4.49 is how the matrix is dis-
played by the tools of the Sklearn library (as a rule, lists of values are shown in 
ascending order: [0 1]). 

 

 
 

Figure 4.50 – Precision calculation 



125 
 

 

 
 

Figure 4.51 – Recall calculation 
 

 
 

Figure 4.52 – MSE calculation 
 

 
 

Figure 4.53 – Accuracy calculation 
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2) Calculate the output of a neuron with the ReLU activation function if 

the neuron's input values are u = [u1, u2] and the neuron's weights are  
w =[w1, w2]. An example of the solution is shown in Fig. 4.54, 4.55. 

 

 
Figure 4.54 – Calculation of the output of a neuron with  

the activation function ReLU 
 

 
Figure 4.55 – Calculation of the output of a neuron with  

the activation function ReLU and one negative input 
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Possible topics for practical and laboratory tasks 
 

Topic No. 1. Selection of methods and adjustment of machine learning 
models for solving problems of analysis and prediction (or "Building an in-
telligent model for predicting data on the state of a complex system and an-
alyzing input data with its help"). 

The purpose of the lesson is to study information technology and Python 
libraries for setting up machine learning models to solve problems of analysis 
and prediction and mastering practical skills in applying some of them using the 
example of one of the Kaggle datasets or from data uploaded via API. 

Lesson plan 
1. Find a dataset.  
2. Describe the exact statement of the problem and determine whether it is 

a classification or regression problem. 
3. Select the Python libraries that will be used to build machine learning 

models and use them to predict values, for example: Sklearn, Xgboost, 
Lightgbm, etc., and specify for what exactly, for which models.  

4. Build at least 3 different models.  
5. Make an ensemble of models or perform one of the types of generaliza-

tion of their solutions. 
6. Provide a table (for the classification task – also confusion matrices) 

with the achieved accuracy of models and their ensembles and/or generalized 
solutions on training and validation data, provide a graph of the predicted test 
data. Infer the best solution and justify it based on comparison and analysis of its 
accuracy on training and validation data. 

For beginners in this field, it is recommended to take a notebook blank as 
a basis: AI-ML-DS Training. L2T: NH4 – Tree Regress models. 

It is recommended to listen to the video with comments: 
- Classifier Models of Tabular Data on the Example of the Titanic Compe-

tition - AI-ML-DS Training Course 
- Tabular Data Regressor Models on the Example of Water Quality Mod-

eling - AI-ML-DS Training Course 
- AI Models: Data Processing, Tuning, and Model Accuracy Evaluation - 

AI-ML-DS Training Course 
- Regressor Decision Trees on the Example of Water Quality Modeling - 

AI-ML-DS Training Course 
- Real-World Problem Example - Water Quality Simulation - AI-ML-DS 

Training Course 
Examples of notebooks: 
- WQ SB river : EDA and Forecasting 
- AI-ML-DS Training. L1T: Titanic – Decision Tree 
- AI-ML-DS Training. L2T: NH4 – Tree Regress models 
- AI-ML-DS Training. L4AT: Heart Disease prediction 
- Heart Disease – Automatic AdvEDA & FE & 20 models 

https://www.kaggle.com/vbmokin/ai-ml-ds-training-l2t-nh4-tree-regress-models
https://www.youtube.com/watch?v=WERtPBptOWw&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=8
https://www.youtube.com/watch?v=WERtPBptOWw&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=8
https://www.youtube.com/watch?v=Jg6_bnyo76Q&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=9
https://www.youtube.com/watch?v=Jg6_bnyo76Q&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=9
https://www.youtube.com/watch?v=mfK_a7w_Sd0&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=10
https://www.youtube.com/watch?v=mfK_a7w_Sd0&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=10
https://www.youtube.com/watch?v=cwKzC2ToUm8&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=11
https://www.youtube.com/watch?v=cwKzC2ToUm8&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=11
https://www.youtube.com/watch?v=Tmx17mINvNY&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=13
https://www.youtube.com/watch?v=Tmx17mINvNY&list=PL4DHq-xU-ebUiB6T6vjd0SoDha4GOm8zV&index=13
https://www.kaggle.com/vbmokin/wq-sb-river-eda-and-forecasting
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l1t-titanic-decision-tree
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l2t-nh4-tree-regress-models
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l4at-heart-disease-prediction
https://www.kaggle.com/vbmokin/heart-disease-automatic-adveda-fe-20-models
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- Autoselection from 20 classifier models & L_curves 
- Biomechanical features - 20 popular models 
- Suspended substances prediction in river 
- Merging FE &Prediction - xgb, lgb, logr, linr 
- BOD prediction in river - 15 regression models 
 
Topic No. 2. Machine Learning and Intelligent Model Application in 

Kaggle Competition  
The purpose of the lesson is to study information technology and Python 

libraries for setting up machine learning models to solve problems of analysis 
and prediction and mastering practical skills in applying some of them using the 
example of one of the Kaggle datasets or from data uploaded via API. 

Lesson plan. 
1. Find a dataset.  
2. Understand the problem statement and all its aspects (target feature, 

type of task, metric, data provided, whether external data can be used and with 
what license, etc.). 

3. Form a team (individual participation in the competition is also possi-
ble). Organize its work.  

4. Explore available solutions and tips in the "Code" and "Discussion" 
sections. 

5. Conduct an exploratory analysis of the data, in particular the FE stage, 
and develop your own hypotheses for solutions.  

6. Build models.  
7. Submit a series of solutions, each time improving them. 
8. At the end of the competition, study the decision of the winners.  
9. Write an article with an overview of the problem, its solution, and your 

own hypotheses. Draw conclusions. What worked, what didn't. Publish your 
successful and interesting solutions. Make a link in the article to the notebooks 
and posts of others and to your own. 

 

Test questions 
1) What are the main types of machine learning models and their ad-

vantages? 
2) What is model and hyperparameter training? How do they affect the 

process of building a model? 
3) What is regularization and what role does it play in minimizing the 

risk of overtraining? 
4) What is Linear regression, what are its features? 
5) How does Logistic Regression work, in what areas is it applied? 
6) What is Stochastic Gradient Descent, how is it used to train models? 
7) how do Support Vector Methods work when they are applied? 
8) How does the k-nearest neighbor method work, what are its features? 

https://www.kaggle.com/vbmokin/autoselection-from-20-classifier-models-l-curves
https://www.kaggle.com/vbmokin/biomechanical-features-20-popular-models
https://www.kaggle.com/vbmokin/suspended-substances-prediction-in-river
https://www.kaggle.com/vbmokin/merging-fe-prediction-xgb-lgb-logr-linr
https://www.kaggle.com/vbmokin/bod-prediction-in-river-15-regression-models


129 
 

9) What are model ensembles, how do they help in improving forecast-
ing results? 

10) How is hyperparameter learning used to improve the efficiency of ma-
chine learning models, how is their effectivenes checked? 

11) What is a neural network? Neuron? A neural network layer?  
12) What is the activation function, what are the main types you know?  
13) What is Deep Learning? How many minimum layers should a neural 

network have to implement deep learning? 
14) How is the neural network trained and how is its accuracy evaluated? 
15) What techniques are used to reduce neural network overtraining? 
16) What tools and libraries can be used to create neural networks? 
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5 INTELLIGENT DATA ANALYSIS  

 
The main purpose of intelligent models is to use them to solve problems 

of data analysis of various types, first of all, the main ones: numerical, textual, 
graphic. Also, this data can be various kinds of sensor signals, people's voices, 
geospatial data, data from virtual or augmented reality systems, and various 
complex data structures (graphs, ontological networks, etc.) [1-5, 9-11, 18, 21-
38]. 

The most common concept of analysis basic data types is to first convert 
this data into numerical data, but with maximum preservation of its specifics and 
features, and then the problem is reduced to what is already known using ma-
chine learning models and exploratory data analysis (see Chapters 2-4).  

 
 
5.1 Intelligent Analysis of Images and Videos  

 
The most striking results of the application of IDA technologies are tradi-

tionally associated with the analysis of images and videos.  
For training and testing algorithms, there are a number of typical datasets, 

for example, MNIST ("Mixed National Institute of Standards and Technology") 
– a database of 70 thousand samples of handwriting 10 Arabic numerals (60 
thousand training and 10 thousand test). Data is available in the Kaggle (Figure 
5.1). 

 

 
 

Figure 5.1 – Images of MNIST in Kaggle (monochrome, 28×28 pixels)  
 

MNIST Fashion is a dataset of images of 10 categories of clothing items 
(Fig. 5.2).  

 

https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://github.com/zalandoresearch/fashion-mnist
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Figure 5.2 – Images of MNIST Fashion (monochrome, 28×28 pixels) 
 

We will characterize typical tasks of graphic data analysis and methods 
and technologies for their solution. 

 
5.1.1 Basic concepts, colors encoding, basic types, tensors 
Normally, all videos are treated as a sequence of images.  
Each image (denoted U) is cut into a collection of fragments (chunks or 

patches), such as squares of a certain size [39]. Occasionally, these are rectan-
gles. Each patch is a matrix of pixels. Let X and Y specify the number of each 
pixel by the height and width of this matrix. For each pixel, you specify the 
number of C color channels. Generally: C = 3 in RGB format ("Red – Green – 
Blue"). Or it could be C = 1, if the image is monochrome. In the first case, the 
color is represented by a 6-digit number in the hexadecimal number system (Fig. 
5.3). And for black-and-white images, the color is binary: 0 or 1, or, as in the 
MNIST dataset, numbers from 0 to 255. 

 

 
Figure 5.3 – Examples of RGB pixel colors in hexadecimal notation  

https://github.com/zalandoresearch/fashion-mnist
https://en.wikipedia.org/wiki/RGB_color_model
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Consequently, each fragment of the U image is encoded as a four-
dimensional matrix 

U = [<N>, <X>, <Y>, <C>],                               (5.1) 
 

where each cell contains a number that corresponds to the color of the corre-
sponding pixel.  

Such a multidimensional matrix of numbers (5.1) is called a tensor. If the 
images are large, then they are also divided into batches of these fragments. That 
is, it is already a 6-dimensional matrix (array) of data or a two-dimensional ten-
sor. 

And the black-and-white image of 28 by 28 pixels of the MNIST dataset 
is not divided into parts or fragments and is a one-dimensional tensor. The num-
ber of channels is C=1, and the numbers in the tensor cells are 0 (white) or inte-
gers up to and including 255 (black) (see Fig. 5.3): (1, X, Y, 1), where X and Y 
are integers from 0 to 27 inclusive. And the pixel color of an HD quality image 
will be a hexadecimal number, which will be decoupled into a pixel numbered 
for example (8, 16, 22, 2). These numbers mean the 9th fragment (numbering 
starts with zero), 16 and 22 are the coordinates in this fragment along different 
axes, the 2nd channel (green). 

 
5.1.2 Typical tasks  
The classic tasks of image and video processing and intelligent analysis 

are the following: 
1. Image Classification – defining a class or category of images. It can be 

either a specific type (pollen on the microscope images [27], roofs on the aerial 
photography [34], face, car number, whether there is a person wearing a mask, a 
type of plant, military equipment based on satellite or aerial photography, etc.), 
or a classification of certain changes in the object (emotions on faces, destruc-
tion of houses, deforestation, emergence of crops in the fields, etc.). 

2. Object Detection – detection and localization of objects in the image. 
Detecting vehicles on the streets (counting traffic, searching for traffic jams), 
calculation of pollen concentration in atmospheric air using a laser [33], detect-
ing a person's face and their key points, detecting points for finger print analysis, 
etc. 

3. Semantic Segmentation – as signing a class to each pixel in the image: 
such a definition of different classes in the image with high accuracy, as deter 
analysis the contours of a road and sidewalks. It is also used when analyzing 
video online using YOLO technology. 

4. Image (Video) Generation – creation of new images (the so-called 
deepfakes). "Deep Fake" based on training datasets and custom deep learning 
models. Images can be created both from several images (GAN models, etc.) 
and from text descriptions (Stable Diffusion models, etc.). Images can also be 
generated using templates from well-known graphics packages, controlling their 
parameters [38].  
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5. Anomaly Detection – detection of unusual or anomalous patterns in im-
ages: a comet in space, oil spills at sea, damaged plants, or other problem areas 
that require a quick response. An example of solving such a problem is de-
scribed in an article by one of the authors [39]. 

6. Face Recognition – identification of faces in images, including by turn-
ing their faces, wearing a mask, wearing makeup, fingerprint recognition on a 
smartphone, etc.  

7. Image (Video) Enhancement and Generation by applying filters and 
transformations to enhance or generate new images (videos), improve the quali-
ty of images, create artistic and creative images, convert black and white images 
to color. To solve such problems, the OpenCV library is often used. Let's take a 
closer look at it. 

 
5.1.3 Image preprocessing. OpenCV library 
The library OpenCV (short for "Open Source Computer Vision Library") 

is designed to solve many problems: computer vision, video processing, image 
processing, etc.  

The library contains more than 2500 algorithms optimized in speed and 
accuracy for various purposes (Fig. 5.4):  

 
a)                b) 

 
c)               d) 

 
Figure 5.4 – Examples of OpenCV library:  

a) construction of 3D models and image identification; 
  b) face recognition; c) finding similar architectural forms; 

  d) finding similar images, taking into account their geometric alones 
transformations 

 

https://www.analyticsvidhya.com/blog/2019/03/opencv-functions-computer-vision-python/
https://www.kaggle.com/code/serkanpeldek/face-detection-with-opencv/notebook
https://www.kaggle.com/code/wesamelshamy/tutorial-image-feature-extraction-and-matching/notebook
https://www.kaggle.com/code/dataenergy/object-recognition-using-feature-matching/notebook
https://www.kaggle.com/code/dataenergy/object-recognition-using-feature-matching/notebook
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- face detection and recognition, identification of objects in images or vid-
eos;  

- classification of human actions in the video;  
- tracking camera movements;  
- tracking moving objects (for example, during football matches, the cam-

era can automatically track the ball on the field);  
- building 3D models, obtaining 3D point clouds from stereo cameras, 

which allows you to immediately build and analyze a model of the entire envi-
ronment in dynamics around a UAV (car, plane or quadrocopter); 

- connecting images together to produce a high-resolution image of an en-
tire scene; 

- finding similar images in the image database; 
- removing red-eye from images, tracking eye movements; 
- landscape recognition; 
- setting markers to overlay them on augmented reality, etc. 

 
5.1.4 Convolutional Neural Networks (CNN): principles of work and 

typical architecture  
CNN (Convolutional Neural Network) is the most common type of neural 

network model for analyzing images and classifying objects on them.  
Let's consider the application of CNN to the recognition and classification 

of digits of the MNIST dataset (Fig. 5.5, a, b). 
 

 
a) 

 
b) 

Figure 5.5 – Typical architecture of a CNN: a) to recognize the digits of the 
MNIST dataset [40]; b) to recognize the species of the animal [41] 
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The main element of CNN is a convolution. To use it, you need an input 
matrix of numbers M×M (can be rectangular) with the colors of the image pix-
els and a convolution kernel W×W (can also be rectangular), which allows you 
to process a submatrix of the same size W×W: the matrices are multiplied ele-
ment-by-element and the result (one number) fits into the final matrix in the cor-
responding cell (Fig. 5.6).  

 
 

Figure 5.6 – Illustration of the convolution process [40] 
 
The convolution operation is applied in a loop and "collapses" all the ele-

ments of the input matrix. Obviously, if you multiply the matrix M×M = 7×7 by 
the core matrix "kernel") W×W = 3×3, then this can only be done  

 once. This version of the convolution (the "pad-
ding" parameter is responsible for this) is called "value" (the notebook has a nice 
gif illustration that shows in dynamics how the final matrix is formed using the 
kernel in the "value" mode). But the more popular option is padding = "same", 
when the size of the final matrix is the same as the input one: M×M. For such 
convolution, zeros (0) are added to the input matrix in adjacent cells to ensure 
the possibility of applying the operation as many times as necessary (Fig. 5.7).  

 
 

Figure 5.7 – Illustration of convolution mode with padding = "same" [40] 
 

https://www.kaggle.com/code/rafetcan/convolutional-neural-network-cnn-tutorial/notebook
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Applying a convolution using the Keras (TF) framework: 
 

x = Conv2D(9, (3, 3), activation='relu', stride = (2, 2), pad-
ding='same')(x) 

 
which means that a two-dimensional Conv2D 3×3 pixels convolution is applied 
to the input image 9 times, activation function – ReLU (Fig. 5.8), the kernel 
jumps 2 steps vertically and horizontally, and the result of the convolution will 
be the same size as the input image.  

 

 
 

Figure 5.8 – Illustration of the use of the ReLU activation function [41] 
 

Each such convolution allows you to find some important patterns in the 
input image and save them for the next stage of analysis. For example, in Fig. 
5.9 shows an example of image segmentation.  

 

 
 

Figure 5.9 – Example of the use of different types of convolutions  
to the input image from notebook 

 
 
As a result of using the convolution, the original image will be quite di-

verse. Therefore, in tandem with each convolution, as a rule, the MaxPooling or 
AveragePooling operation is used (see Fig. 5.5). As a result of this operation, the 
maximum or average value, respectively, of all elements of this submatrix is 
simply determined (Fig. 5.10): 

https://www.kaggle.com/code/jagdmir/all-you-need-to-know-about-cnns
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MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding="valid") 
MaxPooling2D(pool_size=(4, 4), strides=None, padding="valid") 
AveragePooling2D(pool_size=(3, 3), strides=3, padding="same") 

Where pool_size is the size of the submatrix of the input matrix to which 
the operation is applied, strides is the jump (None means 1). 

Figure 5.10 – Example of  
MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid") [41] 

The convolution is only the Conv operation, unlike MaxPooling, Aver-
agePooling, because they do not use the convolution kernel. All of these 3 types 
of operations have options for 1D, 2D, 3D, depending on the dimension of the 
input. 

Often, but not always, Conv layers are used with padding = "same" and 
MaxPooling, AveragePooling with padding = "value". These operations are 
used in pairs (see Figure 5.5) or in blocks (2–3 convolutions and then Pooling). 
At their output, sometimes, they put a Dropout, mentioned in subsection. 4.10. 

After the "Conv-Pooling" pairs with the Dropout, the "Flatten" layer is 
used, which converts all the resulting matrices into one one-dimensional data ar-
ray (Fig. 5.11). 

Figure 5.11 – An example of using the Flatten operation [41] 
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Data from Flatten is sent to a classic Fully Connected neural network (see 
Figure 5.5). If this is a classification task, then in the last layer of this neural 
network, as a rule, the Softmax activation function is used. It allows you to more 
accurately determine which class is the final one. 

The main principle and advantage of CNN is that the researcher only 
forms the architecture, and the values of all matrices and convolution cores and 
other internal parameters are calculated automatically. 

CNNs have become widely used, and not only in image recognition tasks. 
They work for text analysis, and for the analysis of tabular data, and for fore-
casting time series, since they are able to successfully process various numerical 
information. 

 
5.1.5 Modern architectures of neural networks 
Appendix G lists the neural network architectures that were relevant in 

2016, and many of them are still in active use. Also in Appendix G it is noted 
that neural network models ResNet, ResNeXt, Efficient.Net and their variations 
have recently become popular and effective. 

There is a web portal "Papers with Code", which registers and displays on 
one graph all known models and their accuracy, there is also a code and descrip-
tion of each model. Hence the name comes from it. Fig. 5.12 shows all models, 
including the best ones from 2016, as of April 2024.  

 

 
 

Figure 5.12 – Comparison of the accuracy of models for the classification of im-
ages of the ImageNet dataset on the portal “Papers with Code” 

 

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
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As can be seen from Fig. 5.12, the most accurate models for today are 
those of the ViTs ("Vision Transformers") class, which contain both convolu-
tional, transformer and other blocks.  

To train CNNs with complex architectures, the amount of input or variety 
of inputs is often not enough. Then the so-called augmentation is used, i.e. arti-
ficially enlarging the dataset. For example, using the OpenCV library, the image 
is rotated at different angles, rotated around one of the axes, deformed (com-
pressed, stretched, etc.), added or removed noise, changed size or resolution, etc. 
(Fig. 5.13).  

 
Figure 5.13 – Example of image augmentation from the notebook 

 
 

5.1.6 Auto encoders in unsupervised tasks 
As described above, there are unsupervised tasks where you need to find 

unknown patterns in a large dataset. One of the most common ways to solve this 
problem is to use "Convolution Auto Encoder" ("CAE").  

The basic principle of operation of the autoencoder is illustrated in Fig. 
5.14. 

 

 
Figure 5.14 – The principle of operation of autoencoder (the upper figure is a 

small compression, the lower one is almost 400 times) 

https://www.kaggle.com/code/kanncaa1/convolutional-neural-network-cnn-tutorial/notebook
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2366/2292
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The input image is uploaded to a multilayer convolutional neural network, 

which transforms with a simultaneous reduction in dimensionality to a condi-
tional "throat". And then, using a neural network with a mirrored architecture 
and the same parameters, it performs an inverse transformation from the same 
"throat" to the original image. The model is trained to ensure maximum similari-
ty between the input and output images.  

The article [39] describes an example of constructing a CAE by one of the 
authors of this book. 

 
5.1.7 Videos analysis and recognition. YOLO. 
YOLO (“You Only Look Once”) is an intelligent real-time object recogni-

tion technology, especially effective in analyzing streaming video from video 
cameras, etc.  

The basic principle of YOLO is to predict both bounding boxes with cer-
tain objects and the probabilities of assigning these objects to a certain class in 
each image in one model at once. The idea behind YOLO is that the network di-
vides the image into a grid, and for each cell of that grid, it predicts bounding 
boxes and class probabilities that are compared to a certain threshold. Fig. 5.15 
shows an example of object recognition with a threshold of 0.3.  

 

 
a)                b) 

 
Figure 5.15 – Example of recognition of objects with a threshold of 0.3:  

a) all possible potential objects; b) only the best objects  
with an identification accuracy of at least 0.3 

 
Currently, it is one of the main algorithms for recognizing objects in video 

streaming, on video cameras, etc. Fig. 5.16 shows an example of image recogni-
tion on city streets.  

 

https://www.kaggle.com/zikazika/what-is-object-detection-yolo
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Figure 5.16 – Examples of work YOLO in the city 
 

Usually, there are 5 variants of YOLO, depending on the number of pa-
rameters: "nano" (n), small (s), medium (m), large (l) and extremely large (x). In 
sources [42-44] there is an interesting overview of the differences between the 
YOLO versions since the first version in 2015 and there are interesting compari-
sons of the performance of these versions (Fig. 5.17).  

 

 
 

Figure 5.17 – Comparison of the effectiveness of technologies 
YOLO8 and YOLO5  

 
Figure 5.18 shows an infographics of the operations mentioned in section 

5.1 above, in notation S(I). 
 

https://www.kaggle.com/zikazika/what-is-object-detection-yolo
https://learnopencv.com/ultralytics-yolov8/
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Figure 5.18 – Infographics with smart technologies for the preprocessing and 
classification of images and videos  

5.1.8 Image generation and detection: GAN, VAE, Stable Diffusion 
One of the newest areas of application of neural network technologies is 

the generation and detection of images and videos based on them. 
Images and videos generated using deep neural networks are commonly 

referred to as "DeepFakes". Recently, this term has been extended not only to 
fully generated samples, but also to slightly altered real images or videos: faces, 
voices, sounds, backgrounds have been replaced and adjusted, any element of 
the image has been added, changed or removed.  

Along with examples of the use of deepfakes for fraud and disinfor-
mation, there are also useful applications: 

1) in films, animated films, commercials, music videos, and other enter-
tainment industries; 

2) to create educational content, in particular for various kinds of simulators;
3) to simulate realistic scenarios, also with the participation of people;
4) reconstruction of images from ancient or damaged documents;
5) generation of specified information in a convenient form for people

with disabilities; 
6) to generate virtual assistants and in the provision of various services;
7) for trying on clothes, hairstyles, makeup, etc.;
8) as avatars in social networks;
9) creation of samples for testing models and technologies, including

deepfake detectors, etc. 
Thanks to the efforts aimed at the development of intelligent information 

technologies for the task of generating and detecting deepfakes, the following 
are constantly being improved: 
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- intelligent prediction models; 
- clustering methods; 
- technologies for removing noise from images, videos, audio files; 
- repair of corrupted videos; 
- automatic colorization of black and white videos; 
- improving the resolution of images and videos; 
- file archiving; 
- transforming files from one format to another; 
- generating images and videos from text descriptions or, conversely, gen-

erating text from images and videos (see the Kaggle competition "Stable Diffu-
sion – Image to Prompts»), etc. 

Fig. 5.19 shows a series of images generated in Kaggle by one of the au-
thors of the manual using the "StyleGAN2-ADA" model. 

Figure 5.19 – Deepfakes generated using  the "StyleGAN2-ADA" model from 
GitHub and from the Kaggle notebook, changing different style settings for a 

given photo 

There are many different ways to generate deepfakes, but among them, it 
is worth highlighting the 3 best types of models and technologies, the principle 
of which is similar to the work of autoencoders (see subsection 5.1.6): 

1. GAN (Generative Adversarial Network). Each model has the following
components: a generator that generates a deepfake of a given type from the 
noise distributed according to the normal law, and a discriminator (deepfake de-
tector) that checks whether it is a fake or not. The generator learns and improves 
each time in such a way as to "outwit" the discriminator. The result is a deepfake 
that the discriminator does not consider to be a fake, or the probability that it is a 
fake is as low as possible. This is a competition between two powerful neural 

https://www.kaggle.com/competitions/stable-diffusion-image-to-prompts/overview
https://www.kaggle.com/competitions/stable-diffusion-image-to-prompts/overview
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://www.kaggle.com/code/rkuo2000/stylegan2-ada
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networks, hence the name comes from here. Accordingly, the realism of fakes is 
very high, as well as the required computing resources and duration of work, 
compared to other approaches [45].  

One of the most successful is the StyleGAN2 model, which does not so 
much generate a new image as focuses on changing certain styles of it (emotions 
on the face, background, lighting, skin color, face elements, etc.) (see Fig. 5.19).  

2. VAE (Variational Autoencoder). The principle of operation is the same
as in convolutional autoencoders (see subsection 5.1.6), but at the throat there is 
a matrix, which is a probability distribution over the latent space. The VAE en-
coder compresses many images to the same set of multi-dimensional probability 
distributions, which are their counterpart in a sense. And then the VAE decoder 
randomly selects a number of parameters from this distribution and generates an 
output image from them. His work is described in more detail in the article [45]. 
One of the advantages is the high variety of images. Generally, VAE-based 
models are faster than GANs. 

3. Diffusion models. Diffusion models are based on the formalization of the
generation process in the form of a Markov chain. Markov Chain is a mathemati-
cal model of a stochastic process, where the future state of a system depends only 
on its current state, without taking into account its previous states. A given image 
undergoes a series of step-by-step transformations by adding Gaussian noise at 
each stage until it turns into white noise. And then the original image is repro-
duced from that white noise in reverse order. At each stage, the match is checked 
and, accordingly, the neural network that performs this reproduction is improved. 
Trained in this way, the model is able to generate quite realistic images from sim-
ple white noise. Generally, with each iteration, it adds different details, and the 
image gains more and more clarity. Provides high realism, but takes a bit of a 
long time to learn. Although some techniques for accelerating learning have 
emerged recently, however, it is still believed that GAN and VAE work faster. 
Diffusion models are described in more detail in the article [46]. 

Evaluating the performance of generative models includes assessing the 
quality and diversity of the samples generated. Three metrics are commonly 
used for this purpose: Inception Score (IS), Fréchet Inception Distance (FID), 
Precision and Recall for Distributions (PRD), Diversity Metrics (e.g., Mean 
Pairwise Distance or LPIPS - Learned Perceptual Image Patch Similarity), and 
Human eYe Perception Evaluation  (HYPE). Each of these metrics provides 
unique information about the performance of generative models by criteria for 
quality, diversity, etc. 

In addition to generating images, you need to highlight the video genera-
tion separately. It's not just a sequence of images. When generating deepfakes, 
you need to adjust the movements of the elements of the images to make them 
more realistic. Deepfake video detectors usually analyze the dynamics of 
movements for realistic behavior, in particular, from the point of view of the 
laws of physics and anatomical constraints. The movements of the arms, legs, 
especially of people, have many limitations. Many well-known misconceptions 
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are related to objects that cross parts of people's bodies, for example, a hand that 
passes through a microphone or deep into the surface of a table immediately 
emits a deepfake. It also analyzes how the person speaks and whether the sound 
really corresponds to what the person is saying (the most popular and simple 
way to deepfake is to replace the audio sequence of the video with another). Ac-
cordingly, video generators take this into account. As a rule, successful deepfake 
videos are quite short videos where the real video replaces the face of another 
person. At the same time, a person should look at the camera, and not stand 
sideways, be without glasses, a beard or a lush hairstyle (fitting facial hair is a 
significant problem), and almost not move. Then, even with the use of readily 
available models from GitHub, it is possible to generate quite realistic, high-
quality deepfakes. 

In 2020, Kaggle held a competition "Deepfake Detection Challenge", 
where it was necessary to detect a deepfake video. We recommend that you read 
the progress of solving the problem by its winners who took 1st place (Efficient 
Nets models), 3rd place (3 models EfficientNet-B7 with 3D CNN) and 5th place 
(SE-ResNeXT50, different 3D CNN). 

Intelligent information technologies for analysis and generation (synthe-
sis) of images allow solving many applied problems: 

- analysis of CT tomography, fluoroscopy, analysis of ultrasound images, 
etc., for medical purposes; 

- image recognition and conversion into information convenient for the 
perception of the blind and other people with disabilities; 

- recognition of graphic information and its conversion into tabular or de-
scriptive form; 

- reconstruction of the image (inscriptions on ancient scrolls, etc.) from 
fragments from scans obtained in various ways, etc. 

5.2 Intelligent Analysis of Text: Natural Language Processing and 
Generating  

5.2.1 NLP: basic concepts, types of problems, data collection and 
preprocessing  

Natural Language Processing (NLP) is one of the most popular types of 
data analysis problems nowadays. 

NLP technologies refer to both text (in any language) and language, i.e., 
audio signals. But the most widespread use of NLP has recently become for the 
processing of natural language text. 

A corpus is a large dataset (collection) of texts on a topic. 
NLP solves the following tasks: 
− translation from one language to another (audio, text); 
− sentiment analysis; 

https://www.kaggle.com/competitions/deepfake-detection-challenge/overview
https://www.kaggle.com/competitions/deepfake-detection-challenge/discussion/145721
https://www.kaggle.com/competitions/deepfake-detection-challenge/discussion/158158
https://www.kaggle.com/competitions/deepfake-detection-challenge/discussion/140364
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− data searching or analysis, including web scraping (loading the page 
and removing blocks of useful text from it) and parsing (formalizing and struc-
turing the text according to certain criteria and templates) (see, for example, the 
author's Kaggle notebook ); 

− data summarization; 
− filling in missing text in sentences or continuing a set of sentences 

(e.g., T9 algorithm); 
− text classification, deter analysis the author of the text (a human or 

AI?); 
− filtering spam in the mail; 
− detection of phishing sites; 
− recognition of a text request in order to respond to it, as well as gener-

ating a response ("Quation-Answear" systems), support for the operation of sys-
tems for call centers; 

− generating an image based on a text request; 
− chatbots – generating information in dialog mode,  
− creation of recommendation systems; 
− NER (Name Entity Recognition) – recognition of named entities (ge-

ographical names, company names, names of people) and relationships between 
them based on natural language text; 

− keywords mining for the georeferencing of the whole text [30]; 
− key phrases extraction from the text [32]; 
− augmentation of texts [35]; 
− search and selection in the text of certain parts of a sentence (nouns, 

verbs, adjectives, etc.) or parts in a word (prefixes, suffixes, etc.), etc. 
An example of an NLP algorithm for, for example, text classification (see 

the implementation in Kaggle notebook by one of the authors in his dataset):  
1. Find data.
2. Markup the data.
3. Clear data and perform other preprocessing.
4. Tokenize the text by dividing it into individual words or syllables.
5. Select and configure the model and choose the technology of its appli-

cation. 
6. Select and carry out post-processing.
7. Analyze outliers and, maybe, improve something at the previous stages.
Examples of text cleaning and preprocessing (this stage of bringing the 

text to a standard form is also often called normalization): 
1. Convert all characters to lower case if the capital letter does not carry

valuable information. 
2. Spelling correction (examples: "goal", "goooooaaaall").
3. Remove punctuation marks.
4. Remove non-natural language characters (program code, numbers, hy-

pertext links, emoticons, etc.). 

https://www.kaggle.com/code/vbmokin/web-scraping-from-html-buwr-sb-site-parser
https://www.kaggle.com/code/vbmokin/nlp-for-en-bert-classification-for-water-report
https://www.kaggle.com/datasets/vbmokin/nlp-reports-news-classification
https://towardsdatascience.com/machine-learning-text-processing-1d5a2d638958
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5. Carry out lemmatization, that is, bringing all words to a single diction-
ary form (Fig. 5.20). 

6. Removal  of stop words – "the", "is", etc., which do not have specific
semantics; 

7. Apply stemming when words are reduced to the root by removing the
variable part of the word form, by discarding unnecessary characters, usually 
suffixes or endings (see Fig. 5.20). 

Figure 5.20 – Examples of stemming and lemmatization from Kaggle notebook 

Examples of code for using many of these functions are available in the 
author's Kaggle notebook. 

To automate these operations, the re (regular expression) and NLTK 
(Natural Language Toolkit) libraries are used. For more information on NLTK, 
see sorces [6, 47] and in documentation. 

Large (powerful) language models usually do not require normalization 
operations. 

5.2.2 Linguistic models and classification of natural language text 
One of the most illustrative and popular NLP problems is the classifica-

tion of natural language text. 
5.2.2.1 Bag of Words. 
One of the first and most popular NLP methods of text classification is 

based on "Bag of Words" (abbreviated: "BOW" or "BW"). The method consists 
in making a list-dictionary of unique words in the text. Then each sentence, par-
agraph or other part of the text is presented as a vector, in which 0 is placed if 
the word is a dictionary of unique words, and 1 – in the opposite case (Fig. 
5.21). One of the main disadvantages of using BOW is ignoring the order of 
words and the relationships between them, which is very important for natural 
language text.  

Figure 5.21 – Example of number vector formation in the BOW method 
from the Kaggle notebook 

https://www.kaggle.com/code/andreshg/nlp-glove-bert-tf-idf-lstm-explained#3.-Data-Pre-processing-%F0%9F%9B%A0
https://www.kaggle.com/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert
https://docs.python.org/uk/3/library/re.html
https://www.nltk.org/
https://www.kaggle.com/code/andreshg/nlp-glove-bert-tf-idf-lstm-explained#5.-Vectorization
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5.2.2.2 TF-IDF. 
To increase the effectiveness of the BOW method, we decided to take into 

account the frequency of words appearing in the text in order to filter out com-
monly used words that are less valuable for analysis. This method is called "TF-
IDF" because it ranks words by a metric that is the product of the "TF" and 
"IDF" scores: 

- "Term Frequency" ("TF") is equal to the ratio of the number of times the 
term T appears  in the document to the number of terms in the document; 

- "Inverse Document Frequency" ("IDF") is equal to log (N/n), where N is 
the number of documents and n is the number of documents in which the term T 
appears. 

An example of calculating TF and IDF indicators is shown in Fig. 5.22. 

a)                 b) 
Figure 5.22 – An example of calculating TF and IDF indicators [48]: 

a) examples of 2 sentences; b) the result of the calculation of the indicator for
these "TF" and "IDF" 

As shown in Figure 5.22, words with a higher meaning of this criterion 
are more significant in terms of TF-IDF: "car", "truck", "road", "highway". 

You can also practice this problem in the Kaggle contest "Natural Lan-
guage Processing with Disaster Tweets (Predict which Tweets are about real 
disasters and which ones are not)", the task of which is to determine whether a 
given tweet is related to a disaster or not. An example is a notebook [49]. 

5.2.2.3 GloVe. Embeddings. 
Most of the more effective NLP methods are based on the concept of em-

bedding. In NLP, embedding is a number vector into which textual information 
tokens (words or syllables) are converted, taking into account the semantic 
meaning and typical relationships with other tokens in the natural language text 
of a given subject area.  

Methods, models and technologies of GloVe, Word2Vec, transformers, in 
particular, BERT and others are based on embaddings. The way embeddings are 
calculated is different in different methods.  

The most easy-to-understand concept is used in the GloVe (Global Vec-
tors for Word Representation) method. A large corpus is taken (hundreds of 
thousands, millions, even billions of words – texts from Wikipedia, GitHub, 
etc.). Words are numbered and parsed in pairs. A matrix is created where each 
element (i, j) contains the number of times the word j occurs in the context of 

https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
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the word i. The probability of this occurrence is then calculated. And then vec-
tors are formed that characterize the probabilities of the appearance of other 
words in the context of a given one. This is a rather complex optimization algo-
rithm, but it shows impressive results. An example of operations with the words 
"king" and "queen" is canonical, given, for example, in a blog. Fig. 5.23 shows 
the embedding of the word "king", determined by the GloVe method based on a 
corpus with 400 thousand unique English words from Wikipedia. 

Figure 5.23 – Embedding of the word "king", defined by the GloVe method 
based on a corpus of 400,000 unique English words from Wikipedia  

(from the blog)  

Figure 5.24 shows the canonical example of embedding operations. 

Figure 5.24 – Result of operations with embeddings "king" – "man" + "woman" 
and comparison of the result with embedding of the word "queen"  

(from the blog) 

http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
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As can be seen from Fig. 5.24, if we apply element-by-element addition 
and subtraction of vectors according to the formula "king" – "man" + "woman", 
then the result, according to the blog, will be the closest to the word "queen" 
among all 400 thousand unique English words. 

The article [50] gives another example: "Paris – France + Italy = Rome". 
The GloVe method scales well on big data, but its effectiveness is mani-

fested only with very large cases, and such training is long-term, and this is one 
of its main disadvantages. 

5.2.2.4 Word2Vec. 
More original and faster is the Word2Vec method. It combines 2 con-

cepts: predicting the context by word and the word by context (Fig. 5.25): 
- the CBOW (Continuous Bag-of-Words) method predicts a word by its 

context: the neural network takes each word as a target and analyzes the words 
in each sentence next to it (context), trying to predict this target word; 

- skip-grams predict the context of a word (neighboring words) behind the 
word itself using its vector representation.  

Figure 5.25 – Word2Vec method model architecture: 
CBOW and skip-grams [50] 

The way skip-grams are formed is similar to the way GloVe embeddings 
are formed, but, firstly, GloVe analyzes only pairs of words, and skipgrams ana-
lyze the entire adjacent context of many words, and secondly, GloVe analyzes 
the entire text globally, and skipgrams analyze only a given sentence or another 
part of the text each time. 

It is also advisable to read the article [50], where this method was pro-
posed back in 2013. Fig. 5.26 shows an example of foresight. 

http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
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Figure 5.26 – Example from article [50]: predicting a word by context using 
Word2Vec trained on a corpus of 783 million words with skip-grams with a di-

mension of 300 

5.2.2.5 Transformer 
As mentioned above, the most up-to-date and powerful model for classify-

ing data (both textual and graphic) is the Transformer model.  
A very well-detailed and illustrated explanation of how transformers work 

in NLP is given in the blog. Its following important features can be distin-
guished: 

1. Using the "encoder-decoder" architecture (the encoder transforms text
to vector representation, and the decoder – vice versa: vectors to text). 

2. The words themselves are processed separately, their position in the
sentence is processed separately, which allows you to parallelize part of the cal-
culations and significantly speed them up, due to the GPU or TPU; 

3. Use of the Attention Heads Mechanism "attention") to account for the
relationship between words in a sentence. To do this, a special neural network is 
used that evaluates the relationships between words and their importance for un-
derstanding the entire sentence and which words connect the parts of the sen-
tence. This is the key feature of transformers, which have led to a revolution in 
the processing of natural language text, and subsequently in image processing. 

The blog provides a good example for the sentence "The animal didn't 
cross the street because it was too tired". Fig. 5.27 shows a diagram of which 
words the word "it" is associated with, which attaches the last 4 words to the 
main sentence and is therefore important.  

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
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a)                 b) 
Figure 5.27 – Analysis of which words the word "it" is most associated with in 

the sentence "The animal didn't cross the street because it was too tired" 
 (from the blog): a) from 2 attention heads; b) with 8 attention heads 

Typically, 8 different approaches ("attention heads") are used, as shown in 
Fig. 5.27, and then the results obtained are averaged and a single embedding is 
formed. 

Transformer as a model is considered one of the best ("State-of-the-art") 
for both NLP problems and image-related tasks (this can also be seen in Fig. 
5.12), where they are called "Vision Transformers" (ViTs). To do this, images 
are divided into fragments (patches) in the same way as text is divided into 
words, subwords or syllables. And then the entire powerful apparatus of trans-
formers is used to find connections and dependencies between these patches. 
And this allows you to solve various problems:  segmentation, detection and 
recognition of objects, as well as people, classification of objects and even gen-
eration of new images. 

5.2.2.6 BERT. 
A fairly modern and powerful solution is BERT (Bidirectional Encoder 

Representations from Transformers) models and technology. Bidirectionality 
means that the context of a word in a sentence is analyzed in both directions: 
both before and after it.  

1. BERT uses sub-word tokenization ("WordPiece Tokenization"),
which allows you to consider words at a lower level and take into account the 
morphological features of the language. 

2. It uses its own tokenization system with additional marks, which de-
pend on the problem to be solved (Fig. 5.28). The beginning and end of each 
sentence are also marked in a special way. 

http://jalammar.github.io/illustrated-transformer/
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Figure 5.28 – Types of BERT tasks and features of token formation 
for them (from the blog) 

3. The architecture of the model uses Dropout, which allows you to bet-
ter predict missing words in a sentence (Fig. 5.29). 

Figure 5.29 – Illustration of missing word prediction 
using BERT (from the blog) 

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-bert/
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A very nicely detailed and illustrated explanation of how BERT works is 
given in the blog. 

5.2.2.7 Hugging Face (HF). 
The Hugging Face (HF) collection  contains a large number of pretrained 

language models BERT, GPT, T5, etc., which can be applied to different NLP 
tasks in different languages at once (Fig. 5.30). 

Figure 5.30 – Hugging Face (HF) 

As of January 2024, HF contents: 
- more than 600 thousand models, including more than 125 thousand dif-

ferent transformers; 
- more than 140 thousand datasets. 
Usually, the following algorithm is used to classify natural language texts 

using HF: 
1. Download the data and separate the target from it.
2. Select and install the transformers library and pretrained models from

the Hugging Face (HF) collection. 
3. Perform data preprocessing, normalization and tokenization of text

sentences (often synonyms) using the tools of the Hugging Face (HF) collection. 
4. Apply the selected language model and get embeddings for the input

from it. 
5. Create additional features.
6. Combine embeddings from step 4 with other features from step 5 and

target from step 1 to get a dataset for supervised machine learning. 
7. Divide the data into training, validation, and test.
8. Train one of the models from Chap. 4 to predict a given target.

http://jalammar.github.io/illustrated-bert/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/
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9. Predict test data.
10. Analyze the results. If the result is not satisfactory, then you can try to

change something in the previous stages. 
Examples of the use of this algorithm are given in the following note-

books, including author's ones: 
1. Kaggle Contest Notebooks «Natural Language Processing with Disas-

ter Tweets»; 
2. Notebooks of the "NLP: Reports & News Classification" dataset;
3. Dataset notebooks «NLP with Disaster Tweets – cleaning data" for the

Kaggle contest "Natural Language Processing with Disaster Tweets». 
4. A very short notebook based on the simple transformers library:

"Supershort NLP classification notebook" for Kaggle competition «Natural 
Language Processing with Disaster Tweets»). 

Let's dwell on step 5 of the algorithm, which is somewhat specific for 
NLP problems. 

5.2.2.8 FE in NLP tasks. 
To effectively solve NLP problems, it is important to be able to take into 

account additional information, extract other features, in addition to embed-
dings. To do this, you can effectively use the NLTK library mentioned above. 

Usually, features in NLP tasks are formed in one of the following ways: 
1. Use of syntactic or grammatical features such as Part of Speech

("POS") or grammatical dependencies (for this you can use the NLTK, SpaCy, 
etc. libraries); 

2. Statistical characteristics of syllables, words, sentences, paragraphs,
documents in the corpus of texts in general (for this, you can use the NLTK, re, 
ordinary statistical analysis libraries, etc.); A good example is in the notebook, 
where the author tries to distinguish texts (essays) written by a machine (large 
language models) from texts written by students by features (in the Kaggle prize 
competition "LLM - Detect AI Generated Text"); 

3. The "TF-IDF" metric, which displays the frequency of unique words
without taking into account commonly used words (see, for example,  the com-
ment on his decision by the  participant who took 19th place (Top1.5%) in the 
Kaggle competition "Google AI4Code – Understand Code in Python Note-
books"); 

4. N-gram formation, etc.
N-grams in NLP are sequences of N elements (words or symbols) that oc-

cur in sentences, paragraphs, or other parts of the text. Normally, 2 numbers are 
given  where  which means searching for sequences that con-
tain from  to  including elements. 

For example, in Kaggle's "LLM - Detect AI Generated Text" competition, 
most public best solutions use (3, 5) and (3, 6)-grams using the TfidfVectorizer 
(ngram_range=(3, 5)) command from the sklearn.feature_extraction.text pack-
age. 

https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/datasets/vbmokin/nlp-reports-news-classification
https://www.kaggle.com/datasets/vbmokin/nlp-with-disaster-tweets-cleaning-data
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/code/vbmokin/supershort-nlp-classification-notebook
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/code/tivfrvqhs5/20-feature-xgboost
https://www.kaggle.com/competitions/llm-detect-ai-generated-text
https://www.kaggle.com/competitions/AI4Code/discussion/343614
https://www.kaggle.com/competitions/AI4Code/discussion/343614
https://www.kaggle.com/competitions/AI4Code/overview
https://www.kaggle.com/competitions/AI4Code/overview
https://www.kaggle.com/competitions/llm-detect-ai-generated-text
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A notebook on keyword extraction, created with the help of one of the au-
thors of the manual, used (N,N)-grams. One of the results is shown in Fig. 5.31 
[32].  

Figure 5.31 – Examples of (3, 3)-gram words and their number in the corpus of 
words [32] 

5.3 Large Language Models (LLM) and Chatbots 

A real revolution has recently been caused by the emergence of ChatGPT 
("Chat Generative Pre-training Transformer") version 3.5 (Fig. 5.32), and later 
4.0 from OpenAI.  

Figure 5.32 – ChatGPT 3.5 

Millions of people have joined its testing. Billions of dollars began to be 
allocated for the development of similar services by all leading IT companies. 
Governments and individual companies initially tried to ban this service, but the 
"Pandora's box" has already been opened. Realizing that progress could not be 
stopped, they focused on developing rules and restrictions. For example, chat-

https://www.kaggle.com/code/vbmokin/nlp-for-ua-keybert-keywords-extractions
https://chat.openai.com/?model=text-davinci-002-render-sha
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bots began to write more often: "I can't answer because it violates ... phrase the 
question in a different way." "I can't answer, it's better to contact ..." etc. 

The following features of this system are especially valuable: 
1) The ability to ask questions in your native language, although experi-

ence shows that the answers to questions are the most complete; 
2) Detailed answers with the ability to ask clarifying questions and receive 

continuation of explanations in a dialogue mode; 
3) You can edit a previously asked question, rather than writing a new 

one, and get a different answer; 
4) You can click "Regenerate" ("Restart") and generate another answer 

option, and the system will ask if the new version is better, reminding that all 
users are its testers, and it constantly self-learns on them; 

5) Generates Python programs at the level of a fairly professional pro-
grammer who knows all the most interesting programs from GitHub, Kaggle, 
StackOverFlow, etc.;  

6) Allows native translation from one language to another in different 
styles; 

7) Allows you to shorten your own text to a given number of words or 
sentences; 

8) There are convenient buttons for copying the entire answer or just the 
program code; 

9) All previous chains of questions and answers of the user are stored in 
their profile under the names assigned to them by the chatbot, but the user can 
rename them; 

10) Availability of API access (paid, but inexpensive), which allows you 
to significantly expand the possibilities of its application in your applications; 

11) Ability not to monitor the literacy of the query – compare the results 
of queries (good and short with errors in the text): 

 

 
 

Figure 5.33 – Variants of prompts for the ChatGPT to obtain the simple  
Python code for the neural network building 

 
12) The ability to ask a question, simply giving the input data that is avail-

able and the output that needs to be obtained, and he himself will guess how to 
write a program that will carry out such a transformation; 
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13) It can draw a primitive graph to illustrate the answer, but using 
pseudographics (from symbols from the keyboard), just to convey an idea, but 
there are also opportunities to integrate with other services that do it much bet-
ter, or write code for high-quality visualization of the results in Python. 

Of course, there are also disadvantages (there are fewer of them in the 
paid version than in the free version). "Hallucinations" are common, when the 
chatbot does not know the answer, but, taking advantage of the fact that it is a 
language model (a good "writer"), begins to quite realistically generate text in 
response, for example, web addresses of datasets or articles used in the answer, 
titles of books, etc., which have never existed, so all its answers need to be 
checked. In addition, there are errors in the answers for various reasons:  

- due to problems in the material on which he studied and which also has 
errors; 

- due to the problems of the chatbot model, which is constantly evolving; 
- due to a misunderstanding of the request; 
- due to user errors in the formulation of the request; 
- due to the obsolescence of the material, especially when it comes to dy-

namically developing software libraries. 
There are also limitations of the functionality itself in terms of the output 

format, but they can be eliminated by other services. Most of the typical disad-
vantages (duration of text generation, etc.) are absent in the paid version. 

It is these shortcomings that still leave the existence of the profession of 
programmers relevant, because: 

1) You need to be able to ask the right question in order to get a really ef-
fective answer, and for this you need to navigate the question and know exactly 
what to ask, for example, compare the answers to the queries: 

 

 
Figure 5.34 – Variants of prompts for the ChatGPT to obtain the more extend 

Python code for the neural network building 
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2) A chatbot will not write the entire program ready to be used along with 
other blocks, it will only give key blocks that an experienced programmer must 
combine; 

3) You need to be able to recognize hallucinations and errors in the an-
swer and guess what they need to be replaced with (theoretically, you can write 
to him what mistakes there are and he corrects himself, but sometimes he gets 
hung up – advises the previous first, also erroneous, answer); 

4) Many companies categorically prohibit writing examples of data from 
these companies in a query so that it writes code for their processing – the pro-
grammer himself must come up with an analogue and then transfer it to the nec-
essary data; 

5) Many companies prohibit the use of chatbots for writing code at all, 
otherwise there are serious copyright problems for this code; 

6) Someone needs to write new programs for such services, create new 
language models and datasets on which they will learn; 

7) Often, answers are needed for a specific very narrow and modern field 
with its specific terminology, which the chatbot does not know enough about. 

Chatbots like ChatGPT 3.5 are built on the use of the "Large Lingual 
Model" (LLM). Examples of LLMs at the moment are large multilingual models 
GPT3, GPT4, BERT, RoBERTa, XLNet, etc. The LLM for ChatGPT 3.5 is 
GPT3. Before GPT3, there were previous versions as well, such as GPT2. See, 
for example, the author's example [51] – a notebook using GPT2, BERT and 
XLNet for text generalization in 2022 in Kaggle, developed before the advent of 
ChatGPT 3.5. 

ChatGPT has a "temperature" parameter that adjusts the degree of variety 
of responses.  

Two relatively new directions in this area have emerged and are rapidly 
developing: 

- Prompt Engineering is a set of knowledge and skills for generating a 
series of requests to the chatbot that will provide a truly relevant and most useful 
answer; 

- LLM Fine Tuning is a technology of "learning" or continuing to teach a 
large language model on a given subject area, on a special corpus of words. 

There are open-source LLMs "open-source" for example: LLAMA2 
(https://ai.meta.com/llama/) from Meta (versions 7B, 13B and 70B), Falcon 
(https://falconllm.tii.ae/), Mistral (https://docs.mistral.ai/), MPT-7B 
(https://www.mosaicml.com/blog/mpt-7b) and many others [52, 53].  

In the article of one of the authors of the manual, there is an analysis of 
the capabilities of LLM to generate training data for solving problems of the 
Kaggle competition "LLM — Detect AI Generated Text": GPT 3.5 Turbo;  GPT  
4;  Mistral  7b  Instruct;  OpenAI  text-ada-001; OpenAI  text-babbage-001; 
OpenAI  text-curie-001; OpenAI text-davinci-001; OpenAI  text-davinci-002; 
OpenAI  text-davinci-003; Google  BARD  (Gemini);  Google  PaLM;  Claude  
Instant  1; Intel  Neural  Chat  7b  v3.1;  LLaMA 2 70b; Falcon 180b. 

https://ai.meta.com/llama/
https://falconllm.tii.ae/
https://docs.mistral.ai/
https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2984/2773
https://www.kaggle.com/competitions/llm-detect-ai-generated-text


160 
 

Figure 5.35 shows an infographics of the operations mentioned in sections 
5.2, 5.3 on NLP problems in the S(I) notation. 

 

Figure 5.35 – Infographics of technologies for preprocessing and intelligent 
analysis of natural language text 

 
 

5.4 Intelligent Analysis and Forecasting of Time Series 
 

5.4.1 Basic concepts and types of problems 
The problems of time series analysis and forecasting are among the most 

common that need to be solved. Often, it is important not only to build a model 
that can accurately and reliably predict data series, but the model itself can be 
valuable. The identified period and frequency of seasonality, the type of best 
model can say a lot about the series itself.  

Important concepts are the spacing of the series and the forecasting hori-
zon.  

The spacing of the series  is the difference between adjacent values. A 
number of models, such as ARIMA, require that the step be the same and that 
there are no missing values. For example, you can perform imputing from the 
Sklearn library. 

The forecast horizon is the number of steps for which a forecast is made. 
It is important that these can be not only future values. This is the basis for the 
concept of cross-validation diagnostics of a series model that uses, for example, 
the Prophet library. The task is seen as a supervised task. The horizon is the val-
ues within the existing data interval – different parts of the data are selectively 
taken and used as validation, and then analyzed as the model predicts them well, 
using all other data for training (Fig. 5.36). 
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Figure 5.36 – Cross-validation in time series diagnostics with a horizon within 
the interval of known observational data [54] 

 
Popular examples of time series forecasting problems are the following: 
- forecasting of environmental parameters monitoring data: meteorologi-

cal data, water status, atmospheric air status, solar activity, etc.; 
- forecasting the exchange rate of cryptocurrencies or other as sets in fi-

nancial markets; 
- forecasting the values of device indicators in various technical systems; 
- prediction of the results of analyzes of medical devices to predict the 

condition of patients; 
- forecasting the number of patients during pandemics or epidemics in 

different regions to predict the extent of the disease and analyze possible direc-
tions of its spread; 

- forecasting changes in radio signals, in particular of cosmic origin, etc.  
 
5.4.2 EDA and FE for time series. 
As a rule, the analysis of the time series is carried out in the following 

stages: 
1. Analysis of missed values and regularity of the step.  
The ARIMA model requires regular data, while Prophet does not. 
2. Detection and analysis of series anomalies. 
The simplest way is the one mentioned in Chap. 3 filtering by quantiles 

P10, P05, P90, P95, etc., but there are also special libraries [55] (Fig. 5.37): 
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a) 

 
b) 

 
c) 

Figure 5.37 – Automatic identification of anomalies in the value of dust concen-
tration in the ambient air using various libraries according to the data of the pub-
lic monitoring network of the state of atmospheric air EcoCity from a notebook 
«Anomaly detection for air pollution» [55]: a) SESD; b) Isolation Forest; c) the 

method «seasonal_decompose» from the statsmodels library 

https://eco-city.org.ua/
https://www.kaggle.com/code/dimashmundiak/anomaly-detection-for-air-pollution
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- SESD (Seasonal Hybrid ESD) – the method with a combination of sea-
sonal adaptation with an Exponential Smoothing and Extreme Studentized De-
viate (ESD) to detect deviations from the expected data distribution; 

- IsolationForest (library Scikit-learn) – the method for detecting anoma-
lies by isolating anomalies in the data using a decision tree model in the entire 
feature space and without any regularization; 

- statsmodels – a library that contains various statistical functions and 
models for anomaly detection, and a residual analysis method (season-
al_decompose). 

In addition, anomalies can be found manually visually on the chart (it is 
worth using the interactive graphs of the plotly library), and then find confirma-
tion of these anomalies. For example, the reasons for the abnormal fall in the 
bitcoin rate can usually be found in the news (Fig. 5.38). 

 

 
Figure 5.38 – Sharp drop in the bitcoin exchange rate in June 2022 [56] due to 

the collapse of the Celsius Network crypto exchange, the Tron stablecoin 
(USDD), etc. [57] 

 
3. Analysis of the law of distribution of the series. Is it normal? Normal-

ize data, if necessary. 
To analyze the normality of the distribution law, there is a function 

stats.probplot(x, dist=stats.norm). It calculates quantiles. If the distribution 
law is normal, then these quantiles line up. If this condition is not met, then the 
Box-Cox transformation (stats.boxcox(x)) ensures the alignment of these quan-
tiles (Fig. 5.39).  

https://github.com/nachonavarro/seasonal-esd-anomaly-detection/blob/master/README.md
https://rdrr.io/github/twitter/AnomalyDetection/f/README.md
https://rdrr.io/github/twitter/AnomalyDetection/f/README.md
https://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest
https://www.statsmodels.org/stable/index.html
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Figure 5.39 – The result of applying the Box-Coxmethod to the normalization of 
the time series  

 
Also, it is important to compare the distribution laws of training and vali-

dation data. If they are too different, the model will not be effective. 
4. Analysis of the stationarity of the series, although for ARIMA this 

step can be skipped – there it is analyzed automatically. Apply to stationarize 
this series, if necessary. 

A stationary series is a series in which statistical indicators are invariable 
over time. Therefore, the statistical indicators of different samples of the series 
will be the same or comparable within a given error. To do this, the Dick-Fuller 
test is used, which is performed by the function stats-
models.tsa.stattools.adfuller (Fig. 5.40). 

 

 
a)            b)       c) 

 
Figure 5.40 – Dick-Fuller test on stationarity of the time series of the bitcoin ex-
change rate (feature "Close") for 2020-2022 from the author's notebook: a) Py-
thon code, b) the result of checking the series; c) the result of checking the first 

difference of the series 
 

5. Analysis of the seasonality of the series: is there a periodicity and with 
what period? There may be several different seasons at the same time [58]. Re-
move seasonal components, if necessary (depending on the models used). 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html
https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-eda


165 
 

The main difference between time series models and other machine learn-
ing models is that they specialize in taking into account the seasonality of series. 
It is on periodic series that time series models demonstrate higher accuracy than 
the universal data models described in Chapter 4. There is a typical test to see if 
the x series has at least one seasonal component. For this, there is a function 
statsmodels.tsa.seasonal.seasonal_decompose(x, T), where T is the period of 
the series in its steps (hour, day, ...) (Fig. 5.41). 

 

 
Figure 5.41 – The result of decomposing data on the bitcoin exchange rate in 

December 2021 using seasonal_decompose (from the author's notebook) 
 

6. If the series was transformed at stages 3-5, then it is worth repeating 
steps 1-5. 

7. FE: Synthesize new features if section 4 models are used. 
It is popular to use the TSFresh library, which allows you to synthesize up 

to 1200 features for a given time series. After analysis and filtering, as a rule, 
50-100 features are left, which are quite interesting and effective for forecasting. 
For example, see author's examples of forecasting the average daily bitcoin ex-
change rate according to several years [11, 36, 59] in 2020-2021, which made it 
possible to predict the daily rate 10 days ahead with an accuracy of 2.44%,  us-

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-forecasting
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ing about 60 features, almost 50 of which were obtained using the TSFresh li-
brary from the values of the "Close" feature (Fig. 5.42). 

 

 
a) 
 

 
b) 

Figure 5.42 – Forecasting the bitcoin exchange rate in December 2021 with an 
accuracy of 2.44% using the "MLP Regressor" model based on about 50 features 
synthesized by the TSFresh library (from the author's notebook): a) features syn-

thesized using the TSFresh library; b) the result of a 10-day rate forecast 
 

https://www.kaggle.com/code/vbmokin/crypto-btc-advanced-analysis-forecasting
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8. Determine forecast horizons and form training and validation datasets. 
As a rule, test and validation data are selected at the end of the series if the 

prediction task is solved (see examples [11, 36, 59]). 
9. Make forecasts and analyze the results. 
 
 
5.4.3 Construction of time series models: ARIMA, Prophet 
All models in Section 4 can be used to predict time series. Neural network 

recurrent models GRU and LSTM can also be used. But, more often, they use 
time series specific models ARIMA and Prophet (previous name: “Facebook 
Prophet”). 

The mathematical apparatus ARIMA (Autoregressive Integrated Moving 
Average) is described in detail in textbooks of one of the co-authors [60, 61]. To 
automate ARIMA in Python, one of two options is used: 

1) ARIMA method of the package arima_model the "Time Series Analy-
sis" library, which allows you to identify the model for a given series with a giv-
en order ARIMA(p,d,q), where p is the autoregressive order, d is the order of 
difference, q is the order of the moving average;  

2) method auto_arima the pmdarima library, which itself selects the pa-
rameters of the SARIMAX model, where in addition to p, d, q there are also pa-
rameters of seasonal components (Fig. 5.43). 

The main aspects of the Prophet model are described in the article [62] 
and in the documentation. Mathematically, the Prophet model for modeling and 
predicting the values of the series , depending on time t, is written as fol-
lows [54, 58, 62]:  

- For the additive case: 
 

,          (5.2) 
 

- For the multiplicative case: 
 

,            (5.3) 
 

where  is the trend of the series (logistic or piecewise linear approximation 
of data);  – seasonal component approximated by the Fourier series;   – 
a component that takes into account the impact of holidays or other anomalies 
that operate with a certain "window", that is, in the range of certain dates (steps); 

 – "noise" error with zero mean. 
For a more detailed example of effective setting of the parameters of the 

Prophet model on the example of forecasting the number of daily new cases of 
coronavirus in Ukraine in 2020 (Fig. 5.44 from the article [58]). 

 

https://www.statsmodels.org/stable/tsa.html
https://www.statsmodels.org/stable/tsa.html
https://pypi.org/project/pmdarima/
https://facebook.github.io/prophet/docs/quick_start.html
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Figure 5.43 – Example of the result of the auto_arima work on identifying the 
SARIMAX model for predicting the bitcoin exchange rate (from the notebook) 

 
 

 
Figure 5.44 – Example of forecasting the number of daily new cases of corona-

virus in Ukraine (2020) using the Prophet (from the notebook) 

https://www.kaggle.com/code/vbmokin/crypto-btc-analysis-forecasting
https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality
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See more examples of using the Prophet model and tuning its parameters 
with real data [37, 58, 63, 64].  

The constructed model allows us to analyze the patterns inherent in the 
data. For example, it is possible to analyze environmental factors which increase 
Alternaria or Cladosporium spores [28, 29], find main factors that increase the 
risk of patient death of Coronavirus [31]. 

Fig. 5.45 shows an infographics of the operations and models mentioned 
in section 5.4 in notation S(I). 

 

 
Figure 5.45 – Infographics of technologies for preprocessing and intelligent 

analysis of time series 
 
 

Practical exercises  
1) There is a 2x2 matrix A and there is a 2x2 kernel K. What will be the 

result of applying the convolution K to the matrix A using the Conv2D com-
mand in stride = (1, 1), padding='valid' mode? An example of the calculation is 
shown in Fig. 5.46. 
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Figure 5.46 – Application of convolution 

 
2) There is a 2x2 matrix A and there is a 2x2 kernel K. What will be the 

result of applying MaxPooling2D (pool_size=(2, 2), strides=(2,2), pad-
ding="valid") to this matrix? An example of the calculation is shown in Fig. 
5.47. 

 

 
Figure 5.47 – Application of MaxPooling2D 

 
3) There is a 2x2 matrix A and there is a 2x2 kernel K. What will be the 

result of applying AveragePooling2D(pool_size=(2, 2), strides=(2,2), pad-
ding="valid") to this matrix? An example of the calculation is shown in Fig. 
5.48. 
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Figure 5.48 – Application of AveragePooling2D 

 
4) In the TF-IDF method, calculate the TF indicator for the word that oc-

curs most often in a given sentence (without punctuation marks). An example of 
the calculation for the sentence “In the project, output the result in this way: sen-
tence sentence sentence paragraph paragraph picture picture picture picture pic-
ture” is shown in Fig. 5.49. 

 
Figure 5.49 – Calculation TF index for TF-IDF method 
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5) Calculate the TF-IDF indicator of the "TF-IDF" method for a given 
word in the given sentence (without punctuation marks) if the IDF of this word 
is a certain value for your corpus of words. An example of the calculation of the 
TF-IDF indicator for the word “picture” (IDF = 0.7) for the sentence “In the pro-
ject, put the result in this way: sentence sentence sentence paragraph paragraph 
picture picture picture picture picture” is shown in Fig. 5.50. 

 

 
Figure 5.50 – Calculation TF-IDF index  

 
6) For a given time series in the form of a list of values at successive 

moments of time [10, 12, 11, 15, 14, 17], calculate the first (if you start counting 
from 1) rolling value, which will be the result of the following command: roll-
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ing(window=3).mean() (or max, or min), which will not be equal to np.nan. An 
example of the calculation is shown in Fig. 5.51. 

 
Figure 5.51 – Calculation rolling(window=3).mean() (or max, or min) 

 
7) There is a sequence of time series values in the form of a list of num-

bers. Binaries it according to the principle "Will there be an increase in values?". 
Predict the next value of this new binary time series using the mean value meth-
od (with rounding to the nearest integer according to the rules accepted in math-
ematics). An example of the calculation is shown in Fig. 5.52. 
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Figure 5.52 – Data binarization and simple time series forecasting 

 
 
 

Possible topics for practical and laboratory tasks 
 

Topic No. 1. Image Analysis and Classification (or "Intelligent Analy-
sis of Graphical Data on the State of a Complex System Using Artificial In-
telligence Technologies in Python"). 

Topic No. 2. Natural Language Text Analysis and Classification Using 
Deep Learning and NLP Technologies. 

Topic No 3. Identification of the time series model and solution of the 
forecasting problem. 

Topic No. 4. Data analysis. 
The purpose of the work is to study information technologies and Python 

libraries for data analysis and master practical skills in applying machine learn-
ing models and artificial intelligence technologies on the example of one of the 
Kaggle datasets or from data uploaded via API. 
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Lesson plan: 
1. Select a dataset. 
2. Download data.  
3. Conduct EDA, FE, and data preprocessing. 
4. Choose information technology to solve the problem. 
5. Apply information technology to convert input data into numerical da-

ta, depending on its type (image, video or text). For the rows, this stage can be 
skipped. 

6. Train intelligent models using machine learning methods and choose 
the optimal one among them.  

7. Apply intelligent models and analyze the results. 
8. Provide a link to the created notebook, which contains all the results of 

the work, and draw conclusions.  
Examples of notebooks that can be used: 
- For Image Analysis and Classification: 

o MNIST model testing : typographic digits 
o MNIST model testing : user hand written digits 
o CNN over MNIST 
o Introduction to CNN Keras - 0.997 (top 6%) 
o Fashion MNIST Classification using CNNs 
o notebooks dataset MNIST models testing : handwritten digits 
o notebooks dataset MNIST models testing: typographic digits 

- For Intelligent Analysis and Classification of Natural Text: 
o Data Science with DL & NLP: Advanced Techniques 
o NLP - EDA, Bag of Words, TF IDF, GloVe, BERT 
o NLP with Disaster Tweets - EDA and Cleaning data 
o NLP for UA : BERT Classification for Water Report 
o NLP for EN : BERT Classification for Water Report 

- For time series analysis: 
o COVID in UA: Prophet with 4, Nd seasonality 
o COVID-19 UA: one region forecasting 
o AI-ML-DS Training. L1T : COVID in UA - Prophet 
o COVID-19 : Hospitalizations in Ukraine 
o COVID-19 in Ukraine: EDA & Forecasting 

- other notebooks with Kaggle profile Prof. Vitalii Mokin: 
https://www.kaggle.com/vbmokin/code 

 

Test questions 
1) What types of information do you know about data analysis problems? 
2) What are the typical datasets for training models in image classifica-

tion? 
3) What are tensors and how are they used in image processing? 

https://www.kaggle.com/vbmokin/mnist-model-testing-typographic-digits
https://www.kaggle.com/vbmokin/mnist-model-testing-user-handwritten-digits
https://www.kaggle.com/mosius/cnn-over-mnist
https://www.kaggle.com/yassineghouzam/introduction-to-cnn-keras-0-997-top-6
https://www.kaggle.com/faressayah/fashion-mnist-classification-using-cnns
https://www.kaggle.com/vbmokin/mnist-models-testing-handwritten-digits
https://www.kaggle.com/vbmokin/typographic-digits-first-10-fonts
https://www.kaggle.com/vbmokin/data-science-with-dl-nlp-advanced-techniques
https://www.kaggle.com/vbmokin/nlp-eda-bag-of-words-tf-idf-glove-bert
https://www.kaggle.com/vbmokin/nlp-with-disaster-tweets-eda-and-cleaning-data
https://www.kaggle.com/vbmokin/nlp-for-ua-bert-classification-for-water-report
https://www.kaggle.com/vbmokin/nlp-for-en-bert-classification-for-water-report
https://www.kaggle.com/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality?scriptVersionId=60244069
https://www.kaggle.com/vbmokin/covid-19-ua-one-region-forecasting
https://www.kaggle.com/vbmokin/ai-ml-ds-training-l1t-covid-in-ua-prophet
https://www.kaggle.com/vbmokin/covid-19-hospitalizations-in-ukraine
https://www.kaggle.com/vbmokin/covid-19-in-ukraine-eda-forecasting
https://www.kaggle.com/vbmokin/code
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4) Even examples of setting typical tasks for image processing? 
5) What image upgrading operations can be performed using the OpenCV 

library? 
6) What are convolutional neural networks, and how are they used for im-

age analysis? 
7) What complex neural network architectures do you know? 
8) How are autoencoders used in unsupervising image processing tasks? 
9) What is YOLO and for what purposes is this technology used? 
10) What are generative adversarial networks (GANs) and variational au-

toencoders (VAEs), and how are they used to generate and detect deepfakes? 
11) What intelligent information technologies are used to analyze and 

generate images and videos? 
12) What does data processing contain in natural language text? 
13) What are the basic concepts used in language models to solve NLP 

Problems? 
14) What is "Bag of Words" and how is it used in text analysis? 
15) How does TF-IDF work and what are its advantages compared to 

"Bag of Words"? 
16) What is GloVe and what is the concept of embeddings in the context 

of language models? 
17) What are the advantages of Word2Vec compared to GloVe? 
18) What are transforming models and how are they used in solving NLP 

problems? 
19) How does BERT work and how does it differ from other models for 

text analysis? 
20) What approaches are used for feature engineering in the tasks of clas-

sification of natural language texts? 
21) What are chatbots and how are they used in conjunction with large 

language models to improve communication with users? 
22) What are the stages of exploratory analysis of time series data? 
23) What techniques and libraries do you know for automatic detection of 

anomalies in time series? 
24) What is stationarity in the context of time series analysis and why is it 

important? 
25) How is seasonality determined in time series? 
26) What is the purpose of the TSFresh library for time series forecasting? 
27) What neural network models are used to predict time series? 
28) What are the main parameters of the ARIMA model and how are they 

used for time series forecasting? 
29) What are the main ways to identify an ARIMA model in Python? 
30) What are the main components and types of the Prophet model do you 

know?  
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6 INTERNET OF THINGS 

 
 

6.1 Basic concepts and concepts of the Internet of Things. Overview of 
LPWAN IoT technologies 

 
6.1.1 Basic concepts and concepts of the Internet of Things 
 
The "Internet of Things" (IoT) is a concept that describes a network of 

physical objects ("things") that have the ability to automatically collect and ex-
change data with each other, other networks, and the Internet. 

IoT systems collect information from various types of sensors, using spe-
cial IoT stations and routers. As a rule, information is stored in the cloud, where 
it is processed or transmitted to other networks or data warehouses (Fig. 6.1).  

 

 
 

Figure 6.1 – IoT platform [65] 
 

IIoT (Industrial Internet of Things) is the extension of the Internet of 
Things (IoT) technology into industrial sectors and applications (manufacturing, 
energy, transportation, healthcare, etc.). IoT involves connecting industrial 
equipment, machinery, sensors, and devices to the internet to collect and ex-
change data, monitor operations, and enable automation. 

Artificial Intelligence of Things (AIoT) (AI + IoT) – artificial intelligence 
of things, which means the application of intelligent technologies to the pro-
cessing of information collected using IoT systems to solve tasks of analysis, 
optimization and management processes and these things in real time. AIoT is 
now one of the main areas of IoT development, so a separate section 6.3 is de-
voted to it. 
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The concept of IoT is often associated with the term "Digital Twin" (DT), 
which is a virtual representation of a physical object, process or system in a digi-
tal environment. Unlike a model, the definition of which has a similar meaning, 
a digital twin contains a large amount of information about objects, which is col-
lected in real time. But the digital twin can also be supplemented by mathemati-
cal and information models that are identified and updated based on the collect-
ed data. Generally, DT are created for complex production facilities, such as in-
dustrial production, grain elevators, bridges, etc.  

The material in this section is based on the article [66]. 
Design and development of an information system based on IoT technol-

ogy is the process of creating and consolidating software and hardware compo-
nents that allow you to automatically collect, process and analyze data on physi-
cal indicators from various sources of information, primarily from sensors. 

When building a system, it is necessary to take into account several im-
portant aspects, in particular: 

- data transmission technology; 
- data storage and processing technology; 
- data security; 
- standardization and interoperability.  
 
It is important to choose:  
- network technology; 
- IoT platforms.  
 
The main stages of designing and developing an information system based 

on IoT technology are as follows: 
- requirements analysis and system specification;  
- system architecture design; 
- software selection and development; 
- selection and development of the hardware component; 
- integration and installation; 
- testing, testing. 
 
There are different types of wireless access media (Fig. 6.2). 

https://sait.vntu.edu.ua/uk/nauka/prohrama-yes-horyzont/
https://www.sciencedirect.com/science/article/pii/S092658052300095X?ref=pdf_download&fr=RR-2&rr=87b2146c8f4e1c2a
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Figure 6.2 – Different types of wireless access media [65] 

 
The main type of systems that are developed using the IoT concept are 

systems that are focused on collecting data from various IoT sensors, which can 
be located far from the network infrastructure, since systems in the city can be 
implemented on the basis of wired or WiFi communication. Such a system is 
called a wireless network with low data transmission power over long distances 
Low-power Wide-area Network (LPWAN) (see Fig. 6.2). Its advantages are 
long data transmission range, low power consumption, good signal quality, low 
costs for installation and operation of the network. LPWAN can use various 
modern communication protocols, information systems, and technologies. The 
most popular in the EU are LoRaWAN, Sigfox, NB-IoT.  

 
6.1.2 LPWAN IoT technologies: LoRaWAN, Sigfox, NB-IoT 
Let's consider the technical aspects of LoRaWAN, Sigfox, NB-IoT archi-

tecture.  
LoRaWAN uses low-frequency LoRa technology for a large coverage ar-

ea without large-scale infrastructure. As you know, LoRa (Long Range) is a pa-
tented technology for modulating a low-power data transmission network with a 
speed of 0.3-50 kb/s and a range of 1 to 15 km in the frequency range that re-
quires licensing.  

Sigfox is a low-power wireless network that uses the ISM standard. As 
you know, the ISM standard is a set of rules that specify the use of certain fre-
quencies of the radio frequency spectrum for industrial, scientific, and medical 
(ISM) devices. These devices can use these frequencies without obtaining a li-
cense. Sigfox uses low-frequency "Ultra Narrow Band" (UNB) technology for 
great coverage and energy efficiency. The Sigfox protocol operates in "Half Du-
plex" mode, where the end device sends short messages to the base station with-
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out acknowledging the transmission. This ensures energy-efficient operation, but 
limits the volume and frequency of transmission.  

NB-IoT stands for "Narrow band Internet of Things" – this is a standard 
designed specifically for cellular network devices and services, allowing IoT 
systems to be formed using these networks. That is, LoRaWAN and Sigfox use 
their own station systems, while NB-IoT operates over cellular networks. At the 
same time, LoRaWAN requires frequencies to be licensed, while Sigfox and 
NB-IoT do not.  

The specifics of LPWAN network technologies are shown in Table 6.1. 
 
Table 6.1 The specifics of LPWAN network technologies 
 

Indexes Technologies 
LoRaWAN Sigfox NB-IoT 

Operating fre-
quency 

433, 868, 780, 915 
MHz 865 – 924 MHz 700 – 900 MHz 

Capacity 7.8 – 500 kHz 100 Hz 180 kHz 
Maximum pack-

age size 
 

up to 255 bytes 12 bytes up to 160 bytes 

Maximum data 
transfer speed 

Up to 50 kbit/s 
(«Class A»),  

up to 1 Mbit/s 
(«Class C») 

up to 100 bps up to 250 kbit/p/s 

Range of base sta-
tion/gateway 
(open space) 

18 km 50 km (up to 100 
km) 100 km 

Range of base sta-
tion/gateway 

(dense construc-
tion) 

5 km 10 km 10-15 km 

Network topology mesh topology, 
star star star 

Encryption AES-128 AES-128 3GPP 
 128-256 bit 

Transmission 
power 14 dBm, 27 dBm 14 dBm, 27 dBm 20 – 23 dBm 

Energy consump-
tion 

from several µW 
to several mW 

from several µW 
to several mW 

from several mW 
to several tens of 

mW 
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6.2 Architecture of IoT systems. Types of its typical components. 
Optimization of the architecture of IoT systems  

 
6.2.1 Architecture of IoT systems. Types of its typical components 
Let's consider the architecture and components of networks built on the 

basis of LoRaWAN, Sigfox, NB-IoT technologies. All of them can be unified 
into a three-level architecture that includes devices/nodes, gateways/base sta-
tions, and a client-server part.  

The basic architecture of a LoRaWAN network consists of three layers: 
nodes, gateways, and network servers (Fig. 6.3). 

 

 
Figure 6.3 – LoRaWAN Network Architecture [66] 

 
The Sigfox network consists of three layers: nodes, base stations, and ac-

counting servers. Interaction in the Sigfox network takes place in only one direc-
tion (star type): from the node to the base station (Fig. 6.4). 

 

 
Figure 6.4 – Sigfox Network Architecture [66] 
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The basic architecture of the NB-IoT network also consists of three lay-
ers: devices, base stations (these often include another layer – the core of the 
network and the server part (Fig. 6.5). 

 

 
Figure 6.5 – NB-IoT Network Architecture [66] 

 
6.2.2 Choosing an IoT platform for data collection, storage and 

analysis 
IoT platforms provide tools for collecting, storing, processing, and analyz-

ing data from connected devices, as well as for improving security and efficient 
management of the IoT network. The architecture of a typical IoT platform is 
shown in Figure 6.6: 

 

 
Figure 6.6 – IoT System Architecture [66] 

 
The main components of the architecture are the following [66]: 
1. Connected devices (IoT sensors) via data transmission standards (Sig-

fox, LoRaWAN, NB-IoT, etc.). 
2. LPWAN Backend, which is responsible for maintaining and managing 

networks. 
3. IoT module, which is designed to collect data from IoT devices. 
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4. Functional module, which is responsible for processing, analyzing and 
transmitting data. 

5. The Decoding module is used to decrypt and interpret the data received 
from connected devices. IoT devices can use various data transfer formats, such 
as binary codes, JSON, or XML.  

6. A database management system (Database) is used to store and manage 
a large amount of received data. 

7. The REST API provides an application programming interface for ex-
ternal devices or systems to communicate and interact with the IoT platform. 

8. Data visualization is responsible for displaying the data collected 
through the API. Visualization can include the creation of graphs, charts, maps, 
and other graphical representations of data for easy perception and analysis. 

The most popular IoT platforms nowadays are:  
- AWS IoT; 
- Microsoft Azure IoT; 
- Google Cloud IoT; 
- ThingSpeak. 
To create an information system based on the Internet of Things, first of 

all, it is necessary to determine the architecture of such a system. Architecture 
development consists of the following stages [66]:  

- definition of functional requirements;  
- selection of IoT devices, including sensors; 
- selection of IoT communication technologies; 
- choice of IoT platform; 
- creation of a visualization system.  
 
6.2.3 Optimization of the architecture of IoT systems  
When designing a real IoT system, it is important to analyze the typical 

characteristics of each IoT technology and determine the optimal one in accord-
ance with its requirements. Let's compare the characteristics of technologies ac-
cording to the following criteria [66]: 

 – coverage range; 
 – frequency range; 
 – data transfer rate; 
 – cost of implementation; 
 – energy efficiency; 
 – reliability; 
 – speed of design; 
 – data confidentiality and security. 

As an integral criterion, the classical criterion  is chosen, where  is 
the weight of the -th criterion, which is determined by experts, depending on 
the conditions of the problem: 

 
                                           .              (6.1) 
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The result of the multi-criteria analysis of expert assessments of the pa-
rameters of network technologies according to the above criteria is presented in 
Table 6.2. 

 
Table 6.2. The result of the multi-criteria analysis of expert assess-

ments of the parameters of network technologies 
 

Criteria X1 X2 X3 X4 X5 X6 X7 X8 Jx Weights 0,2 0,1 0,1 0,15 0,15 0,1 0,15 0,05 

LoRa-
WAN 

1 – 
from 
2 up 
to 15 
km 

1 – three 
ranges 
(433/868/
915 MHz) 

0,8 –  
1,2 
kbit/s 

0,8 0,8 0,9 0,8 0,8 0,87 

Sigfox 

0,8 – 
from 
2 up 
to 10 
km 

0,9 – two 
ranges 

0,5 – 
100 
bit/s 

1 1 1 1 0,8 0,89 

NB-IoT 
0,8 – 
10 
km 

0,9 – two 
ranges 

1 – 
250 
kbit/s 

0.6 0.6 0,9 0,7 1 0,77 

 
The task of choosing the optimal LPWAN technology can be as follows: 

minimize the cost of implementation while satisfying the following constraints 
[66]: 

− The coverage range  must be not less than the specified value; 
− The frequency range must correspond to the specified range from  

to ; 
− The data transfer rate must be not less than the specified value ; 
− The cost of implementation  should be as low as possible; 
− Energy efficiency  must not be less than the specified value; 
− Reliability must be not less than the specified value ; 
− The design speed must be not less than the specified value ; 
− The confidentiality and security of data must be at least the specified 

value . 
The task can be solved as a linear programming problem, since all optimi-

zation criteria are linear. The optimal technology is the one for which criterion 
(6.1) will take the lowest value [66]: 

 
,                      (6.2) 
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where  is the value of the criteria for each of the IoT technol-
ogies, and X is their vector representation, A is the matrix of constraint coeffi-
cients on the criteria, B is the vector of constraints on the criteria. 

To solve the taks, you can use various methods of linear programming 
(simplex method, inner point method, etc.). Let's use the PuLP library for Py-
thon to determine which of the technologies is the best choice when developing 
an architecture, taking into account energy efficiency, design speed and cost.  

In Python, the solution of this problem was automated in the notebook  
"Selection of IoT technology" [67]. Input data is presented in the form of Table 
6.2 (there may be a smaller number of criteria, i.e. columns). All values should 
be given as numbers so that they can be matched to each other. In a separate ta-
ble, it is necessary to keep the weights of the criteria that are determined in ac-
cordance with the technical requirements for the system (Table 6.3). And in the 
other table, specify only the numerical values of the criteria (Table 6.4). 

 
Table 6.3. Weights of the criteria 

 
Architectures X1 X2 X3 X4 X5 X6 X7 X8 

Weights w 0,2 0,1 0,1 0,15 0,15 0,1 0,15 0,05 
 
Table 6.4. Values of the criteria 
 

Architec-
tures X1 X2 X3 Indi- 

cators 
Tech- 
nology X6 

Lo-
Ra-

WAN 
Sigfox NB-IoT 

Operating 
Frequency 

433, 
868, 

780, 915 
MHz 

865 – 924 
MHz 

700 – 900 
MHz 

Band
width 

7.8 – 
500 
kHz 

100 Hz 180 
kHz 

Maxi- 
mum 
Pac- 
kage 
Size 

up to 
255 

bytes 

12 bytes 
up to 
160 

bytes 

Maximum 
data trans-
fer speed 

up to 50 
kbit/s 

("Class A"), 
up to 1 Mbps 
("Class C") 

up to 
100 
bps 

up to 
250 
kbps  

Base 
Sta-
tion/ 
Gate-
way 

Range 
(Open 
Area) 

18 km 

50 km 
(up to 
100 
km) 

100 km 

Base Sta-
tion/ Gate-
way Range 

(Dense 
Build) 

5 km 10 km 10-15 km 

Net- 
work 
To-

polo-
gy 

Mesh 
Topo- 
logy, 
Star 

star star Encryp-
tion 

AES-
128 

The Jx values obtained in the last column indicate that Sigfox is the opti-
mal technology for the Internet of Things-based physical parameters monitoring 
information system if a reliable, energy-efficient, relatively low-cost technology 
is required. If there is a need to increase the coverage range or increase the level 

https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology
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of privacy, then you need to change the parameters of Table 6.3 and re-solve the 
problem according to Table 6.4. 

Other network technology parameters can be optimized in the same way. 
 
 
6.2.4 The example of creating an IoT system 
The article [66] provides an example of solving such a problem. The re-

sult of the information system for monitoring physical indicators based on the 
Internet of Things with the optimal architecture, created with the participation of 
one of the authors of this manual, is also described (Fig. 6.7). 

 

 
Figure 6.7 – Optimal architecture of the information system for monitoring 

physical indicators based on the Internet of Things, selected in the article [66] 
 

As you can see in Figure 6.6, the best choice is to use the ThingSpeak IoT 
platform for data storage and analysis. The ThingSpeak server collects data from 
the Sigfox Backend using API queries and stores it in a database. The obtained 
data can be displayed using the web interface of ThingSpeak.  

The article [66] describes an example of an IoT system implemented in 
practice with the architecture from Fig. 6.7. The device was implemented on the 
basis of the Arduino Mini microcontroller, SFM10R1 module using a tempera-
ture sensor SD18B20 and a Sigfox station (SMBS-T4), which is on the balance 
sheet of the Department of System Analysis and Information Technologies of 
the Faculty of Intelligent Information Technologies and Automation of VNTU. 
The block diagram of the hardware of the information system is shown in Figure 
6.8: 

 

https://sait.vntu.edu.ua/en/
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Power unit Sigfox 
moduleMCU

Sensor

OLED
Display

 
Figure 6.8 – Block diagram of the hardware part of the information system [66] 

 
The microprocessor device generates commands to control the Sigfox 

SFM10R1 module via the RS-232 protocol. The temperature value over the I2C 
bus is read by the microcontroller and transmitted in the body of the AT com-
mand to send the data packet to the Sigfox network (AT$SF). When the trans-
mitter receives this command, it generates a response about its successful execu-
tion. 

Figure 6.9 shows an example of visualization of the data received from 
the created IoT system. 

 
Figure 6.9 – Visualization of data obtained from the Sigfox temperature moni-
toring information system based on IoT technology, developed with the partici-

pation of the author of the manual [66] 
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6.3 Artificial Intelligence of Things (AIoT)  
 
One of the most promising areas for the development of modern software 

and hardware technologies in the development of IIoT is the transition to AIoT, 
which not only collects and processes information, but also automatically makes 
decisions and implements them. Sometimes, IoT systems are also referred to as 
AIoT systems, which only process the information collected by IoT systems us-
ing AI subsystems and technologies. Such AIoT are of a recommendatory na-
ture, for example, in a convenient form, they provide the process operator with a 
set of options for decisions that can be made and what consequences and bene-
fits each of them will have. During 2022-2023, one of the co-authors of this 
manual (Vitalii Mokin) participated in the development of such a system as the 
scientific supervisor of the Vinnytsia National Technical University 
"Development of Information Technologies for Grain Elevator Optimization Us-
ing Neural Network Models and Reinforcement Learning Methods" together 
with INNOVINNPROM LLC, which implemented the project "Asset Perfor-
mance Management System for grain processing industry SAKURA-APM PaaS 
SAKURA-IIoT based" (Fig. 6.10). This project has received funding from the 
European Union’s Horizon 2020 research and innovation programme within the 
framework of the BOWI Project funded under grant agreement No 873155. The 
results of this project are described in more detail in YouTube video and in the 
article [68]. 

 

 
Figure 6.10 – AIoT in the project «Asset Performance Management System for 
grain processing industry SAKURA-APM PaaS SAKURA-IIoT based» (from 

YouTube video) 
 

But more effective are AIoT subsystems, which also contain subsystems 
for automatic control of these production systems using another IoT subsystem 
(Fig. 6.11).  

 

https://sait.vntu.edu.ua/uk/nauka/prohrama-yes-horyzont/
https://sait.vntu.edu.ua/uk/nauka/prohrama-yes-horyzont/
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://www.youtube.com/watch?v=znz_Dq-T_ZE
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://innovinnprom.com/galuzevi-rishennya/multyhmarna-platforma-internetu-rechey-sakura-iiot
https://www.youtube.com/watch?v=znz_Dq-T_ZE
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Figure 6.11 – Generalized architecture of the AIoT system 

 
For example, Tesla and other vehicles with autopilot are classic AIoT 

with IoT and for collecting information, AI for processing it, and with IoT for 
applying the developed optimal solutions through the means of controlling this 
transport. 

The article [65] provides a good and up-to-date overview of modern ar-
chitectural, technological, software and hardware solutions used in AIoT. The 
basic idea is that the architecture from Fig. 6.11 should be able to work autono-
mously without copying data to the cloud (Fig. 6.12). 
 

 
Figure 6.12 – Basic AIoT platform [65] 

 
 
As can be seen in Fig. 6.12 The system consists of AIoT subsystems that 

independently collect information from sensors, process it, make decisions and 
transmit it directly to devices that execute these decisions. In addition, these 
subsystems exchange information with each other and with the Internet. Users 
have access to data via the Internet and it is possible to exchange data with the 
cloud. This architecture has the following main advantages: 



190 
 

- due to the autonomy of AIoT subsystems, the time for the implementa-
tion of optimal decisions is significantly reduced; 

- due to data exchange with the Internet and the cloud, it is possible to 
store all the collected information and improve decision-making algorithms; 

- due to the exchange of information between AIoT subsystems through 
IoT protocols without copying to the cloud, it is possible to speed up this pro-
cess. 

Of course, the advantages of architecture in Fig. 6.12 are also its disad-
vantages: 

- errors or lack of information in the implementation of automatically 
made decisions, in the absence of human control, can lead to irreparable errors; 

- the implementation of such AIoT subsystems requires very energy-
efficient AI solutions, and cost-effectiveness, as a rule, means simplification and 
some opportunities; 

- delays in the Internet network when transferring data to the cloud can 
lead to the fact that not all information will have time to be transmitted or 
transmitted with a significant delay, which can lead to the fact that external con-
trol may not be effective enough. 

Fig. 6.13 shows an example of a hardware implementation of an AIoT 
subsystem for an intelligent irrigation system. 

 

 
Figure 6.13 – Basic hardware architecture of AIoT/IIoT/IoT devices 

for a smart irrigation application [65] 
 
 

Without the AIoT system, it would be impossible to study, for example, 
Mars. After all, the signal from the rover takes about 12.5 minutes to reach 
Earth. And during this time, he has to move somehow, perform some research, 
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maneuvers, go somewhere, adapt to the terrain. Therefore, its AIoT subsystem 
itself makes decisions and immediately implements them, and control from the 
control center from Earth can only make certain adjustments with a delay of 
12.5 minutes. Under terrestrial conditions, the delay is usually much smaller, but 
for some processes, a delay of even a couple of seconds is critical. 

It is for the development of such systems that it is important to create both 
accurate and energy-efficient models and technologies of machine learning and 
data analysis, as well as fast and effective algorithms for their adjustment, taking 
into account new data. 

The most popular way to create energy-efficient machine learning models 
to solve data analysis problems for AI systems is to use the TinyML (Tiny Ma-
chine Learning) concept to transform intelligent models into more energy-
efficient ones optimized specifically for AI subsystems. For example, such a 
transformation is provided by the TensorFlow Lite framework (Fig. 6.14). 

 

 
Figure 6.14 – TensorFlow framework for microcontrollers  

(TinyML concept) [65] 
 
 
Such a transformation can also be done using the Kaggle platform. First, 

a regular model is built and trained using the framework TensorFlow. And then 
it is transformed into a format optimized for IoT systems using the Ti-
nyMLGen library (tinymlgen). And it is still preserved. This is illustrated by 
the author's notebook "MNIST : TF Learning and TinyML Transformation" on 
the example of the task of recognizing Arabic numerals from the MNIST da-
taset (Fig. 6.15). 

 

https://github.com/eloquentarduino/tinymlgen
https://www.kaggle.com/code/vbmokin/mnist-tf-learning-and-tinyml-transformation
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Figure 6.15 – An example of transforming and saving an intelligent model built 

to recognize Arabic numerals from the MNIST dataset using the TensorFlow 
framework and the TinyMLGen library 

 
 

Possible topics for practical and laboratory tasks 
 

Topic No. 1. "Selection of the optimal LPWAN network technology 
for the implementation of an information and measurement system based 
on the Internet of Things". 

The purpose of the lesson is a comparative analysis of LPWAN network 
technologies for the implementation of an information and measurement system 
based on the Internet of Things and mastering the possibilities for their optimal 
selection using the method of linear optimization and the notebook for its auto-
mation in Python in Kaggle. 

Lesson plan: 
5. According to the option provided by the instructor (see below), select 

the importance of criteria w in Table 5.3. 
6. Type table 5.3 (MS Excel, Google.Table, etc.) and save it in CSV for-

mat. Download to Kaggle as a private dataset.  
7. Copy the notebook "Selection of IoT technology" [67] to your Kaggle 

profile and pull the dataset from step 2 into it as a data source.  

https://www.kaggle.com/code/vbmokin/mnist-tf-learning-and-tinyml-transformation
https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology
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8. In cell No. 3 of the notebook with the selection of the table with 
weights, replace the path and name with the path and name to your table in the 
private dataset. 

9. Run the notebook and analyze the result of its work.  
10. Give a screenshot of the last cells with the results of the work (Fig. 

6.16): the input table (p. 2) and the conclusion about which architecture from 
Table 6.4 is optimal.  

11. If you wish, you can repeat the operations of pp. 1-5 to select optimal 
solutions at other stages of IoT system design (IoT platform, etc.), according to 
the example in the article [66]. 

12. The report must contain the full name, variant number and a screen-
shot from p. 6 in any form (file in docx or pdf). Send to the lecturer by mail. 

 

 
 

Figure 6.16 – An example of the notebook "Selection of IoT technology" [67] 
with default data, which should be given in the report 

 
Variants of tasks (hypothetical examples): 
Option 1. Information and measuring system for monitoring the state of 

the reservoir. 
Requirements: 
- low-dynamic signal from sensors (for example, the content of heavy 

metals in the water of the reservoir); 
- the distance from the sensors to the station is no more than 10 km;  
- the territory outside the city, without buildings and, for the most part, flat 

(the station is installed on a hill near the reservoir); 
- relatively low cost of system implementation; 
- the energy efficiency of the system is quite high. 
 
 
 

https://www.kaggle.com/code/honcharenkodmytro/selection-of-iot-technology
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Option 2. Tracking the movement of freight transport. 
Requirements: 
- strongly dynamic signal from moving trucks; 
- the distance from the sensors to the station is from 2 to 15 km; 
- data transfer rate 1.2 kbit/s; 
- relatively high reliability of the system and speed of its design are re-

quired. 
 
Option 3. Remote monitoring and management of water supply in rural 

areas.  
In rural areas, there are often problems with the reliability of the commu-

nication network due to remoteness and low population density. However, a re-
liable and stable communication network is necessary for effective monitoring 
and management of water supply systems.  

Requirements: 
- dynamic signal from sensors (water level in tanks, pressure in the sys-

tem); 
- the distance from the sensors to the station is up to 10 km; 
- data transfer rate up to 250 kbit/s; 
- the cost of implementation and energy efficiency are not key parameters; 
- data privacy and security are an essential component of the system. 
 
Option 4. Tracking the movement of goods in railway cars. 
Requirements: 
- low-variable signal (in fact, only a certain registration code of the cargo 

is transmitted); 
- the signal should be triggered 15 km before the railway station; 
- relatively low cost of system implementation; 
- the energy efficiency of the system is quite high; 
- high speed of its design. 
 
 

Test questions 
1) What is IoT? 
2) What is AIoT? 
3) What are the important aspects to consider when building an IoT sys-

tem? 
4) What stages of designing and developing an information system based 

on IoT technology do you know? 
5) What is LPWAN? 
6) What types of modern LPWANs do you know? Describe their main 

types. 
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7) What are the elements of the architecture of the main types of modern 
IoT LPWAN networks? 

8) What are the elements of the IoT LPWAN architecture? 
9) What modern IoT platforms do you know? 
10) What are the stages of IoT system architecture design? 
11) What criteria do you know for choosing a network technology when 

designing an IoT system? 
12) What are the typical constraints for choosing a network technology 

when designing an IoT system? 
13) Which method and Python of the optimization library can be used to 

select IoT network technology? 
14) Which criteria are more important for each type of IoT technology? 

Which ones do they maximize and which ones do they minimize, compared to 
others? 

15) What are the advantages and disadvantages of IoT system architecture 
with autonomous AIoT subsystems? 

16) What concept can be used to transform an intelligent model from the 
TensorFlow Lite framework into a more cost-effective, IoT-optimize done? 
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https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37119/125027%2520(1).pdf?sequence=3&isAllowed=y
https://openarchive.nure.ua/server/api/core/bitstreams/2e55d639-52fd-48d9-b7b7-14989f49f291/content
https://openarchive.nure.ua/server/api/core/bitstreams/2e55d639-52fd-48d9-b7b7-14989f49f291/content
https://pdf.lib.vntu.edu.ua/books/2020/Savchenko_2017_176.pdf
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APPENDIX A  
PYTHON BASICS: SYNTAX, DATA TYPES, BASIC COMMANDS AND 

BASIC LIBRARIES 
 

We recommend that you familiarize yourself with the following Python 
infographic: 

 
Fig. A.1 – Python syntax. Part I 

 
 



205 
 

 

 
Fig. A.2 – Python syntax. Part II 

 
 
Also, you should familiarize yourself with open materials about Python at 

documentation. 
 
To write high-quality and readable programs, we recommend that you fa-

miliarize yourself with «PEP 8» – this is a document that defines the standards 

https://docs.python.org/3/tutorial/index.html
https://peps.python.org/pep-0008/
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for code design for the Python programming language ("PEP" – "Python En-
hancement Proposal"): recommendations and rules for formatting code, variable 
names, placement of parentheses, indentation, etc. 

An infographics about date and time operations is useful. 
 
NumPy – is a fundamental package for scientific computing in Python. 

Operations with arrays and matrices are supported, including linear algebra op-
erations, various mathematical and logical functions, sorting, selection, in-
put/output, basic statistical operations, etc. 

It is useful to study the following infographics of basic data operations in 
NumPy, Pandas, etc. libraries.: 

 
 

 
Fig. A.3 – Basic Python commands for importing data 

https://takeuforward.org/python/python-datetime/
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Fig. A.4 – The NumPy library 

 
 

See more details about NumPy in textbooks: 
- Tutorial; 
- QuickStart; 
- 100 numpy exercises. 
 
 
Pandas – is the main basic high-speed Python library for working with 

tabular data in the form of dataframes. 
Most Python data analysis libraries work with information in either 

NumPy or Pandas data format. For more details about operations in Pandas, see 
in infographics: 

 

https://numpy.org/doc/stable/user/tutorials_index.html
https://numpy.org/doc/stable/user/quickstart.html
https://github.com/rougier/numpy-100
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Fig. A.5 – Pandas library 

 
Important Pandas dataframe operations are as follows 3: 
- concat – joining along one of the axes (column or row, i.e. joining verti-

cally or horizontally) 
- join – joining on the left, right or other; 
- merge – mergering according to various options. 
For more details about these operations, see in documentation Pandas (it 

is useful to review this entire documentation file at least once). 
 

 

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html


209 
 

APPENDIX B  
BUILDING YOUR OWN DATASET IN THE KAGGLE ENVIRONMENT 

 
To create your own datasets in the Kaggle environment, it is recommend-

ed to use the following algorithm: 
1. Create a data table in an editor that can save files in csv format (for 

example, MS Excel, Google.Table, Calc Apache OpenOffice or LibreOffice, 
Spreadsheets WPS Office, etc.) and enter all the necessary data into it and per-
form formatting cleaning and data refactoring, to prepare for a convenient ap-
pearance for automatic processing:  

-  each table is on a separate sheet; 
-  do not merge cells;  
- name all columns with words with small letters or numbers, try to avoid 

special characters; 
- if there is more than one word in the name, then combine them with the 

symbol "_" and not with spaces): «body_temperature»; 
- dates should be optimally submitted in the format "Short date format" 

(for example: 04.01.24), avoid the date option where zeros are omitted in the 
necessary digits "4.1.24", because there are no ready-made functions for them in 
Python and a new special function must be developed, instead editors like MS 
Excel have handy features that make it easy to convert 4.1.24 to 04.01.24. 

2. Save each table in a separate csv file (remember that each sheet of the 
table is saved in a separate csv file); 

3. Determine the character encoding or change it to a known one. Open 
the created csv-file in the "SublimeText" editor or similar. Make sure that all 
characters are read correctly, or re-encode them by clicking "File/Reopen with 
Encoding" in the menu and selecting the required encoding from the list, and 
then – save the file. Usually, choose UTF-8 or others. Then, in the case of read-
ing the data in Kaggle, it will be known exactly which encoding to specify (see 
the example in tip "Tip2.3" in [4]). There are still services that allow you to 
identify text encoding, for example, the Python library chardet. In the case of 
working with datasets, it is important to know the encoding exactly to guarantee 
its correct reading, otherwise information may be lost or it may not be read at 
all. 

4. Create a new dataset in Kaggle Dataset: click on the "New Dataset" 
button and drag the file created in point 2 into a new window. 

5. Assign the main name to the dataset. It will appear later in the web 
link at the end of the address (letters through a hyphen and then it cannot be 
changed!), an additional clarifying name and describe the dataset, following fur-
ther instructions and templates (see examples 
https://www.kaggle.com/vbmokin/datasets).  

Regarding Kaggle, it is important to know that it uses a built-in plagiarism 
checker and does not allow you to save a dataset that is already in the system! 

https://github.com/chardet/chardet
https://www.kaggle.com/vbmokin/datasets
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Therefore, if you intend to create your own dataset, it must be truly original or at 
least contain some processing of the existing one so that there is no overlap in 
the data. 

We systematize the dataset construction operations in Kaggle in the form 
of infographics in the S(I) coordinate system (Fig. B.1). 

 

 
Figure B.1 – Infographics of dataset construction operations in Kaggle 

 
 

It is important to make the most of open data. It is also useful because it is 
then easier to publish the results (with reference to the original sources of in-
formation). 
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APPENDIX C  
EXAMPLES OF SETTING PROBLEMS FROM MACHINE LEARNING 

AND INTELLIGENT DATA ANALYSIS 
 

We will give examples of setting tasks from machine learning and intelli-
gent data analysis using the example of real tasks, as well as using the example 
of Kaggle datasets and Kaggle competitions. 

1. Retail Sales Forecasting: Based on historical sales data, weather, hol-
idays and other factors, a model is created to forecast future store sales. The re-
sults of such a model can help managers make decisions about inventory, mar-
keting campaigns, etc. 

2. Text classification: The task is to recognize the category of the text. 
For example, classifying e-mails as "spam" and "not spam", or analyzing senti-
ment in comments on social networks. 

3. Medical Data Anomaly Detection: Using machine learning algo-
rithms, medical data is analyzed to detect abnormalities or potential diseases at 
an early stage. This can be useful for diagnosing various diseases, such as cancer 
or heart disease. 

4. Recommender systems: The challenge is to develop systems that 
recommend products, services or content to users based on their previous inter-
actions. For example, movie recommendations based on a user's viewing histo-
ry. 

5. Image recognition: The goal is to recognize objects or patterns in im-
ages. This can be used to automatically recognize license plates in photographs 
or to analyze medical images to detect pathologies. 

 
In addition, the Kaggle platform provides access to a variety of datasets 

and organizes competitions that can serve as examples of real-world machine 
learning tasks: 

1) Titanic: Machine Learning from Disaster. 
2) House Prices: Advanced Regression Techniques. 
3) Sentiment Analysis on Movie Reviews.  
4) COVID-19 Open Research Dataset Challenge (CORD-19). 
5) GoDaddy Data Challenge. 
6) Data Science for Good: City of Los Angeles. 
 

https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/competitions/godaddy-microbusiness-density-forecasting/overview
https://www.kaggle.com/c/data-science-for-good-city-of-los-angeles
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APPENDIX D  
IT INFRASTRUCTURE OF MACHINE LEARNING AND 

INTELLIGENT DATA ANALYSIS 
 

Various IT infrastructures with the following components are used to im-
plement machine learning and IDA solutions: 

- programming languages: the availability of libraries and frameworks that 
can be used to solve machine learning problems depends on the choice of pro-
gramming language; 

- environments, web platforms (or cloud platforms) and services: se-
environments for developing and deploying machine learning models that pro-
vide access to computing resources and data; 

- IDE (Integrated Development Environment) helps developers conven-
iently write and save code and debug machine learning models (usually inte-
grates with GitHub to save and control program versions); 

- databases and their management systems: used to store and structure da-
ta and files, as well as process and cache data requests according to specified 
criteria; 

- frameworks, packages and libraries – provide access to functions, clas-
ses, methods that can be used to solve machine learning problems. 

The choice of infrastructure components for solving machine learning 
problems depends on many criteria:  

- customer requirements – sometimes the use of cloud resources is prohib-
ited or, on the contrary, it is prohibited to store copies of data on a local comput-
er; 

- application conditions – sometimes, a machine learning model is re-
quired as part of an already deployed system, such as an IoT system or web ser-
vice, and must be run as a separate module or in a separate container; 

- available finances – for example, working with Amazon services re-
quires considerable funds;  

- knowledge and skills of programmers, including the date of engineers 
and data scientists – to ensure quality implementation, experienced personnel 
are needed, although, for a task with significant funding, suitable employees can 
be hired separately. 

There may be other criteria, including requirements or restrictions. 
The most popular programming language for machine learning and data 

analysis today is Python because it is easy to learn and use, has a large and ac-
tive developer community, and offers a wide variety of machine learning librar-
ies and frameworks.  

In the past, solving problems of machine learning, artificial intelligence 
and intelligent data analysis were traditionally carried out in the languages 
Prolog, R, in the MATLAB package, etc. [69-72], but nowadays, especially in 
IT companies that are involved in the creation of programs and ready-to-
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implement solutions, only Python is popular. R used to be a popular language 
for statistical machine learning because it offers powerful functions for data 
analysis and visualization. The majority of solution developers have already re-
oriented themselves to Python, R, Prolog, MATLAB, etc. By the way, the au-
thors of this manual used to program in R, as well as in MATLAB. 

 
There are a number of cloud platforms and services that can be used to 

develop and deploy machine learning models. Some popular environments in-
clude: 

- Amazon Web Services (AWS) – Provides a wide range of services for 
machine learning, including Amazon SageMaker, Amazon Lex, etc; 

- Microsoft Azure Machine Learning is a machine learning platform that 
offers services such as model training, model deployment, and model manage-
ment; 

- Google Cloud AI Platform is a machine learning platform that offers 
services such as model training, model deployment, and model management; 

- Colaboratory (or Google Colab) is a free environment for developing 
and deploying machine learning models in Python, which is available in the 
browser, and there are also free options for accessing computing capabilities us-
ing GPUs (although these capabilities are much greater on paid terms); 

- Kaggle is a web-based platform for data scientists that offers competi-
tions, a free code editor and computing power, and a forum to discuss problems. 

The most popular IDE for machine learning in Python: 
- PyCharm is an IDE developed by JetBrains and is free for higher educa-

tion students; 
- Visual Studio is a powerful but complex integrated development envi-

ronment (IDE) from Microsoft;  
- Anaconda (Fig. D.1) is a free Python distribution that includes many 

popular packages for scientific computing and machine learning, such as 
NumPy, pandas, Scikit-learn, TensorFlow, and PyTorch; 

- Visual Studio Code (VS Code) – is a lightweight code editor from Mi-
crosoft; 

- Jupyter Notebook – it is a popular environment for executing code in the 
browser. 
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Figure D.1 – IDE Anaconda navigator interface 

 
 
 
This manual is focused on the use of Jupyter Notebook (JN) (Fig. D.2, 

D.3), as the most universal environment. The authors, from their own experi-
ence, know that its code in .ipynb format can be edited in Jupyter Notebook An-
aconda, Kaggle Editor, Amazon SageMaker, and Google Colab. 

 

 
 

Figure D.2 – Interface Jupyter Notebook in IDE Anaconda 
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Figure D.3 – Basic elements of the Jupyter Notebook interface 

 
Both well-structured databases (for example, relational or hierarchical) 

and unstructured ones that simply contain csv files, images, video or audio files 
can be used to store information in machine learning tasks. The second type is 
more common. 

Nowadays, cloud unstructured databases have gained more popularity: 
- Amazon S3 (abbreviation of "Simple Storage Service"); 
- Microsoft Azure Blob Storage (Microsoft); 
- Google Cloud Storage; 
- IBM Cloud Object Storage etc. 
It is important to note that such databases use add-ons that structure the 

data and make SQL queries to them possible. For example, in AWS, Amazon 
Athena is used for this.  

For local solutions, relational databases and the SQL language for work-
ing with them have become more popular.  

There are a number of basic frameworks and libraries that can be used for 
machine learning: 

- Scikit-learn – is a machine learning library that offers a wide variety of 
machine learning algorithms including classification, regression, clustering, di-
mensionality reduction and many others, will be covered in more detail in all 
subsequent chapters of the textbook;  
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- NumPy – is a library for scientific computing that provides access to 
high-performance computing, work with arrays, matrices, often used for data 
processing and preparation; 

- Pandas – is a data analysis library that provides high-speed operations 
for processing structured data, such as dataframes (a table) and series (individual 
columns of a table); 

- Matplotlib – is a data visualization library that provides graphs and 
charts; 

- TensorFlow (TF) (integrated with Keras) – is a Google framework for 
machine learning, which specializes in deep learning; 

- PyTorch – is Facebook's machine learning framework that also special-
izes in deep learning (competing with TF). 

Other libraries, as well as packages (collections of interconnected mod-
ules), as a rule, use the functions, methods and classes of these basic libraries 
and frameworks, for example, the following are popular: 

- seaborn – a data visualization library based on Matplotlib with quality 
infographics; 

- plotly – library for interactive data visualization just in the browser; 
- xgboost, lightgbm – libraries of high-performance boosting models; 
- spaCy, NLTK – a library for natural language processing (NLP); 
- opencv – a computer vision library used for image and video processing. 
The notebooks mentioned in the author's reference notebook "Data Sci-

ence for tabular data: Advanced Techniques" describe many examples of solving 
machine learning problems using the Python libraries and frameworks men-
tioned above.  
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APPENDIX E  
LIBRARIES AND METHODS FOR AUTOMATIC EDA: 

PANDASPROFILING, AUTOVIZ, SWEETVIZ 
 
Specialized Python libraries and methods that allow you to perform auto-

matic EDA [56]: 
 
1. PandasProfiling (PP) – everything is done by a single ProfileReport 

command. 
The main principle of PandasProfiling is to output statistics and various 

information for each variable separately. It is also possible to analyze the rela-
tionship between arbitrary pairs of features on an interactive graph. It is valuable 
that at the beginning of the report general conclusions about the variables are 
given and different textual information is given in different colors: which fea-
tures are highly correlated, which contain very few or very many unique values, 
which contain many missing values, etc. (Fig. E.1). 

 
 

 
Figure E.1 – PandasProfiling statistical findings on features of the Titanic pas-

senger competition training dataset from the author's notebook 
 

https://www.kaggle.com/code/vbmokin/automatic-eda-with-pandas-profiling
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2. AutoViz – automatically determines the graph type for each variable, 
depending on its characteristics. For example, numeric variables can be dis-
played as histograms, scatter plots, or line graphs, while categorical variables 
can be displayed as pie charts or bar graphs—trying to provide useful visualiza-
tions for each type of data. Can perform grouped analyses, for example, consid-
ering dependencies between variables or the distribution of variable values by a 
certain category. Can generate interactive graphs (Fig. E.2). 

 

 
Figure E.2 – Comparison of datasets with the exchange rate of cryptocurrency 

for different dates corresponding to 2 classes: «0» – from 10.10.2021 to 
06.04.2022, «1» – from 07.04.2022 to 03.10.2022 [56, section 6.3] 

 
 

3. SweetViz – automatically constructs histograms for all numeric and 
categorical variables. It is possible to analyze the relationship between numeri-
cal and categorical features by building graphs of relativity. SweetViz provides 
convenient interfaces for comparing two different datasets, for example, training 
and testing, or for data collected at different times (Fig. E.3). 
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Figure E.3 – Comparison of datasets with the exchange rate of cryptocurrency 
for different dates corresponding to 2 classes: «Dataframe» – from 10.10.2021 

to 06.04.2022, «Compared» – from 07.04.2022 to 03.10.2022   
[56, section 6.2]  
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APPENDIX F  
LIBRARIES SHAP, LIME FOR THE MODEL INTERPRETATION 

 
SHAP ("SHapley Additive explanations") is a game-theoretic approach to 

explaining the predictions of any machine learning model using classical Shap-
ley values from game theory. Shapley values determine how much a change in 
each feature affects the model's prediction, i.e. increases or decreases its value. 

What is particularly valuable is that SHAP takes into account all possible 
subsets of features and allows consideration of interactions between them. This 
allows you to create interpretations that reflect not only the importance of indi-
vidual features, but also their mutual influence. That is, it allows you to under-
stand the cause-and-effect relationships and the contribution of each feature to 
the prognosis. 

Such diagrams are effective and popular SHAP: 
 
1. Summary Plot – a diagram that shows the contribution of each feature 

to each specific forecast (Fig. F.1). 
 

 
         a)                b) 

Figure F.1 – Summary Plot SHAP chart for Bitcoin exchange rate: 
a) with the parameter plot_type = "bar", b) with the parameter  

plot_type = "dot" [56] 
 
 

2. Force Plot – a graph that displays the size and sign of the contribution 
of each feature for a specific forecast, taking into account the base forecast for 
the entire sample (Fig. F.2). Features that affect the increase of the target are 
displayed in red, and those that affect the decrease in blue. It is interesting that 

https://github.com/shap/shap
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such a graph can be built both for each prediction separately (Fig. F.2a) and for 
all values together, then it will have the form of an interactive graph, where you 
can choose different features (in the drop-down windows on the top and left) 
and ranges ( mouse on the graph) and more carefully study the regularities (Fig. 
F.2b). 

 

 
a) 
 

 
b) 
 

Figure F.2 – Force Plot SHAP charts for the increase in the number of corona-
virus patients in Ukraine: a) for one date, October 20, 2020;  

b) compilative interactive diagram based on the Tree Explainer method for a 
wider set of features for April-October 2020 (from the author's notebook) 

 
Diagram F.2a shows that, according to Google trends, the negative red 

value of mobility_residential and the positive blue value of mobili-
ty_retail_and_recreation reduce the number of new coronavirus patients. Other 
indicators are shown in red and are positive, so their increase contributes to the 
increase in the number of new patients: mobility_grocery_and_pharmacy, num-
ber of tests, mobility_parks, etc. And on the diagram F.2b it can be seen that the 
regularities underwent significant changes during the entire range of observa-
tions, therefore, for forecasting in the medium and long term, these features can, 
rather, reduce the accuracy of forecasting. 

 
 

3. Dependency Plot – a scatter diagram that shows how a change in the 
value of a specific feature affects the contribution of this feature to the forecast 
(Fig.. 3.6). 

https://www.kaggle.com/code/vbmokin/covid-19-in-ukraine-explanation-of-patterns
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Figure F.3 – A Dependency Plot SHAP diagram that illustrates the logarithm of 
the odds of earning more than $50,000 a year, depending on the person's  

age and education 
 
In fig. F.3 shows that the logarithm of the chances of earning more than 

50,000 dollars per year increases significantly between the ages of 20 and 40, 
reaching the highest values, with the highest possible level of education, some-
where from 38 to 60, and the maximum – from 45 to, approximately, 53 years. 

 
 

4. Waterfall Plot: A plot that illustrates the way the model arrives at a par-
ticular prediction, showing the contribution of each feature at each step as a wa-
terfall of increments with different sign and color. The bottom of the waterfall 
diagram begins as the expected value of the model output given the input feature 
values plotted in gray numbers, and then each line in the diagram shows how the 
positive (red) or negative (blue) contribution of each feature moves the value 
from the expected model output to that prediction (Fig. F.4). 
 

https://shap-lrjball.readthedocs.io/en/latest/example_notebooks/plots/dependence_plot.html
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Figure F.4 – A Dependency Plot SHAP diagram that illustrates the nature and 
strength of the influence of certain features of the signs on the logarithm of the 

chances of earning more than 50 thousand dollars per year 
 
In fig. F.4 shows that (see the description of parameter values in the "US 

Adult Income Dataset" dataset, for example, in the repository or elsewhere): the 
lack of capital growth had the greatest impact on the decrease in income; that 
this African American (Sex=1, Race=4) has never worked (Workclass); that he 
is ready to work only on manual work related to repairs (Occupation=1); that he 
is single (MaritalStatus = 4). Some growth is due to an age close to the opti-
mum, when, on average, people earn the most (38-60 years), that he is male 
(Sex=1), that he has an education, albeit a small one (Education_Num=13: only 
5-6th grades). 

See other examples and their description in more detail: Data Science for 
tabular data: Advanced Techniques, Crypto - BTC : Analysis & Forecasting 
(sections 3.4), or in paper or in documentation. 

The main drawback of the SHAP library is that it requires a lot of compu-
tation when analyzing large and complex neural network models or ensembles. 
Therefore, the LIME library is often used, which uses a number of simplifica-
tions and therefore requires less computational costs. 

 

https://shap-lrjball.readthedocs.io/en/latest/example_notebooks/plots/dependence_plot.html
https://www.kaggle.com/code/vbmokin/data-science-for-tabular-data-advanced-techniques
https://www.kaggle.com/code/vbmokin/data-science-for-tabular-data-advanced-techniques
https://www.kaggle.com/code/vbmokin/crypto-btc-analysis-forecasting
https://www.freecodecamp.org/news/interpret-black-box-model-using-lime/
https://shap-lrjball.readthedocs.io/en/latest/
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The basic principle of the LIME library is that any complex model is more 
easily approximated in the neighborhood of a particular example of data. The 
model is presented as a "black box". And its behavior at a given point is approx-
imated by a linear model, and it is based on it that the explanation of the entire 
model as a whole is formed. In fig. F.5 gives an example that illustrates this 
principle. 

 

 
Figure F.5 – Illustration of the working principle of the method LIME [73]  

 
The model-based function being explained is shown in blue and pink. It is 

obvious that it is non-linear. The large red cross is an example of the data at 
point X0. We take other data values in a certain neighborhood near X0, taking 
into account the degree of proximity to X0 in relation to the weight of these da-
ta. A collection of points (crosses) is formed, which is further approximated by a 
straight line (dotted line in Fig. F.5). This line allows us to characterize a certain 
section of regularities, but these are rather local rather than global regularities. 
This is the main drawback of the methods of this library – that it describes local 
regularities, not global ones [74]. 

Fig. F.6 and F.7 presents examples from the notebook as for the interpre-
tation of the predictions made by the model for the passengers of the Titanic, 
whether they will survive or not according to the data of the well-known compe-
tition in Kaggle. 

 

https://www.kaggle.com/code/vikumsw/explaining-random-forest-model-with-lime
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/titanic
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Figure F.6 – The example of predicting whether a Titanic passenger with a 
cheap 3rd class ticket who boarded at the last port – in Queenstown (Queens-

town – "Q") will survive the disaster 
 
As can be seen in fig. F.6, a passenger on the Titanic with a cheap 3rd 

class ticket, who disembarked at the last port – Queenstown, will die with a 
probability of 0.86. The fact that he was traveling in the hold with other 3rd 
class passengers and was a male left him virtually no chance of survival. In ad-
dition, as history knows, those who boarded at the last port (in Queenstown) 
took the least comfortable seats (far from the gangway from which the clean air 
came) that were still available. Although, the fact that he is young (Age=21) and 
that he has no brothers, sisters, or wife (SibSp=0) to worry about gives him 
some chances.  

 

https://www.kaggle.com/code/vikumsw/explaining-random-forest-model-with-lime
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Figure F.7 – The example of predicting whether a Titanic passenger who has an 
expensive 1st class ticket will survive the disaster 

 
And as can be seen from fig. F.7, the Titanic passenger has every chance 

to be saved. This is mostly facilitated by her female gender and an expensive 1st 
class ticket. It doesn't really matter in which port she sat down, since the 1st 
class passengers occupied separate beautiful cabins. It is somewhat surprising 
that her chances of survival are increased by the absence of brothers, sisters or a 
husband, because husbands and brothers saved women and sisters, respectively, 
in the first place. And it is also surprising that her chances of dying are affected 
by her young age (Age=24) and absence of parents (Parch=0). After all, the 
crew or other men would save such a young lady, and she would not have to 
take care of her parents. Obviously, these somewhat strange results demonstrate 
that, globally, the conclusions of the LIME library may not be entirely adequate. 
Specifically, such a woman in the training dataset would have a chance to die if 
she slept soundly or saved one of the children of her familiar family, that is, be-
cause of some features that are missing in this dataset. This is an example of the 
fact that it is difficult to draw global conclusions from one piece of data that 
may have signs of an anomaly. 

 

https://www.kaggle.com/code/vikumsw/explaining-random-forest-model-with-lime
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APPENDIX G  
NEURAL NETWORK ARCHITECTURES  

 
In 2016, the Isaac Asimov Institute (USA) published an infographics of 

the main architectures of modern neural networks at that time (Fig. G.1). 
 

 
Figure G.1 – Neural network architectures as of 2016 

https://www.asimovinstitute.org/neural-network-zoo/
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More modern neural network architectures are the following (the number 
usually means the number of hidden layers): 

- ResNet (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, 
ResNeXt, WideResNet architectures are popular); 

- EfficientNet (EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, Effi-
cientNet-B3, EfficientNet-B4, EfficientNet-B5, EfficientNet-B6, EfficientNet-
B7) and others. 
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Посібник містить теоретичні відомості про основні концепції, методи та інстру-
менти науки про дані (Data Science), машинного навчання, штучного інтелекту, ін-
телектуального аналізу даних, штучного інтелекту речей, а також практичні рекомен-
дації щодо застосування сучасних технологій у вирішенні численних прикладних задач, 
задач та проблем системного аналізу. Наведено перелік контрольних питань для пере-
вірки набутих теоретичних знань і практичних навичок. 

Навчальний посібник призначений для іноземних студентів, які навчаються за 
спеціальностями 124 «Системний аналіз» та 126 «Інформаційні системи та технології» 
II та III рівнів при вивченні дисциплін «Інтернет речей та інтелектуальний аналіз да-
них», «Інформаційні технології моніторингу та аналіз стану складних систем», «Інфор-
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виробничу та переддипломну практику і для педагогічної практики аспірантів. Він та-
кож може бути корисним для студентів інших напрямків: менеджмент, фінанси, будів-
ництво, кібербезпека, біоінженерія, електротехніка та машинобудування, сільське гос-
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